Ivanović, M.

Link to this page

Authority KeyName Variants
58405daf-be28-4369-a9f1-5e32fdf52097
  • Ivanović, M. (1)
  • Ivanović, M. R. (1)
Projects
No records found.

Author's Bibliography

Hybrid Nanoscale Materials for Convergent Technologies

Pavlović, Vladimir B.; Vuković, G.; Nikolić, M.; Pavlović, Vera P.; Perić, M.; Nenadović, S.; Ivanović, M.; Mirković, M.; Đoković, V.; Knežević, S.; Šuljagić, Marija; Anđelković, Lj.; Janićijević, Aleksandra; Kovačević, D.; Filipović, Suzana; Vujančević, Jelena; Vlahović, Branislav

(Belgrade : Serbian Ceramic Society, 2023)

TY  - CONF
AU  - Pavlović, Vladimir B.
AU  - Vuković, G.
AU  - Nikolić, M.
AU  - Pavlović, Vera P.
AU  - Perić, M.
AU  - Nenadović, S.
AU  - Ivanović, M.
AU  - Mirković, M.
AU  - Đoković, V.
AU  - Knežević, S.
AU  - Šuljagić, Marija
AU  - Anđelković, Lj.
AU  - Janićijević, Aleksandra
AU  - Kovačević, D.
AU  - Filipović, Suzana
AU  - Vujančević, Jelena
AU  - Vlahović, Branislav
PY  - 2023
UR  - https://dais.sanu.ac.rs/123456789/15760
AB  - The convergence of nano-, bio-, and information technologies is based on the understanding of complex hierarchical structures and systems, as well as on the material unity at the nanoscale and on technology integration from that scale. A growing interest in these technologies is a result of their potential to provide solutions to numerous societal challenges, such as advanced healthcare, environmental remediation, sustainable development, and adoption of cyber-physical systems based on the Internet of Things and the Internet of Systems. Taking into account that hybrid nanomaterials possess extraordinary physical and chemical properties derived from their size in the nanoscale, the aim of this work is to present the connection between processing parameters and multifunctional properties of nano scale hybrid materials, focusing on the study of ceramic-polymer structures before they can be nano-engineered into functional devices. The unique functionality of these nanostructures has enabled their applications in numerous devices such as: micro and nano-electro-mechanical systems (MEMS/NEMS), sensors, microactuators, surface acoustic wave devices, polymer electrolyte membrane fuel cells, switches, thermistors, resonators and filters, electrooptic devices, etc. In this study special attention has been paid to their applications in the fields of electronics, biotechnology, environmental protection and remediation.
PB  - Belgrade : Serbian Ceramic Society
C3  - Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application XI New Frontiers in Multifunctional Material Science and Processing, Serbian Academy of Sciences and Art Serbia, Belgrade,18-20.September 2023
T1  - Hybrid Nanoscale Materials for Convergent Technologies
SP  - 45
EP  - 45
UR  - https://hdl.handle.net/21.15107/rcub_dais_15760
ER  - 
@conference{
author = "Pavlović, Vladimir B. and Vuković, G. and Nikolić, M. and Pavlović, Vera P. and Perić, M. and Nenadović, S. and Ivanović, M. and Mirković, M. and Đoković, V. and Knežević, S. and Šuljagić, Marija and Anđelković, Lj. and Janićijević, Aleksandra and Kovačević, D. and Filipović, Suzana and Vujančević, Jelena and Vlahović, Branislav",
year = "2023",
abstract = "The convergence of nano-, bio-, and information technologies is based on the understanding of complex hierarchical structures and systems, as well as on the material unity at the nanoscale and on technology integration from that scale. A growing interest in these technologies is a result of their potential to provide solutions to numerous societal challenges, such as advanced healthcare, environmental remediation, sustainable development, and adoption of cyber-physical systems based on the Internet of Things and the Internet of Systems. Taking into account that hybrid nanomaterials possess extraordinary physical and chemical properties derived from their size in the nanoscale, the aim of this work is to present the connection between processing parameters and multifunctional properties of nano scale hybrid materials, focusing on the study of ceramic-polymer structures before they can be nano-engineered into functional devices. The unique functionality of these nanostructures has enabled their applications in numerous devices such as: micro and nano-electro-mechanical systems (MEMS/NEMS), sensors, microactuators, surface acoustic wave devices, polymer electrolyte membrane fuel cells, switches, thermistors, resonators and filters, electrooptic devices, etc. In this study special attention has been paid to their applications in the fields of electronics, biotechnology, environmental protection and remediation.",
publisher = "Belgrade : Serbian Ceramic Society",
journal = "Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application XI New Frontiers in Multifunctional Material Science and Processing, Serbian Academy of Sciences and Art Serbia, Belgrade,18-20.September 2023",
title = "Hybrid Nanoscale Materials for Convergent Technologies",
pages = "45-45",
url = "https://hdl.handle.net/21.15107/rcub_dais_15760"
}
Pavlović, V. B., Vuković, G., Nikolić, M., Pavlović, V. P., Perić, M., Nenadović, S., Ivanović, M., Mirković, M., Đoković, V., Knežević, S., Šuljagić, M., Anđelković, Lj., Janićijević, A., Kovačević, D., Filipović, S., Vujančević, J.,& Vlahović, B.. (2023). Hybrid Nanoscale Materials for Convergent Technologies. in Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application XI New Frontiers in Multifunctional Material Science and Processing, Serbian Academy of Sciences and Art Serbia, Belgrade,18-20.September 2023
Belgrade : Serbian Ceramic Society., 45-45.
https://hdl.handle.net/21.15107/rcub_dais_15760
Pavlović VB, Vuković G, Nikolić M, Pavlović VP, Perić M, Nenadović S, Ivanović M, Mirković M, Đoković V, Knežević S, Šuljagić M, Anđelković L, Janićijević A, Kovačević D, Filipović S, Vujančević J, Vlahović B. Hybrid Nanoscale Materials for Convergent Technologies. in Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application XI New Frontiers in Multifunctional Material Science and Processing, Serbian Academy of Sciences and Art Serbia, Belgrade,18-20.September 2023. 2023;:45-45.
https://hdl.handle.net/21.15107/rcub_dais_15760 .
Pavlović, Vladimir B., Vuković, G., Nikolić, M., Pavlović, Vera P., Perić, M., Nenadović, S., Ivanović, M., Mirković, M., Đoković, V., Knežević, S., Šuljagić, Marija, Anđelković, Lj., Janićijević, Aleksandra, Kovačević, D., Filipović, Suzana, Vujančević, Jelena, Vlahović, Branislav, "Hybrid Nanoscale Materials for Convergent Technologies" in Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application XI New Frontiers in Multifunctional Material Science and Processing, Serbian Academy of Sciences and Art Serbia, Belgrade,18-20.September 2023 (2023):45-45,
https://hdl.handle.net/21.15107/rcub_dais_15760 .

High temperature sintering kinetics of a-Al2o3 powder

Ivanović, M. R.; Nenezić, M.; Jokanović, Vukoman

(Belgrade : International Institute for the Science of Sintering, 2003)

TY  - JOUR
AU  - Ivanović, M. R.
AU  - Nenezić, M.
AU  - Jokanović, Vukoman
PY  - 2003
UR  - https://dais.sanu.ac.rs/123456789/232
AB  - The sintering kinetics of a-Al2O3 powder is investigated in this paper Commercial a-Al2O3 powdered compacts were sintered close to 95 % of the theoretical density. The characteristic parameters of sintering kinetics were also determined.
PB  - Belgrade : International Institute for the Science of Sintering
T2  - Science of Sintering
T1  - High temperature sintering kinetics of a-Al2o3 powder
SP  - 99
EP  - 102
VL  - 35
IS  - 2
DO  - 10.2298/SOS0302099I
UR  - https://hdl.handle.net/21.15107/rcub_dais_232
ER  - 
@article{
author = "Ivanović, M. R. and Nenezić, M. and Jokanović, Vukoman",
year = "2003",
abstract = "The sintering kinetics of a-Al2O3 powder is investigated in this paper Commercial a-Al2O3 powdered compacts were sintered close to 95 % of the theoretical density. The characteristic parameters of sintering kinetics were also determined.",
publisher = "Belgrade : International Institute for the Science of Sintering",
journal = "Science of Sintering",
title = "High temperature sintering kinetics of a-Al2o3 powder",
pages = "99-102",
volume = "35",
number = "2",
doi = "10.2298/SOS0302099I",
url = "https://hdl.handle.net/21.15107/rcub_dais_232"
}
Ivanović, M. R., Nenezić, M.,& Jokanović, V.. (2003). High temperature sintering kinetics of a-Al2o3 powder. in Science of Sintering
Belgrade : International Institute for the Science of Sintering., 35(2), 99-102.
https://doi.org/10.2298/SOS0302099I
https://hdl.handle.net/21.15107/rcub_dais_232
Ivanović MR, Nenezić M, Jokanović V. High temperature sintering kinetics of a-Al2o3 powder. in Science of Sintering. 2003;35(2):99-102.
doi:10.2298/SOS0302099I
https://hdl.handle.net/21.15107/rcub_dais_232 .
Ivanović, M. R., Nenezić, M., Jokanović, Vukoman, "High temperature sintering kinetics of a-Al2o3 powder" in Science of Sintering, 35, no. 2 (2003):99-102,
https://doi.org/10.2298/SOS0302099I .,
https://hdl.handle.net/21.15107/rcub_dais_232 .
1
4
3