Mohr, Marcus

Link to this page

Authority KeyName Variants
orcid::0000-0003-2942-8484
  • Mohr, Marcus (11)
Projects

Author's Bibliography

Approximation and Error Prediction in Electrochemical Parameters Calculation Using Neural Networks

Mitić, Vojislav V.; Ranđelović, Branislav; Ribar, Srđan; Milošević, Dušan; Vlahović, Branislav; Fecht, Hans-Jörg; Mohr, Marcus

(Belgrade : Serbian Ceramic Society, 2021)

TY  - CONF
AU  - Mitić, Vojislav V.
AU  - Ranđelović, Branislav
AU  - Ribar, Srđan
AU  - Milošević, Dušan
AU  - Vlahović, Branislav
AU  - Fecht, Hans-Jörg
AU  - Mohr, Marcus
PY  - 2021
UR  - https://dais.sanu.ac.rs/123456789/11900
AB  - Various interesting results have been achieved in calculation of electrochemical parameters in nanomaterials, using neural networks. There appear some error, during those calculations, and it varies depending on number of neurons in layers. In this research we deal with errors, calculated for neural networks with n=1,2…10, neurons in first or second layer. We applied mean square approximation method, in order to get explicite formula for predicton of error,
for other cases.
PB  - Belgrade : Serbian Ceramic Society
C3  - Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application IX : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 20-21. September 2021
T1  - Approximation and Error Prediction in Electrochemical Parameters Calculation Using Neural Networks
SP  - 61
EP  - 61
UR  - https://hdl.handle.net/21.15107/rcub_dais_11900
ER  - 
@conference{
author = "Mitić, Vojislav V. and Ranđelović, Branislav and Ribar, Srđan and Milošević, Dušan and Vlahović, Branislav and Fecht, Hans-Jörg and Mohr, Marcus",
year = "2021",
abstract = "Various interesting results have been achieved in calculation of electrochemical parameters in nanomaterials, using neural networks. There appear some error, during those calculations, and it varies depending on number of neurons in layers. In this research we deal with errors, calculated for neural networks with n=1,2…10, neurons in first or second layer. We applied mean square approximation method, in order to get explicite formula for predicton of error,
for other cases.",
publisher = "Belgrade : Serbian Ceramic Society",
journal = "Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application IX : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 20-21. September 2021",
title = "Approximation and Error Prediction in Electrochemical Parameters Calculation Using Neural Networks",
pages = "61-61",
url = "https://hdl.handle.net/21.15107/rcub_dais_11900"
}
Mitić, V. V., Ranđelović, B., Ribar, S., Milošević, D., Vlahović, B., Fecht, H.,& Mohr, M.. (2021). Approximation and Error Prediction in Electrochemical Parameters Calculation Using Neural Networks. in Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application IX : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 20-21. September 2021
Belgrade : Serbian Ceramic Society., 61-61.
https://hdl.handle.net/21.15107/rcub_dais_11900
Mitić VV, Ranđelović B, Ribar S, Milošević D, Vlahović B, Fecht H, Mohr M. Approximation and Error Prediction in Electrochemical Parameters Calculation Using Neural Networks. in Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application IX : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 20-21. September 2021. 2021;:61-61.
https://hdl.handle.net/21.15107/rcub_dais_11900 .
Mitić, Vojislav V., Ranđelović, Branislav, Ribar, Srđan, Milošević, Dušan, Vlahović, Branislav, Fecht, Hans-Jörg, Mohr, Marcus, "Approximation and Error Prediction in Electrochemical Parameters Calculation Using Neural Networks" in Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application IX : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 20-21. September 2021 (2021):61-61,
https://hdl.handle.net/21.15107/rcub_dais_11900 .

Fractal Nature of Advanced Ni-Based Superalloys Solidified on Board the International Space Station

Mitić, Vojislav; Serpa, Cristina; Ilić, Ivana; Mohr, Marcus; Fecht, Hans-Jörg

(Basel : MDPI AG, 2021)

TY  - JOUR
AU  - Mitić, Vojislav
AU  - Serpa, Cristina
AU  - Ilić, Ivana
AU  - Mohr, Marcus
AU  - Fecht, Hans-Jörg
PY  - 2021
UR  - https://dais.sanu.ac.rs/123456789/11647
AB  - Materials science is highly significant in space program investigation, energy production and others. Therefore, designing, improving and predicting advanced material properties is a crucial necessity. The high temperature creep and corrosion resistance of Ni-based superalloys makes them important materials for turbine blades in aircraft engines and land-based power plants. The investment casting process of turbine blades is costly and time consuming, which makes process simulations a necessity. These simulations require fundamental models for the microstructure formation. In this paper, we present advanced analytical techniques in describing the microstructures obtained experimentally and analyzed on different sample’s cross-sectional images. The samples have been processed on board the International Space Station using the MSL-EML device based on electromagnetic levitation principles. We applied several aspects of fractal analysis and obtained important results regarding fractals and Hausdorff dimensions related to the surface and structural characteristics of CMSX-10 samples. Using scanning electron microscopy (SEM), Zeiss LEO 1550, we analyzed the microstructure of samples solidified in space and successfully performed the fractal reconstruction of the sample’s morphology. We extended the fractal analysis on the microscopic images based on samples solidified on earth and established new frontiers on the advanced structures prediction.
PB  - Basel : MDPI AG
T2  - Remote Sensing
T1  - Fractal Nature of Advanced Ni-Based Superalloys Solidified on Board the International Space Station
SP  - 1724
VL  - 13
IS  - 9
DO  - 10.3390/rs13091724
UR  - https://hdl.handle.net/21.15107/rcub_dais_11647
ER  - 
@article{
author = "Mitić, Vojislav and Serpa, Cristina and Ilić, Ivana and Mohr, Marcus and Fecht, Hans-Jörg",
year = "2021",
abstract = "Materials science is highly significant in space program investigation, energy production and others. Therefore, designing, improving and predicting advanced material properties is a crucial necessity. The high temperature creep and corrosion resistance of Ni-based superalloys makes them important materials for turbine blades in aircraft engines and land-based power plants. The investment casting process of turbine blades is costly and time consuming, which makes process simulations a necessity. These simulations require fundamental models for the microstructure formation. In this paper, we present advanced analytical techniques in describing the microstructures obtained experimentally and analyzed on different sample’s cross-sectional images. The samples have been processed on board the International Space Station using the MSL-EML device based on electromagnetic levitation principles. We applied several aspects of fractal analysis and obtained important results regarding fractals and Hausdorff dimensions related to the surface and structural characteristics of CMSX-10 samples. Using scanning electron microscopy (SEM), Zeiss LEO 1550, we analyzed the microstructure of samples solidified in space and successfully performed the fractal reconstruction of the sample’s morphology. We extended the fractal analysis on the microscopic images based on samples solidified on earth and established new frontiers on the advanced structures prediction.",
publisher = "Basel : MDPI AG",
journal = "Remote Sensing",
title = "Fractal Nature of Advanced Ni-Based Superalloys Solidified on Board the International Space Station",
pages = "1724",
volume = "13",
number = "9",
doi = "10.3390/rs13091724",
url = "https://hdl.handle.net/21.15107/rcub_dais_11647"
}
Mitić, V., Serpa, C., Ilić, I., Mohr, M.,& Fecht, H.. (2021). Fractal Nature of Advanced Ni-Based Superalloys Solidified on Board the International Space Station. in Remote Sensing
Basel : MDPI AG., 13(9), 1724.
https://doi.org/10.3390/rs13091724
https://hdl.handle.net/21.15107/rcub_dais_11647
Mitić V, Serpa C, Ilić I, Mohr M, Fecht H. Fractal Nature of Advanced Ni-Based Superalloys Solidified on Board the International Space Station. in Remote Sensing. 2021;13(9):1724.
doi:10.3390/rs13091724
https://hdl.handle.net/21.15107/rcub_dais_11647 .
Mitić, Vojislav, Serpa, Cristina, Ilić, Ivana, Mohr, Marcus, Fecht, Hans-Jörg, "Fractal Nature of Advanced Ni-Based Superalloys Solidified on Board the International Space Station" in Remote Sensing, 13, no. 9 (2021):1724,
https://doi.org/10.3390/rs13091724 .,
https://hdl.handle.net/21.15107/rcub_dais_11647 .

Analyses of the surface parameters in polycrystalline diamonds

Veljković, Sandra; Mitić, Vojislav V.; Paunović, Vesna; Lazović, Goran; Mohr, Marcus; Fecht, Hans

(Čačak : University of Kragujevac, Faculty of Technical Sciences, 2020)

TY  - JOUR
AU  - Veljković, Sandra
AU  - Mitić, Vojislav V.
AU  - Paunović, Vesna
AU  - Lazović, Goran
AU  - Mohr, Marcus
AU  - Fecht, Hans
PY  - 2020
UR  - https://dais.sanu.ac.rs/123456789/10046
AB  - There is a progressing interests for polycrystalline diamonds and they have been more extensively used recently. This area has been intensively researched due to the outstanding potential of this material, and this necessitated presenting some of the latest application related to engineering in this paper. A better insight of polycrystalline diamonds properties can be achieved by intensively researching the surface structure. Samples of nanocrystalline diamonds grown by the chemical vapor deposition method are analyzed and accordingly, the focus of the research was the surface parameters and their structure. It is observed that waviness and texture are unique for any direction, their values are almost the same for the chosen directions and they vary approximately from -0.2 nm to 0.4 nm. Analyses of the parameters allowed a more detailed insight into the morphology of the surfaces of polycrystalline films.
PB  - Čačak : University of Kragujevac, Faculty of Technical Sciences
T2  - Serbian Journal of Electrical Engineering
T1  - Analyses of the surface parameters in polycrystalline diamonds
SP  - 111
EP  - 129
VL  - 17
IS  - 1
DO  - 10.2298/SJEE2001111V
UR  - https://hdl.handle.net/21.15107/rcub_dais_10046
ER  - 
@article{
author = "Veljković, Sandra and Mitić, Vojislav V. and Paunović, Vesna and Lazović, Goran and Mohr, Marcus and Fecht, Hans",
year = "2020",
abstract = "There is a progressing interests for polycrystalline diamonds and they have been more extensively used recently. This area has been intensively researched due to the outstanding potential of this material, and this necessitated presenting some of the latest application related to engineering in this paper. A better insight of polycrystalline diamonds properties can be achieved by intensively researching the surface structure. Samples of nanocrystalline diamonds grown by the chemical vapor deposition method are analyzed and accordingly, the focus of the research was the surface parameters and their structure. It is observed that waviness and texture are unique for any direction, their values are almost the same for the chosen directions and they vary approximately from -0.2 nm to 0.4 nm. Analyses of the parameters allowed a more detailed insight into the morphology of the surfaces of polycrystalline films.",
publisher = "Čačak : University of Kragujevac, Faculty of Technical Sciences",
journal = "Serbian Journal of Electrical Engineering",
title = "Analyses of the surface parameters in polycrystalline diamonds",
pages = "111-129",
volume = "17",
number = "1",
doi = "10.2298/SJEE2001111V",
url = "https://hdl.handle.net/21.15107/rcub_dais_10046"
}
Veljković, S., Mitić, V. V., Paunović, V., Lazović, G., Mohr, M.,& Fecht, H.. (2020). Analyses of the surface parameters in polycrystalline diamonds. in Serbian Journal of Electrical Engineering
Čačak : University of Kragujevac, Faculty of Technical Sciences., 17(1), 111-129.
https://doi.org/10.2298/SJEE2001111V
https://hdl.handle.net/21.15107/rcub_dais_10046
Veljković S, Mitić VV, Paunović V, Lazović G, Mohr M, Fecht H. Analyses of the surface parameters in polycrystalline diamonds. in Serbian Journal of Electrical Engineering. 2020;17(1):111-129.
doi:10.2298/SJEE2001111V
https://hdl.handle.net/21.15107/rcub_dais_10046 .
Veljković, Sandra, Mitić, Vojislav V., Paunović, Vesna, Lazović, Goran, Mohr, Marcus, Fecht, Hans, "Analyses of the surface parameters in polycrystalline diamonds" in Serbian Journal of Electrical Engineering, 17, no. 1 (2020):111-129,
https://doi.org/10.2298/SJEE2001111V .,
https://hdl.handle.net/21.15107/rcub_dais_10046 .

Modeling the thermal and electrical conductivity relation of synthesized diamonds within fractal nature analysis

Mitić, Vojislav V.; Veljković, Vlada B.; Lazović, Goran; Mohr, Marcus; Gluche, Peter; Paunović, Vesna; Fecht, Hans-Jörg

(Societa ceramica italiana, 2019)

TY  - CONF
AU  - Mitić, Vojislav V.
AU  - Veljković, Vlada B.
AU  - Lazović, Goran
AU  - Mohr, Marcus
AU  - Gluche, Peter
AU  - Paunović, Vesna
AU  - Fecht, Hans-Jörg
PY  - 2019
UR  - https://dais.sanu.ac.rs/123456789/7024
AB  - Improvement of novel materials could be very good development base for enhancement of new technologies. One of the most promising material of modern science is undoubtedly synthesized diamond. Because of variety of modern applications, the research in this area is becoming intensive. Utilization of this material made great step forward in many areas, beside the most known jewelry, also in producing microcomponents, in medical-surgery, as well as in high professional industry. These and others specific application of polycrystal diamonds, require permanently research and improvement of their properties. Although, the first synthesized diamond was created half a century ago using high pressure - high temperature (HPHT) method, diamonds created by chemical vapor deposition (CVD) method were much more convenient for application in so many areas. By applying CVD method, microcrystalline diamond (MCD) with grain size approximately 100 nm were created. Due to some disadvantages of MCD films, like values of hardness and Young’s modulus, new nanocrystalline (NCD) and ultra-nanocrystalline (UNCD) diamond materials were developed, with average grains size of 5-100 nm and 3-5 nm, respectively. The properties of polycrystalline diamonds can vary depending on the consolidation process like composition and pressure of applied gases, filament setup and reactor geometry. In that sense, changing the parameters of consolidation process, there is a possibility to change the microstructure of thin films and understanding its fundamentals. Also, fractal nature analysis could contribute to the revealing possibilities for improvement of polycrystalline diamond films. During carried out experiments, it was observed that there is the influence of grain size on thermal and electrical conductivity - when the thermal conductivity is increasing then electro conductivity is decreasing and opposite. Relation between the structures and final properties of synthetized diamonds can be achieved by explaining these phenomena based on fractal nature.
PB  - Societa ceramica italiana
PB  - Politecnico di Torino
C3  - Abstract Book / XVI Conference and Exhibition of the European Ceramic Society XVI ECerS Conference, Torino, 16-20 June 2019
T1  - Modeling the thermal and electrical conductivity relation of synthesized diamonds within fractal nature analysis
SP  - 672
EP  - 672
UR  - https://hdl.handle.net/21.15107/rcub_dais_7024
ER  - 
@conference{
author = "Mitić, Vojislav V. and Veljković, Vlada B. and Lazović, Goran and Mohr, Marcus and Gluche, Peter and Paunović, Vesna and Fecht, Hans-Jörg",
year = "2019",
abstract = "Improvement of novel materials could be very good development base for enhancement of new technologies. One of the most promising material of modern science is undoubtedly synthesized diamond. Because of variety of modern applications, the research in this area is becoming intensive. Utilization of this material made great step forward in many areas, beside the most known jewelry, also in producing microcomponents, in medical-surgery, as well as in high professional industry. These and others specific application of polycrystal diamonds, require permanently research and improvement of their properties. Although, the first synthesized diamond was created half a century ago using high pressure - high temperature (HPHT) method, diamonds created by chemical vapor deposition (CVD) method were much more convenient for application in so many areas. By applying CVD method, microcrystalline diamond (MCD) with grain size approximately 100 nm were created. Due to some disadvantages of MCD films, like values of hardness and Young’s modulus, new nanocrystalline (NCD) and ultra-nanocrystalline (UNCD) diamond materials were developed, with average grains size of 5-100 nm and 3-5 nm, respectively. The properties of polycrystalline diamonds can vary depending on the consolidation process like composition and pressure of applied gases, filament setup and reactor geometry. In that sense, changing the parameters of consolidation process, there is a possibility to change the microstructure of thin films and understanding its fundamentals. Also, fractal nature analysis could contribute to the revealing possibilities for improvement of polycrystalline diamond films. During carried out experiments, it was observed that there is the influence of grain size on thermal and electrical conductivity - when the thermal conductivity is increasing then electro conductivity is decreasing and opposite. Relation between the structures and final properties of synthetized diamonds can be achieved by explaining these phenomena based on fractal nature.",
publisher = "Societa ceramica italiana, Politecnico di Torino",
journal = "Abstract Book / XVI Conference and Exhibition of the European Ceramic Society XVI ECerS Conference, Torino, 16-20 June 2019",
title = "Modeling the thermal and electrical conductivity relation of synthesized diamonds within fractal nature analysis",
pages = "672-672",
url = "https://hdl.handle.net/21.15107/rcub_dais_7024"
}
Mitić, V. V., Veljković, V. B., Lazović, G., Mohr, M., Gluche, P., Paunović, V.,& Fecht, H.. (2019). Modeling the thermal and electrical conductivity relation of synthesized diamonds within fractal nature analysis. in Abstract Book / XVI Conference and Exhibition of the European Ceramic Society XVI ECerS Conference, Torino, 16-20 June 2019
Societa ceramica italiana., 672-672.
https://hdl.handle.net/21.15107/rcub_dais_7024
Mitić VV, Veljković VB, Lazović G, Mohr M, Gluche P, Paunović V, Fecht H. Modeling the thermal and electrical conductivity relation of synthesized diamonds within fractal nature analysis. in Abstract Book / XVI Conference and Exhibition of the European Ceramic Society XVI ECerS Conference, Torino, 16-20 June 2019. 2019;:672-672.
https://hdl.handle.net/21.15107/rcub_dais_7024 .
Mitić, Vojislav V., Veljković, Vlada B., Lazović, Goran, Mohr, Marcus, Gluche, Peter, Paunović, Vesna, Fecht, Hans-Jörg, "Modeling the thermal and electrical conductivity relation of synthesized diamonds within fractal nature analysis" in Abstract Book / XVI Conference and Exhibition of the European Ceramic Society XVI ECerS Conference, Torino, 16-20 June 2019 (2019):672-672,
https://hdl.handle.net/21.15107/rcub_dais_7024 .

The structure analysis methods for synthetized diamonds consolidation and fractals characterization

Veljković, Sandra; Mitić, Vojislav V.; Lazović, Goran; Paunović, Vesna; Mohr, Marcus; Fecht, Hans-Jörg

(Belgrade : Serbian Society for Microscopy, 2019)

TY  - CONF
AU  - Veljković, Sandra
AU  - Mitić, Vojislav V.
AU  - Lazović, Goran
AU  - Paunović, Vesna
AU  - Mohr, Marcus
AU  - Fecht, Hans-Jörg
PY  - 2019
UR  - https://dais.sanu.ac.rs/123456789/7015
AB  - Synthetized diamonds have application in many areas, especially for electronic devices and components or mechanisms in watches, and medicine where they can be used for surgery knifes. Considering that for small grains is commonly known that atomic structure of grain size has strong impact on structural characteristics of synthetized diamonds, research of fractal nature of
microstructure of diamond films can have very important role in optimization of properties of these films. Regarding these processes, it was applied several characterization methods like SEM, EDS. These data were prepared and used as a source for fractal analysis application. Fractal theory can help in explanation of systems in which, at first sight, roles chaos. For that reason, fractal analysis can be applied on surface topology of synthesized diamonds and during the process of characterization of grains morphology. Thin films of diamonds, which are examined, are formed in chemical vapor deposition or CVD process. Aldo in some implementations is desirable to reduce the grain size, it can bring to the reducing the hardness of ultra-nanocrystalline or UNCD thin films. Because of that, it is very important to find the optimum between smooth surfaces from one side and hardness from the other side in order to create contact which is resistant to wear. Diameter of grain and their fractal geometry are very important microstructural characteristics. which have strong influence on all physical and chemical characteristics. In this paper, the goal is development of more accurate models which describe transportation and mechanical properties of polycrystalline diamonds.
PB  - Belgrade : Serbian Society for Microscopy
PB  - Belgrade : Institute for Biological Research "Siniša Stanković"
C3  - MCM2019 : proceedings / 14th Multinational Congress on Microscopy, [September 15–20, 2019, Belgrade, Serbia]
T1  - The structure analysis methods for synthetized diamonds consolidation and fractals characterization
SP  - 380
EP  - 380
UR  - https://hdl.handle.net/21.15107/rcub_dais_7015
ER  - 
@conference{
author = "Veljković, Sandra and Mitić, Vojislav V. and Lazović, Goran and Paunović, Vesna and Mohr, Marcus and Fecht, Hans-Jörg",
year = "2019",
abstract = "Synthetized diamonds have application in many areas, especially for electronic devices and components or mechanisms in watches, and medicine where they can be used for surgery knifes. Considering that for small grains is commonly known that atomic structure of grain size has strong impact on structural characteristics of synthetized diamonds, research of fractal nature of
microstructure of diamond films can have very important role in optimization of properties of these films. Regarding these processes, it was applied several characterization methods like SEM, EDS. These data were prepared and used as a source for fractal analysis application. Fractal theory can help in explanation of systems in which, at first sight, roles chaos. For that reason, fractal analysis can be applied on surface topology of synthesized diamonds and during the process of characterization of grains morphology. Thin films of diamonds, which are examined, are formed in chemical vapor deposition or CVD process. Aldo in some implementations is desirable to reduce the grain size, it can bring to the reducing the hardness of ultra-nanocrystalline or UNCD thin films. Because of that, it is very important to find the optimum between smooth surfaces from one side and hardness from the other side in order to create contact which is resistant to wear. Diameter of grain and their fractal geometry are very important microstructural characteristics. which have strong influence on all physical and chemical characteristics. In this paper, the goal is development of more accurate models which describe transportation and mechanical properties of polycrystalline diamonds.",
publisher = "Belgrade : Serbian Society for Microscopy, Belgrade : Institute for Biological Research "Siniša Stanković"",
journal = "MCM2019 : proceedings / 14th Multinational Congress on Microscopy, [September 15–20, 2019, Belgrade, Serbia]",
title = "The structure analysis methods for synthetized diamonds consolidation and fractals characterization",
pages = "380-380",
url = "https://hdl.handle.net/21.15107/rcub_dais_7015"
}
Veljković, S., Mitić, V. V., Lazović, G., Paunović, V., Mohr, M.,& Fecht, H.. (2019). The structure analysis methods for synthetized diamonds consolidation and fractals characterization. in MCM2019 : proceedings / 14th Multinational Congress on Microscopy, [September 15–20, 2019, Belgrade, Serbia]
Belgrade : Serbian Society for Microscopy., 380-380.
https://hdl.handle.net/21.15107/rcub_dais_7015
Veljković S, Mitić VV, Lazović G, Paunović V, Mohr M, Fecht H. The structure analysis methods for synthetized diamonds consolidation and fractals characterization. in MCM2019 : proceedings / 14th Multinational Congress on Microscopy, [September 15–20, 2019, Belgrade, Serbia]. 2019;:380-380.
https://hdl.handle.net/21.15107/rcub_dais_7015 .
Veljković, Sandra, Mitić, Vojislav V., Lazović, Goran, Paunović, Vesna, Mohr, Marcus, Fecht, Hans-Jörg, "The structure analysis methods for synthetized diamonds consolidation and fractals characterization" in MCM2019 : proceedings / 14th Multinational Congress on Microscopy, [September 15–20, 2019, Belgrade, Serbia] (2019):380-380,
https://hdl.handle.net/21.15107/rcub_dais_7015 .

The consolidation process and microstructure analysis of synthesized diamonds within fractal nature analysis

Veljković, Sandra; Mitić, Vojislav V.; Lazović, Goran; Paunović, Vesna; Mohr, Marcus; Fecht, Hans-Jörg

(Belgrade : Institute of Technical Sciences of SASA, 2018)

TY  - CONF
AU  - Veljković, Sandra
AU  - Mitić, Vojislav V.
AU  - Lazović, Goran
AU  - Paunović, Vesna
AU  - Mohr, Marcus
AU  - Fecht, Hans-Jörg
PY  - 2018
UR  - https://dais.sanu.ac.rs/123456789/4725
AB  - The development of new technologies is very often based on improvement of novel materials and the features of the existing ones as well as their application. Considering that the synthetic diamonds are one of the most appealing areas of modern materials science and its modern applications, the research in this area is becoming more intensive. Therefore, in this paper, an overview of the basic properties of natural and synthesized diamonds is firstly presented followed by the method of forming and parameters that affect the final properties of polycrystalline diamonds. The first method which was used for obtaining synthesized diamonds was HPHT (high pressure high temperature) method, by which were produced diamonds very similar to the natural ones. However, CVD (chemical vapor deposition) method for obtaining polycrystalline diamond films was more promising. By applying this method microcrystalline diamond (MCD) with grain size larger than 100 nm were created. Considering that there were some disadvantages of MCD, new nanocrystalline (NCD) and ultra-nanocrystalline (UNCD) diamond materials were developed, which average size of grains were 5-100 nm as well as 3-5 nm. Depending on the consolidation process (composition and pressure of applied gases, filament setup and reactor geometry) the properties of polycrystalline diamonds can vary. Detailed analysis of these materials nature can be additionally obtained by application of the fractal analysis which is presented in this paper.
PB  - Belgrade : Institute of Technical Sciences of SASA
C3  - Program and the Book of Abstracts / Seventeenth Young Researchers' Conference Materials Sciences and Engineering, December 5-7, 2018, Belgrade, Serbia
T1  - The consolidation process and microstructure analysis of synthesized diamonds within fractal nature analysis
SP  - 58
EP  - 58
UR  - https://hdl.handle.net/21.15107/rcub_dais_4725
ER  - 
@conference{
author = "Veljković, Sandra and Mitić, Vojislav V. and Lazović, Goran and Paunović, Vesna and Mohr, Marcus and Fecht, Hans-Jörg",
year = "2018",
abstract = "The development of new technologies is very often based on improvement of novel materials and the features of the existing ones as well as their application. Considering that the synthetic diamonds are one of the most appealing areas of modern materials science and its modern applications, the research in this area is becoming more intensive. Therefore, in this paper, an overview of the basic properties of natural and synthesized diamonds is firstly presented followed by the method of forming and parameters that affect the final properties of polycrystalline diamonds. The first method which was used for obtaining synthesized diamonds was HPHT (high pressure high temperature) method, by which were produced diamonds very similar to the natural ones. However, CVD (chemical vapor deposition) method for obtaining polycrystalline diamond films was more promising. By applying this method microcrystalline diamond (MCD) with grain size larger than 100 nm were created. Considering that there were some disadvantages of MCD, new nanocrystalline (NCD) and ultra-nanocrystalline (UNCD) diamond materials were developed, which average size of grains were 5-100 nm as well as 3-5 nm. Depending on the consolidation process (composition and pressure of applied gases, filament setup and reactor geometry) the properties of polycrystalline diamonds can vary. Detailed analysis of these materials nature can be additionally obtained by application of the fractal analysis which is presented in this paper.",
publisher = "Belgrade : Institute of Technical Sciences of SASA",
journal = "Program and the Book of Abstracts / Seventeenth Young Researchers' Conference Materials Sciences and Engineering, December 5-7, 2018, Belgrade, Serbia",
title = "The consolidation process and microstructure analysis of synthesized diamonds within fractal nature analysis",
pages = "58-58",
url = "https://hdl.handle.net/21.15107/rcub_dais_4725"
}
Veljković, S., Mitić, V. V., Lazović, G., Paunović, V., Mohr, M.,& Fecht, H.. (2018). The consolidation process and microstructure analysis of synthesized diamonds within fractal nature analysis. in Program and the Book of Abstracts / Seventeenth Young Researchers' Conference Materials Sciences and Engineering, December 5-7, 2018, Belgrade, Serbia
Belgrade : Institute of Technical Sciences of SASA., 58-58.
https://hdl.handle.net/21.15107/rcub_dais_4725
Veljković S, Mitić VV, Lazović G, Paunović V, Mohr M, Fecht H. The consolidation process and microstructure analysis of synthesized diamonds within fractal nature analysis. in Program and the Book of Abstracts / Seventeenth Young Researchers' Conference Materials Sciences and Engineering, December 5-7, 2018, Belgrade, Serbia. 2018;:58-58.
https://hdl.handle.net/21.15107/rcub_dais_4725 .
Veljković, Sandra, Mitić, Vojislav V., Lazović, Goran, Paunović, Vesna, Mohr, Marcus, Fecht, Hans-Jörg, "The consolidation process and microstructure analysis of synthesized diamonds within fractal nature analysis" in Program and the Book of Abstracts / Seventeenth Young Researchers' Conference Materials Sciences and Engineering, December 5-7, 2018, Belgrade, Serbia (2018):58-58,
https://hdl.handle.net/21.15107/rcub_dais_4725 .

Thermal and electrical conductivity relation phenomena within fractal nature synthesized diamonds frontiers

Mitić, Vojislav V.; Veljković, Sandra; Lazović, Goran; Mohr, Marcus; Gluche, Peter; Paunović, Vesna; Fecht, Hans-Jörg

(Belgrade : Serbian Ceramic Society, 2018)

TY  - CONF
AU  - Mitić, Vojislav V.
AU  - Veljković, Sandra
AU  - Lazović, Goran
AU  - Mohr, Marcus
AU  - Gluche, Peter
AU  - Paunović, Vesna
AU  - Fecht, Hans-Jörg
PY  - 2018
UR  - https://dais.sanu.ac.rs/123456789/4120
AB  - Many areas, like the most known jewelry, medical-surgery, in high professional industry, as well as producing micro components, there are many possibilities for application of synthesized diamonds. These and others specific application of polycrystal diamonds, require permanently research and improvement of their properties. Such exploring could be much better with understanding fundamentals of microstructures. In such investigation, fractal nature analysis could significantly contribute to the revealing of possibilities for improvements. By the experimental procedure, it is noticed that the influence of grain size on thermal and electrical conductivity have notable impact. Considering that, these conductivities affect the possibility of application in many areas, explaining on microstructural nature is of high importance. The influence of relation between the structures and final properties of synthetized diamonds can be achieved by explaining these phenomena based on fractal nature. The aim of the investigation is the establishing thermal and electrical conductivity relation phenomena within fractal nature synthesized diamonds frontiers.
PB  - Belgrade : Serbian Ceramic Society
C3  - Program and the Book of Abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VII : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 17-19 September 2018
T1  - Thermal and electrical conductivity relation phenomena within fractal nature synthesized diamonds frontiers
SP  - 56
EP  - 57
UR  - https://hdl.handle.net/21.15107/rcub_dais_4120
ER  - 
@conference{
author = "Mitić, Vojislav V. and Veljković, Sandra and Lazović, Goran and Mohr, Marcus and Gluche, Peter and Paunović, Vesna and Fecht, Hans-Jörg",
year = "2018",
abstract = "Many areas, like the most known jewelry, medical-surgery, in high professional industry, as well as producing micro components, there are many possibilities for application of synthesized diamonds. These and others specific application of polycrystal diamonds, require permanently research and improvement of their properties. Such exploring could be much better with understanding fundamentals of microstructures. In such investigation, fractal nature analysis could significantly contribute to the revealing of possibilities for improvements. By the experimental procedure, it is noticed that the influence of grain size on thermal and electrical conductivity have notable impact. Considering that, these conductivities affect the possibility of application in many areas, explaining on microstructural nature is of high importance. The influence of relation between the structures and final properties of synthetized diamonds can be achieved by explaining these phenomena based on fractal nature. The aim of the investigation is the establishing thermal and electrical conductivity relation phenomena within fractal nature synthesized diamonds frontiers.",
publisher = "Belgrade : Serbian Ceramic Society",
journal = "Program and the Book of Abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VII : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 17-19 September 2018",
title = "Thermal and electrical conductivity relation phenomena within fractal nature synthesized diamonds frontiers",
pages = "56-57",
url = "https://hdl.handle.net/21.15107/rcub_dais_4120"
}
Mitić, V. V., Veljković, S., Lazović, G., Mohr, M., Gluche, P., Paunović, V.,& Fecht, H.. (2018). Thermal and electrical conductivity relation phenomena within fractal nature synthesized diamonds frontiers. in Program and the Book of Abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VII : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 17-19 September 2018
Belgrade : Serbian Ceramic Society., 56-57.
https://hdl.handle.net/21.15107/rcub_dais_4120
Mitić VV, Veljković S, Lazović G, Mohr M, Gluche P, Paunović V, Fecht H. Thermal and electrical conductivity relation phenomena within fractal nature synthesized diamonds frontiers. in Program and the Book of Abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VII : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 17-19 September 2018. 2018;:56-57.
https://hdl.handle.net/21.15107/rcub_dais_4120 .
Mitić, Vojislav V., Veljković, Sandra, Lazović, Goran, Mohr, Marcus, Gluche, Peter, Paunović, Vesna, Fecht, Hans-Jörg, "Thermal and electrical conductivity relation phenomena within fractal nature synthesized diamonds frontiers" in Program and the Book of Abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VII : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 17-19 September 2018 (2018):56-57,
https://hdl.handle.net/21.15107/rcub_dais_4120 .

The synthesized diamonds microstructure consolidation review

Veljković, Sandra; Mitić, Vojislav V.; Mohr, Marcus; Paunović, Vesna; Lazović, Goran; Fecht, Hans-Jörg

(Belgrade : Serbian Ceramic Society, 2018)

TY  - CONF
AU  - Veljković, Sandra
AU  - Mitić, Vojislav V.
AU  - Mohr, Marcus
AU  - Paunović, Vesna
AU  - Lazović, Goran
AU  - Fecht, Hans-Jörg
PY  - 2018
UR  - https://dais.sanu.ac.rs/123456789/4100
AB  - Excellent mechanical, optical and thermal properties of diamonds are the advantages for which they are used in many areas and thus in the industrial as well. Considering that natural diamonds are rare and expensive, in order to overcome that, production of synthesized diamonds is a good solution. Hence, investigation of alternative producing methods led to discovery of commercially available chemical vapor deposition – CVD method. Using this method led to creation of microcrystalline diamond (MCD) with grain size larger than 100 nm. Because of some disadvantages of this synthesized diamond, new nanocrystalline (NCD) and ultra-nanocrystalline (UNCD) diamond materials were developed, with average size of grains ranging 5-100 nm and 3-5 nm, respectively. Reactor geometry, filament setup and gas phase conditions are also very important parameters for diamonds growth on silicon wafers, in addition to the mixture composition and pressure of applied gases. The goal of the paper is to present the relation of microstructure and diverse consolidation methods.
PB  - Belgrade : Serbian Ceramic Society
C3  - Program and the Book of Abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VII : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 17-19 September 2018
T1  - The synthesized diamonds microstructure consolidation review
SP  - 89
EP  - 89
UR  - https://hdl.handle.net/21.15107/rcub_dais_4100
ER  - 
@conference{
author = "Veljković, Sandra and Mitić, Vojislav V. and Mohr, Marcus and Paunović, Vesna and Lazović, Goran and Fecht, Hans-Jörg",
year = "2018",
abstract = "Excellent mechanical, optical and thermal properties of diamonds are the advantages for which they are used in many areas and thus in the industrial as well. Considering that natural diamonds are rare and expensive, in order to overcome that, production of synthesized diamonds is a good solution. Hence, investigation of alternative producing methods led to discovery of commercially available chemical vapor deposition – CVD method. Using this method led to creation of microcrystalline diamond (MCD) with grain size larger than 100 nm. Because of some disadvantages of this synthesized diamond, new nanocrystalline (NCD) and ultra-nanocrystalline (UNCD) diamond materials were developed, with average size of grains ranging 5-100 nm and 3-5 nm, respectively. Reactor geometry, filament setup and gas phase conditions are also very important parameters for diamonds growth on silicon wafers, in addition to the mixture composition and pressure of applied gases. The goal of the paper is to present the relation of microstructure and diverse consolidation methods.",
publisher = "Belgrade : Serbian Ceramic Society",
journal = "Program and the Book of Abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VII : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 17-19 September 2018",
title = "The synthesized diamonds microstructure consolidation review",
pages = "89-89",
url = "https://hdl.handle.net/21.15107/rcub_dais_4100"
}
Veljković, S., Mitić, V. V., Mohr, M., Paunović, V., Lazović, G.,& Fecht, H.. (2018). The synthesized diamonds microstructure consolidation review. in Program and the Book of Abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VII : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 17-19 September 2018
Belgrade : Serbian Ceramic Society., 89-89.
https://hdl.handle.net/21.15107/rcub_dais_4100
Veljković S, Mitić VV, Mohr M, Paunović V, Lazović G, Fecht H. The synthesized diamonds microstructure consolidation review. in Program and the Book of Abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VII : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 17-19 September 2018. 2018;:89-89.
https://hdl.handle.net/21.15107/rcub_dais_4100 .
Veljković, Sandra, Mitić, Vojislav V., Mohr, Marcus, Paunović, Vesna, Lazović, Goran, Fecht, Hans-Jörg, "The synthesized diamonds microstructure consolidation review" in Program and the Book of Abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VII : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 17-19 September 2018 (2018):89-89,
https://hdl.handle.net/21.15107/rcub_dais_4100 .

Electrical conductivity and fractal nature analysis synthesized diamonds phenomena

Veljković, Sandra; Mitić, Vojislav V.; Lazović, Goran; Mohr, Marcus; Paunović, Vesna; Fecht, Hans-Jörg

(Belgrade : Serbian Ceramic Society, 2018)

TY  - CONF
AU  - Veljković, Sandra
AU  - Mitić, Vojislav V.
AU  - Lazović, Goran
AU  - Mohr, Marcus
AU  - Paunović, Vesna
AU  - Fecht, Hans-Jörg
PY  - 2018
UR  - https://dais.sanu.ac.rs/123456789/4102
AB  - Chemical Vapor Deposition – CVD can be used for creation of synthesized diamonds. The result of the process is the microstructure which is composed of numerous small grains. Such structure can be applied in various areas, like medicine, electronics, micromechanical systems, microelectromechanical systems – MEMS and many others. For these and many other applications, one of the most important feature is the electrical conductivity. Although the natural diamond is an excellent insulator, synthesized diamonds show different behavior. The exploring of this feature is a complex area with a strong convolution between grain size and sp2 bond ing effect. The optimization of the synthesized diamond properties requires the revealing of the size and the shape of the created crystallites. Due to the size of grains being significantly reduced, the fractal theory can help in analysis of the grain morphology and especially of electrical conductivity.
PB  - Belgrade : Serbian Ceramic Society
C3  - Program and the Book of Abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VII : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 17-19 September 2018
T1  - Electrical conductivity and fractal nature analysis synthesized diamonds phenomena
SP  - 89
EP  - 90
UR  - https://hdl.handle.net/21.15107/rcub_dais_4102
ER  - 
@conference{
author = "Veljković, Sandra and Mitić, Vojislav V. and Lazović, Goran and Mohr, Marcus and Paunović, Vesna and Fecht, Hans-Jörg",
year = "2018",
abstract = "Chemical Vapor Deposition – CVD can be used for creation of synthesized diamonds. The result of the process is the microstructure which is composed of numerous small grains. Such structure can be applied in various areas, like medicine, electronics, micromechanical systems, microelectromechanical systems – MEMS and many others. For these and many other applications, one of the most important feature is the electrical conductivity. Although the natural diamond is an excellent insulator, synthesized diamonds show different behavior. The exploring of this feature is a complex area with a strong convolution between grain size and sp2 bond ing effect. The optimization of the synthesized diamond properties requires the revealing of the size and the shape of the created crystallites. Due to the size of grains being significantly reduced, the fractal theory can help in analysis of the grain morphology and especially of electrical conductivity.",
publisher = "Belgrade : Serbian Ceramic Society",
journal = "Program and the Book of Abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VII : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 17-19 September 2018",
title = "Electrical conductivity and fractal nature analysis synthesized diamonds phenomena",
pages = "89-90",
url = "https://hdl.handle.net/21.15107/rcub_dais_4102"
}
Veljković, S., Mitić, V. V., Lazović, G., Mohr, M., Paunović, V.,& Fecht, H.. (2018). Electrical conductivity and fractal nature analysis synthesized diamonds phenomena. in Program and the Book of Abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VII : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 17-19 September 2018
Belgrade : Serbian Ceramic Society., 89-90.
https://hdl.handle.net/21.15107/rcub_dais_4102
Veljković S, Mitić VV, Lazović G, Mohr M, Paunović V, Fecht H. Electrical conductivity and fractal nature analysis synthesized diamonds phenomena. in Program and the Book of Abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VII : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 17-19 September 2018. 2018;:89-90.
https://hdl.handle.net/21.15107/rcub_dais_4102 .
Veljković, Sandra, Mitić, Vojislav V., Lazović, Goran, Mohr, Marcus, Paunović, Vesna, Fecht, Hans-Jörg, "Electrical conductivity and fractal nature analysis synthesized diamonds phenomena" in Program and the Book of Abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VII : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 17-19 September 2018 (2018):89-90,
https://hdl.handle.net/21.15107/rcub_dais_4102 .

The synthesized diamonds thermal conductivity and fractal nature

Veljković, Sandra; Mitić, Vojislav V.; Lazović, Goran; Mohr, Marcus; Paunović, Vesna; Fecht, Hans-Jörg

(Belgrade : Serbian Ceramic Society, 2018)

TY  - CONF
AU  - Veljković, Sandra
AU  - Mitić, Vojislav V.
AU  - Lazović, Goran
AU  - Mohr, Marcus
AU  - Paunović, Vesna
AU  - Fecht, Hans-Jörg
PY  - 2018
UR  - https://dais.sanu.ac.rs/123456789/4101
AB  - It is well known that diamonds are almost the best thermal conductors. This property as well as other convenient features, leaded to intensive research of synthesized diamonds production. Also, the investigation of the most valuable characteristics is the aim of permanently exploring. The thermal conductivity of synthesized diamonds research is very important, and because of that, the knowledge of the thermal conductivity properties is a basic point for completely understanding the synthesized diamonds phenomena. The experimental procedure confirmed interesting results regarding thermal conductivity. Investigation of the influence of different inputs on the synthesized diamonds process is of high importance. Due to the fact that the dimensions of the grain size have an impact on thermal conductivity, and that they are very small in deposited films of synthesized diamonds, the investigation of their fractal nature could lead to the further explanation of phenomena. The goal of this paper is basic analysis of what is the influence on thermal conductivity in the light of fractal nature materials properties.
PB  - Belgrade : Serbian Ceramic Society
C3  - Program and the Book of Abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VII : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 17-19 September 2018
T1  - The synthesized diamonds thermal conductivity and fractal nature
SP  - 90
EP  - 90
UR  - https://hdl.handle.net/21.15107/rcub_dais_4101
ER  - 
@conference{
author = "Veljković, Sandra and Mitić, Vojislav V. and Lazović, Goran and Mohr, Marcus and Paunović, Vesna and Fecht, Hans-Jörg",
year = "2018",
abstract = "It is well known that diamonds are almost the best thermal conductors. This property as well as other convenient features, leaded to intensive research of synthesized diamonds production. Also, the investigation of the most valuable characteristics is the aim of permanently exploring. The thermal conductivity of synthesized diamonds research is very important, and because of that, the knowledge of the thermal conductivity properties is a basic point for completely understanding the synthesized diamonds phenomena. The experimental procedure confirmed interesting results regarding thermal conductivity. Investigation of the influence of different inputs on the synthesized diamonds process is of high importance. Due to the fact that the dimensions of the grain size have an impact on thermal conductivity, and that they are very small in deposited films of synthesized diamonds, the investigation of their fractal nature could lead to the further explanation of phenomena. The goal of this paper is basic analysis of what is the influence on thermal conductivity in the light of fractal nature materials properties.",
publisher = "Belgrade : Serbian Ceramic Society",
journal = "Program and the Book of Abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VII : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 17-19 September 2018",
title = "The synthesized diamonds thermal conductivity and fractal nature",
pages = "90-90",
url = "https://hdl.handle.net/21.15107/rcub_dais_4101"
}
Veljković, S., Mitić, V. V., Lazović, G., Mohr, M., Paunović, V.,& Fecht, H.. (2018). The synthesized diamonds thermal conductivity and fractal nature. in Program and the Book of Abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VII : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 17-19 September 2018
Belgrade : Serbian Ceramic Society., 90-90.
https://hdl.handle.net/21.15107/rcub_dais_4101
Veljković S, Mitić VV, Lazović G, Mohr M, Paunović V, Fecht H. The synthesized diamonds thermal conductivity and fractal nature. in Program and the Book of Abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VII : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 17-19 September 2018. 2018;:90-90.
https://hdl.handle.net/21.15107/rcub_dais_4101 .
Veljković, Sandra, Mitić, Vojislav V., Lazović, Goran, Mohr, Marcus, Paunović, Vesna, Fecht, Hans-Jörg, "The synthesized diamonds thermal conductivity and fractal nature" in Program and the Book of Abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VII : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 17-19 September 2018 (2018):90-90,
https://hdl.handle.net/21.15107/rcub_dais_4101 .

Exploring fractality of microcrystalline diamond films

Mitić, Vojislav V.; Fecht, Hans-Jörg; Mohr, Marcus; Lazović, Goran; Kocić, Ljubiša

(American Institute of Physics, 2018)

TY  - JOUR
AU  - Mitić, Vojislav V.
AU  - Fecht,  Hans-Jörg
AU  - Mohr, Marcus
AU  - Lazović, Goran
AU  - Kocić, Ljubiša
PY  - 2018
UR  - https://dais.sanu.ac.rs/123456789/3703
AB  - Diamond is renowned as a material with superlative physical qualities, most of which originate from the strong covalent bonding between its atoms. The possibility to deposit polycrystalline diamond films via chemical vapor deposition (CVD) methods on large areas and on a large variety of substrates is posing numerous scientific challenges but also enables relevant industrial applications. Especially for small grain sizes, the grain’s misorientation and consequently the atomic structure of grain boundaries plays a significant role on transport properties and mechanical properties. Hence, the size and shape of the crystallites of poly- and nanocrystalline diamond films are one important key to optimize film properties for their specific applications. Fractal theory helps to find and define order in systems where disorder seems to prevail. Therefore, we apply fractal geometry analysis to characterize the grain morphology and surface topology of CVD grown diamond films. © 2018 Author(s).
PB  - American Institute of Physics
T2  - AIP Advances
T1  - Exploring fractality of microcrystalline diamond films
VL  - 8
IS  - 7
DO  - 10.1063/1.5034469
UR  - https://hdl.handle.net/21.15107/rcub_dais_3703
ER  - 
@article{
author = "Mitić, Vojislav V. and Fecht,  Hans-Jörg and Mohr, Marcus and Lazović, Goran and Kocić, Ljubiša",
year = "2018",
abstract = "Diamond is renowned as a material with superlative physical qualities, most of which originate from the strong covalent bonding between its atoms. The possibility to deposit polycrystalline diamond films via chemical vapor deposition (CVD) methods on large areas and on a large variety of substrates is posing numerous scientific challenges but also enables relevant industrial applications. Especially for small grain sizes, the grain’s misorientation and consequently the atomic structure of grain boundaries plays a significant role on transport properties and mechanical properties. Hence, the size and shape of the crystallites of poly- and nanocrystalline diamond films are one important key to optimize film properties for their specific applications. Fractal theory helps to find and define order in systems where disorder seems to prevail. Therefore, we apply fractal geometry analysis to characterize the grain morphology and surface topology of CVD grown diamond films. © 2018 Author(s).",
publisher = "American Institute of Physics",
journal = "AIP Advances",
title = "Exploring fractality of microcrystalline diamond films",
volume = "8",
number = "7",
doi = "10.1063/1.5034469",
url = "https://hdl.handle.net/21.15107/rcub_dais_3703"
}
Mitić, V. V., Fecht, H., Mohr, M., Lazović, G.,& Kocić, L.. (2018). Exploring fractality of microcrystalline diamond films. in AIP Advances
American Institute of Physics., 8(7).
https://doi.org/10.1063/1.5034469
https://hdl.handle.net/21.15107/rcub_dais_3703
Mitić VV, Fecht H, Mohr M, Lazović G, Kocić L. Exploring fractality of microcrystalline diamond films. in AIP Advances. 2018;8(7).
doi:10.1063/1.5034469
https://hdl.handle.net/21.15107/rcub_dais_3703 .
Mitić, Vojislav V., Fecht,  Hans-Jörg, Mohr, Marcus, Lazović, Goran, Kocić, Ljubiša, "Exploring fractality of microcrystalline diamond films" in AIP Advances, 8, no. 7 (2018),
https://doi.org/10.1063/1.5034469 .,
https://hdl.handle.net/21.15107/rcub_dais_3703 .
5
4
5