Janković, Bojan

Link to this page

Authority KeyName Variants
98a2e16d-07cb-4d5a-8e20-9e091746612c
  • Janković, Bojan (2)
Projects

Author's Bibliography

Characterization of silicon carbide ceramics obtained from porous carbon structure achieved by plant carbonization

Dodevski, Vladimir; Pagnacco, Maja C.; Radović, Ivana; Rosić, Milena; Janković, Bojan; Stojmenović, Marija; Mitić, Vojislav V.

(Elsevier, 2020)

TY  - JOUR
AU  - Dodevski, Vladimir
AU  - Pagnacco, Maja C.
AU  - Radović, Ivana
AU  - Rosić, Milena
AU  - Janković, Bojan
AU  - Stojmenović, Marija
AU  - Mitić, Vojislav V.
PY  - 2020
UR  - https://dais.sanu.ac.rs/123456789/8726
AB  - The aim of this research was to obtain a carbon solid residue by the carbonization process of biomass in an inert atmosphere which, through physical activation and chemical treatment (using TEOS - tetraethyl orthosilicate) would allow creation of highly porous and spatially distinct ordered bio-SiC ceramics. The results of carbonization experiments at several operating temperatures and activation of carbons with multiple-cycle treatments TEOS clearly showed the possibility of obtaining SiC nano-structures, after performing the carbothermal reduction at 1400 °C. The increase in the activation temperature and the duration time starts the development of the SiC particles inside the porous structure. The XRPD analysis showed that the major SiC polytype has cubic SiC (β-SiC) structure and remainder is hexagonal SiC polytypic (α-SiC) structure. It was established that the carbons obtained from carbonization of the Platanus orientalis L. plane tree fruit (PTF) precursor and activated at 850 °C with longer holding times (1 and 2 h) exhibit β-SiC (cubic) nano-wires. A possible nano-wires increment mechanism was suggested. The obtained results represent significant contribution in understanding the process as well as the main characteristics of SiC nano-materials and their possible applications.
PB  - Elsevier
T2  - Materials Chemistry and Physics
T1  - Characterization of silicon carbide ceramics obtained from porous carbon structure achieved by plant carbonization
SP  - 122768
VL  - 245
DO  - 10.1016/j.matchemphys.2020.122768
UR  - https://hdl.handle.net/21.15107/rcub_dais_8726
ER  - 
@article{
author = "Dodevski, Vladimir and Pagnacco, Maja C. and Radović, Ivana and Rosić, Milena and Janković, Bojan and Stojmenović, Marija and Mitić, Vojislav V.",
year = "2020",
abstract = "The aim of this research was to obtain a carbon solid residue by the carbonization process of biomass in an inert atmosphere which, through physical activation and chemical treatment (using TEOS - tetraethyl orthosilicate) would allow creation of highly porous and spatially distinct ordered bio-SiC ceramics. The results of carbonization experiments at several operating temperatures and activation of carbons with multiple-cycle treatments TEOS clearly showed the possibility of obtaining SiC nano-structures, after performing the carbothermal reduction at 1400 °C. The increase in the activation temperature and the duration time starts the development of the SiC particles inside the porous structure. The XRPD analysis showed that the major SiC polytype has cubic SiC (β-SiC) structure and remainder is hexagonal SiC polytypic (α-SiC) structure. It was established that the carbons obtained from carbonization of the Platanus orientalis L. plane tree fruit (PTF) precursor and activated at 850 °C with longer holding times (1 and 2 h) exhibit β-SiC (cubic) nano-wires. A possible nano-wires increment mechanism was suggested. The obtained results represent significant contribution in understanding the process as well as the main characteristics of SiC nano-materials and their possible applications.",
publisher = "Elsevier",
journal = "Materials Chemistry and Physics",
title = "Characterization of silicon carbide ceramics obtained from porous carbon structure achieved by plant carbonization",
pages = "122768",
volume = "245",
doi = "10.1016/j.matchemphys.2020.122768",
url = "https://hdl.handle.net/21.15107/rcub_dais_8726"
}
Dodevski, V., Pagnacco, M. C., Radović, I., Rosić, M., Janković, B., Stojmenović, M.,& Mitić, V. V.. (2020). Characterization of silicon carbide ceramics obtained from porous carbon structure achieved by plant carbonization. in Materials Chemistry and Physics
Elsevier., 245, 122768.
https://doi.org/10.1016/j.matchemphys.2020.122768
https://hdl.handle.net/21.15107/rcub_dais_8726
Dodevski V, Pagnacco MC, Radović I, Rosić M, Janković B, Stojmenović M, Mitić VV. Characterization of silicon carbide ceramics obtained from porous carbon structure achieved by plant carbonization. in Materials Chemistry and Physics. 2020;245:122768.
doi:10.1016/j.matchemphys.2020.122768
https://hdl.handle.net/21.15107/rcub_dais_8726 .
Dodevski, Vladimir, Pagnacco, Maja C., Radović, Ivana, Rosić, Milena, Janković, Bojan, Stojmenović, Marija, Mitić, Vojislav V., "Characterization of silicon carbide ceramics obtained from porous carbon structure achieved by plant carbonization" in Materials Chemistry and Physics, 245 (2020):122768,
https://doi.org/10.1016/j.matchemphys.2020.122768 .,
https://hdl.handle.net/21.15107/rcub_dais_8726 .
1
4
4
3

Comprehensive characterization of BiFeO3 powder synthesized by the hydrothermal procedure

Čebela, Maria; Janković, Bojan; Hercigonja, Radmila; Lukić, Miodrag J.; Dohčević-Mitrović, Zorana; Milivojević, Dušan; Matović, Branko

(Novi Sad Faculty of Technology, University of Novi Sad, 2016)

TY  - JOUR
AU  - Čebela, Maria
AU  - Janković, Bojan
AU  - Hercigonja, Radmila
AU  - Lukić, Miodrag J.
AU  - Dohčević-Mitrović, Zorana
AU  - Milivojević, Dušan
AU  - Matović, Branko
PY  - 2016
UR  - https://dais.sanu.ac.rs/123456789/15964
AB  - In this paper, bismuth ferrite (BFO) particles synthesized by controlled hydrothermal process, where the particles of small sizes and with high purity were obtained. Structural analysis showed that non-annealed powder can be perfectly fitted to rhombohedral space group R3c and contains a very small amount of secondary phase, whereas the final product (annealed at 800 °C) represents single-phase perovskite powder with high crystallinity. HRTEM analysis confirmed existence of twin stacking faults, which are responsible for enhanced magnetic properties. EPR measurements suggested existence of electrons trapped by vacancies or defects. It has been proposed that existence of Fe3+ −OV defect complex could be generated at elevated temperatures followed by formation of trivalent Fe ions, which intensely provide local 3d moments.
PB  - Novi Sad Faculty of Technology, University of Novi Sad
T2  - Processing and Application of Ceramics
T1  - Comprehensive characterization of BiFeO3 powder synthesized by the hydrothermal procedure
SP  - 201
EP  - 208
VL  - 10
IS  - 4
DO  - 10.2298/PAC1604201C
UR  - https://hdl.handle.net/21.15107/rcub_dais_15964
ER  - 
@article{
author = "Čebela, Maria and Janković, Bojan and Hercigonja, Radmila and Lukić, Miodrag J. and Dohčević-Mitrović, Zorana and Milivojević, Dušan and Matović, Branko",
year = "2016",
abstract = "In this paper, bismuth ferrite (BFO) particles synthesized by controlled hydrothermal process, where the particles of small sizes and with high purity were obtained. Structural analysis showed that non-annealed powder can be perfectly fitted to rhombohedral space group R3c and contains a very small amount of secondary phase, whereas the final product (annealed at 800 °C) represents single-phase perovskite powder with high crystallinity. HRTEM analysis confirmed existence of twin stacking faults, which are responsible for enhanced magnetic properties. EPR measurements suggested existence of electrons trapped by vacancies or defects. It has been proposed that existence of Fe3+ −OV defect complex could be generated at elevated temperatures followed by formation of trivalent Fe ions, which intensely provide local 3d moments.",
publisher = "Novi Sad Faculty of Technology, University of Novi Sad",
journal = "Processing and Application of Ceramics",
title = "Comprehensive characterization of BiFeO3 powder synthesized by the hydrothermal procedure",
pages = "201-208",
volume = "10",
number = "4",
doi = "10.2298/PAC1604201C",
url = "https://hdl.handle.net/21.15107/rcub_dais_15964"
}
Čebela, M., Janković, B., Hercigonja, R., Lukić, M. J., Dohčević-Mitrović, Z., Milivojević, D.,& Matović, B.. (2016). Comprehensive characterization of BiFeO3 powder synthesized by the hydrothermal procedure. in Processing and Application of Ceramics
Novi Sad Faculty of Technology, University of Novi Sad., 10(4), 201-208.
https://doi.org/10.2298/PAC1604201C
https://hdl.handle.net/21.15107/rcub_dais_15964
Čebela M, Janković B, Hercigonja R, Lukić MJ, Dohčević-Mitrović Z, Milivojević D, Matović B. Comprehensive characterization of BiFeO3 powder synthesized by the hydrothermal procedure. in Processing and Application of Ceramics. 2016;10(4):201-208.
doi:10.2298/PAC1604201C
https://hdl.handle.net/21.15107/rcub_dais_15964 .
Čebela, Maria, Janković, Bojan, Hercigonja, Radmila, Lukić, Miodrag J., Dohčević-Mitrović, Zorana, Milivojević, Dušan, Matović, Branko, "Comprehensive characterization of BiFeO3 powder synthesized by the hydrothermal procedure" in Processing and Application of Ceramics, 10, no. 4 (2016):201-208,
https://doi.org/10.2298/PAC1604201C .,
https://hdl.handle.net/21.15107/rcub_dais_15964 .
10
10
10