Tomita, Koji

Link to this page

Authority KeyName Variants
1b22ecb6-52e4-474b-a1dc-803d0151d103
  • Tomita, Koji (2)
Projects

Author's Bibliography

Plasmon enhanced luminescence in hierarchically structured Ag@ (Y0.95Eu0.05)2O3 nanocomposites synthesized by ultrasonic spray pyrolysis

Alkan, Gözde; Mančić, Lidija; Tamura, Sayaka; Tomita, Koji; Tan, Zhenquan; Sun, Feifei; Rudolf, Rebeka; Ohara, Satoshi; Friedrich, Bernd; Milošević, Olivera

(Elsevier, 2019)

TY  - JOUR
AU  - Alkan, Gözde
AU  - Mančić, Lidija
AU  - Tamura, Sayaka
AU  - Tomita, Koji
AU  - Tan, Zhenquan
AU  - Sun, Feifei
AU  - Rudolf, Rebeka
AU  - Ohara, Satoshi
AU  - Friedrich, Bernd
AU  - Milošević, Olivera
PY  - 2019
UR  - http://www.sciencedirect.com/science/article/pii/S0921883119301141
UR  - https://dais.sanu.ac.rs/123456789/6265
AB  - Ag@ (Y0.95 Eu0.05)2O3 nanocomposites were synthesized by single step Ultrasonic Spray Pyrolysis (USP). 800 °C synthesis temperature and 1.5 l/ min air flow were determined as optimal USP parameters. A detailed parametric study was conducted on samples with varying silver contents and heat treatment conditions. The effect of silver in both as prepared and heat treated samples were elucidated in terms of structural and functional properties. Ag incorporation decreased luminescence efficiency due to the lack of crystallization of matrix and non-homogenous distribution of Eu and Ag in as prepared samples. Heat treatment improved luminescence by improved crystal quality for all samples; however, with increasing Ag content effect of heat treatment was more pronounced owing to uniform distribution of Ag. 2.5 wt% Ag addition followed by 2 h heat treatment after USP synthesis is suggested as the most efficient nanocomposite for red light emitting down converting phosphor applications.
PB  - Elsevier
T2  - Advanced Powder Technology
T1  - Plasmon enhanced luminescence in hierarchically structured Ag@ (Y0.95Eu0.05)2O3 nanocomposites synthesized by ultrasonic spray pyrolysis
SP  - 1409
EP  - 1418
VL  - 30
IS  - 7
DO  - 10.1016/j.apt.2019.04.024
UR  - https://hdl.handle.net/21.15107/rcub_dais_6265
ER  - 
@article{
author = "Alkan, Gözde and Mančić, Lidija and Tamura, Sayaka and Tomita, Koji and Tan, Zhenquan and Sun, Feifei and Rudolf, Rebeka and Ohara, Satoshi and Friedrich, Bernd and Milošević, Olivera",
year = "2019",
abstract = "Ag@ (Y0.95 Eu0.05)2O3 nanocomposites were synthesized by single step Ultrasonic Spray Pyrolysis (USP). 800 °C synthesis temperature and 1.5 l/ min air flow were determined as optimal USP parameters. A detailed parametric study was conducted on samples with varying silver contents and heat treatment conditions. The effect of silver in both as prepared and heat treated samples were elucidated in terms of structural and functional properties. Ag incorporation decreased luminescence efficiency due to the lack of crystallization of matrix and non-homogenous distribution of Eu and Ag in as prepared samples. Heat treatment improved luminescence by improved crystal quality for all samples; however, with increasing Ag content effect of heat treatment was more pronounced owing to uniform distribution of Ag. 2.5 wt% Ag addition followed by 2 h heat treatment after USP synthesis is suggested as the most efficient nanocomposite for red light emitting down converting phosphor applications.",
publisher = "Elsevier",
journal = "Advanced Powder Technology",
title = "Plasmon enhanced luminescence in hierarchically structured Ag@ (Y0.95Eu0.05)2O3 nanocomposites synthesized by ultrasonic spray pyrolysis",
pages = "1409-1418",
volume = "30",
number = "7",
doi = "10.1016/j.apt.2019.04.024",
url = "https://hdl.handle.net/21.15107/rcub_dais_6265"
}
Alkan, G., Mančić, L., Tamura, S., Tomita, K., Tan, Z., Sun, F., Rudolf, R., Ohara, S., Friedrich, B.,& Milošević, O.. (2019). Plasmon enhanced luminescence in hierarchically structured Ag@ (Y0.95Eu0.05)2O3 nanocomposites synthesized by ultrasonic spray pyrolysis. in Advanced Powder Technology
Elsevier., 30(7), 1409-1418.
https://doi.org/10.1016/j.apt.2019.04.024
https://hdl.handle.net/21.15107/rcub_dais_6265
Alkan G, Mančić L, Tamura S, Tomita K, Tan Z, Sun F, Rudolf R, Ohara S, Friedrich B, Milošević O. Plasmon enhanced luminescence in hierarchically structured Ag@ (Y0.95Eu0.05)2O3 nanocomposites synthesized by ultrasonic spray pyrolysis. in Advanced Powder Technology. 2019;30(7):1409-1418.
doi:10.1016/j.apt.2019.04.024
https://hdl.handle.net/21.15107/rcub_dais_6265 .
Alkan, Gözde, Mančić, Lidija, Tamura, Sayaka, Tomita, Koji, Tan, Zhenquan, Sun, Feifei, Rudolf, Rebeka, Ohara, Satoshi, Friedrich, Bernd, Milošević, Olivera, "Plasmon enhanced luminescence in hierarchically structured Ag@ (Y0.95Eu0.05)2O3 nanocomposites synthesized by ultrasonic spray pyrolysis" in Advanced Powder Technology, 30, no. 7 (2019):1409-1418,
https://doi.org/10.1016/j.apt.2019.04.024 .,
https://hdl.handle.net/21.15107/rcub_dais_6265 .
5
4
5

Plasmon enhanced luminescence in hierarchically structured Ag@ (Y0.95Eu0.05)2O3 nanocomposites synthesized by ultrasonic spray pyrolysis

Alkan, Gözde; Mančić, Lidija; Tamura, Sayaka; Tomita, Koji; Tan, Zhenquan; Sun, Feifei; Rudolf, Rebeka; Ohara, Satoshi; Friedrich, Bernd; Milošević, Olivera

(Elsevier, 2019)

TY  - JOUR
AU  - Alkan, Gözde
AU  - Mančić, Lidija
AU  - Tamura, Sayaka
AU  - Tomita, Koji
AU  - Tan, Zhenquan
AU  - Sun, Feifei
AU  - Rudolf, Rebeka
AU  - Ohara, Satoshi
AU  - Friedrich, Bernd
AU  - Milošević, Olivera
PY  - 2019
UR  - http://www.sciencedirect.com/science/article/pii/S0921883119301141
UR  - https://dais.sanu.ac.rs/123456789/6264
AB  - Ag@ (Y0.95 Eu0.05)2O3 nanocomposites were synthesized by single step Ultrasonic Spray Pyrolysis (USP). 800 °C synthesis temperature and 1.5 l/ min air flow were determined as optimal USP parameters. A detailed parametric study was conducted on samples with varying silver contents and heat treatment conditions. The effect of silver in both as prepared and heat treated samples were elucidated in terms of structural and functional properties. Ag incorporation decreased luminescence efficiency due to the lack of crystallization of matrix and non-homogenous distribution of Eu and Ag in as prepared samples. Heat treatment improved luminescence by improved crystal quality for all samples; however, with increasing Ag content effect of heat treatment was more pronounced owing to uniform distribution of Ag. 2.5 wt% Ag addition followed by 2 h heat treatment after USP synthesis is suggested as the most efficient nanocomposite for red light emitting down converting phosphor applications.
PB  - Elsevier
T2  - Advanced Powder Technology
T1  - Plasmon enhanced luminescence in hierarchically structured Ag@ (Y0.95Eu0.05)2O3 nanocomposites synthesized by ultrasonic spray pyrolysis
SP  - 1409
EP  - 1418
VL  - 30
IS  - 7
DO  - 10.1016/j.apt.2019.04.024
UR  - https://hdl.handle.net/21.15107/rcub_dais_6264
ER  - 
@article{
author = "Alkan, Gözde and Mančić, Lidija and Tamura, Sayaka and Tomita, Koji and Tan, Zhenquan and Sun, Feifei and Rudolf, Rebeka and Ohara, Satoshi and Friedrich, Bernd and Milošević, Olivera",
year = "2019",
abstract = "Ag@ (Y0.95 Eu0.05)2O3 nanocomposites were synthesized by single step Ultrasonic Spray Pyrolysis (USP). 800 °C synthesis temperature and 1.5 l/ min air flow were determined as optimal USP parameters. A detailed parametric study was conducted on samples with varying silver contents and heat treatment conditions. The effect of silver in both as prepared and heat treated samples were elucidated in terms of structural and functional properties. Ag incorporation decreased luminescence efficiency due to the lack of crystallization of matrix and non-homogenous distribution of Eu and Ag in as prepared samples. Heat treatment improved luminescence by improved crystal quality for all samples; however, with increasing Ag content effect of heat treatment was more pronounced owing to uniform distribution of Ag. 2.5 wt% Ag addition followed by 2 h heat treatment after USP synthesis is suggested as the most efficient nanocomposite for red light emitting down converting phosphor applications.",
publisher = "Elsevier",
journal = "Advanced Powder Technology",
title = "Plasmon enhanced luminescence in hierarchically structured Ag@ (Y0.95Eu0.05)2O3 nanocomposites synthesized by ultrasonic spray pyrolysis",
pages = "1409-1418",
volume = "30",
number = "7",
doi = "10.1016/j.apt.2019.04.024",
url = "https://hdl.handle.net/21.15107/rcub_dais_6264"
}
Alkan, G., Mančić, L., Tamura, S., Tomita, K., Tan, Z., Sun, F., Rudolf, R., Ohara, S., Friedrich, B.,& Milošević, O.. (2019). Plasmon enhanced luminescence in hierarchically structured Ag@ (Y0.95Eu0.05)2O3 nanocomposites synthesized by ultrasonic spray pyrolysis. in Advanced Powder Technology
Elsevier., 30(7), 1409-1418.
https://doi.org/10.1016/j.apt.2019.04.024
https://hdl.handle.net/21.15107/rcub_dais_6264
Alkan G, Mančić L, Tamura S, Tomita K, Tan Z, Sun F, Rudolf R, Ohara S, Friedrich B, Milošević O. Plasmon enhanced luminescence in hierarchically structured Ag@ (Y0.95Eu0.05)2O3 nanocomposites synthesized by ultrasonic spray pyrolysis. in Advanced Powder Technology. 2019;30(7):1409-1418.
doi:10.1016/j.apt.2019.04.024
https://hdl.handle.net/21.15107/rcub_dais_6264 .
Alkan, Gözde, Mančić, Lidija, Tamura, Sayaka, Tomita, Koji, Tan, Zhenquan, Sun, Feifei, Rudolf, Rebeka, Ohara, Satoshi, Friedrich, Bernd, Milošević, Olivera, "Plasmon enhanced luminescence in hierarchically structured Ag@ (Y0.95Eu0.05)2O3 nanocomposites synthesized by ultrasonic spray pyrolysis" in Advanced Powder Technology, 30, no. 7 (2019):1409-1418,
https://doi.org/10.1016/j.apt.2019.04.024 .,
https://hdl.handle.net/21.15107/rcub_dais_6264 .
5
4
5