Šuljagić, Marija

Link to this page

Authority KeyName Variants
orcid::0000-0001-7562-1715
  • Šuljagić, Marija (3)
Projects

Author's Bibliography

The influence of the starch coating on the magnetic properties of nanosized cobalt ferrites obtained by different synthetic methods

Šuljagić, Marija; Vulić, Predrag; Jeremić, Dejan; Pavlović, Vladimir B.; Filipović, Suzana; Kilanski, Lukasz; Lewinska, Sabina; Slawska-Waniewska, Anna; Milenković, Milica; Nikolić, Aleksandar S.; Anđelković, Ljubica

(Elsevier, 2021)

TY  - JOUR
AU  - Šuljagić, Marija
AU  - Vulić, Predrag
AU  - Jeremić, Dejan
AU  - Pavlović, Vladimir B.
AU  - Filipović, Suzana
AU  - Kilanski, Lukasz
AU  - Lewinska, Sabina
AU  - Slawska-Waniewska, Anna
AU  - Milenković, Milica
AU  - Nikolić, Aleksandar S.
AU  - Anđelković, Ljubica
PY  - 2021
UR  - https://dais.sanu.ac.rs/123456789/9515
AB  - To investigate the magnetic behavior of starch-coated cobalt ferrites, well-established synthetic methods, i.e., coprecipitation, mechanochemical, ultrasonically assisted coprecipitation, microemulsion, and microwave-assisted hydrothermal syntheses were chosen for their preparation. The obtained materials had pure single-phase spinel structures. Scanning and transmission electron microscopy analyses revealed that the morphology of the samples is not uniform, and particle aggregation is a dominant process. Fourier transform infrared spectra and thermogravimetric analysis confirmed the presence of starch in all–coated samples. The unusually higher saturation magnetization of starch-coated samples than their as-prepared analogs, obtained by coprecipitation, ultrasonically assisted coprecipitation, and microwave-assisted hydrothermal methods, might be explained by the Ostwald ripening mechanism induced by the coating process. A decrease in magnetization was noticed for the starch-functionalized nanomaterials synthesized by mechanochemical and microemulsion methods, in comparison to their as-prepared analogs, i.e., the size distribution of such nanoparticles is narrow, and the average diameter of the grains is near critical for the Ostwald ripening process.
PB  - Elsevier
T2  - Materials Research Bulletin
T1  - The influence of the starch coating on the magnetic properties of nanosized cobalt ferrites obtained by different synthetic methods
SP  - 111117
VL  - 134
DO  - 10.1016/j.materresbull.2020.111117
UR  - https://hdl.handle.net/21.15107/rcub_dais_9515
ER  - 
@article{
author = "Šuljagić, Marija and Vulić, Predrag and Jeremić, Dejan and Pavlović, Vladimir B. and Filipović, Suzana and Kilanski, Lukasz and Lewinska, Sabina and Slawska-Waniewska, Anna and Milenković, Milica and Nikolić, Aleksandar S. and Anđelković, Ljubica",
year = "2021",
abstract = "To investigate the magnetic behavior of starch-coated cobalt ferrites, well-established synthetic methods, i.e., coprecipitation, mechanochemical, ultrasonically assisted coprecipitation, microemulsion, and microwave-assisted hydrothermal syntheses were chosen for their preparation. The obtained materials had pure single-phase spinel structures. Scanning and transmission electron microscopy analyses revealed that the morphology of the samples is not uniform, and particle aggregation is a dominant process. Fourier transform infrared spectra and thermogravimetric analysis confirmed the presence of starch in all–coated samples. The unusually higher saturation magnetization of starch-coated samples than their as-prepared analogs, obtained by coprecipitation, ultrasonically assisted coprecipitation, and microwave-assisted hydrothermal methods, might be explained by the Ostwald ripening mechanism induced by the coating process. A decrease in magnetization was noticed for the starch-functionalized nanomaterials synthesized by mechanochemical and microemulsion methods, in comparison to their as-prepared analogs, i.e., the size distribution of such nanoparticles is narrow, and the average diameter of the grains is near critical for the Ostwald ripening process.",
publisher = "Elsevier",
journal = "Materials Research Bulletin",
title = "The influence of the starch coating on the magnetic properties of nanosized cobalt ferrites obtained by different synthetic methods",
pages = "111117",
volume = "134",
doi = "10.1016/j.materresbull.2020.111117",
url = "https://hdl.handle.net/21.15107/rcub_dais_9515"
}
Šuljagić, M., Vulić, P., Jeremić, D., Pavlović, V. B., Filipović, S., Kilanski, L., Lewinska, S., Slawska-Waniewska, A., Milenković, M., Nikolić, A. S.,& Anđelković, L.. (2021). The influence of the starch coating on the magnetic properties of nanosized cobalt ferrites obtained by different synthetic methods. in Materials Research Bulletin
Elsevier., 134, 111117.
https://doi.org/10.1016/j.materresbull.2020.111117
https://hdl.handle.net/21.15107/rcub_dais_9515
Šuljagić M, Vulić P, Jeremić D, Pavlović VB, Filipović S, Kilanski L, Lewinska S, Slawska-Waniewska A, Milenković M, Nikolić AS, Anđelković L. The influence of the starch coating on the magnetic properties of nanosized cobalt ferrites obtained by different synthetic methods. in Materials Research Bulletin. 2021;134:111117.
doi:10.1016/j.materresbull.2020.111117
https://hdl.handle.net/21.15107/rcub_dais_9515 .
Šuljagić, Marija, Vulić, Predrag, Jeremić, Dejan, Pavlović, Vladimir B., Filipović, Suzana, Kilanski, Lukasz, Lewinska, Sabina, Slawska-Waniewska, Anna, Milenković, Milica, Nikolić, Aleksandar S., Anđelković, Ljubica, "The influence of the starch coating on the magnetic properties of nanosized cobalt ferrites obtained by different synthetic methods" in Materials Research Bulletin, 134 (2021):111117,
https://doi.org/10.1016/j.materresbull.2020.111117 .,
https://hdl.handle.net/21.15107/rcub_dais_9515 .
6
5
6

The influence of the starch coating on the magnetic properties of nanosized cobalt ferrites obtained by different synthetic methods

Šuljagić, Marija; Vulić, Predrag; Jeremić, Dejan; Pavlović, Vladimir B.; Filipović, Suzana; Kilanski, Lukasz; Lewinska, Sabina; Slawska-Waniewska, Anna; Milenković, Milica; Nikolić, Aleksandar S.; Anđelković, Ljubica

(Elsevier, 2021)

TY  - JOUR
AU  - Šuljagić, Marija
AU  - Vulić, Predrag
AU  - Jeremić, Dejan
AU  - Pavlović, Vladimir B.
AU  - Filipović, Suzana
AU  - Kilanski, Lukasz
AU  - Lewinska, Sabina
AU  - Slawska-Waniewska, Anna
AU  - Milenković, Milica
AU  - Nikolić, Aleksandar S.
AU  - Anđelković, Ljubica
PY  - 2021
UR  - https://dais.sanu.ac.rs/123456789/9514
AB  - To investigate the magnetic behavior of starch-coated cobalt ferrites, well-established synthetic methods, i.e., coprecipitation, mechanochemical, ultrasonically assisted coprecipitation, microemulsion, and microwave-assisted hydrothermal syntheses were chosen for their preparation. The obtained materials had pure single-phase spinel structures. Scanning and transmission electron microscopy analyses revealed that the morphology of the samples is not uniform, and particle aggregation is a dominant process. Fourier transform infrared spectra and thermogravimetric analysis confirmed the presence of starch in all–coated samples. The unusually higher saturation magnetization of starch-coated samples than their as-prepared analogs, obtained by coprecipitation, ultrasonically assisted coprecipitation, and microwave-assisted hydrothermal methods, might be explained by the Ostwald ripening mechanism induced by the coating process. A decrease in magnetization was noticed for the starch-functionalized nanomaterials synthesized by mechanochemical and microemulsion methods, in comparison to their as-prepared analogs, i.e., the size distribution of such nanoparticles is narrow, and the average diameter of the grains is near critical for the Ostwald ripening process.
PB  - Elsevier
T2  - Materials Research Bulletin
T1  - The influence of the starch coating on the magnetic properties of nanosized cobalt ferrites obtained by different synthetic methods
SP  - 111117
VL  - 134
DO  - 10.1016/j.materresbull.2020.111117
UR  - https://hdl.handle.net/21.15107/rcub_dais_9514
ER  - 
@article{
author = "Šuljagić, Marija and Vulić, Predrag and Jeremić, Dejan and Pavlović, Vladimir B. and Filipović, Suzana and Kilanski, Lukasz and Lewinska, Sabina and Slawska-Waniewska, Anna and Milenković, Milica and Nikolić, Aleksandar S. and Anđelković, Ljubica",
year = "2021",
abstract = "To investigate the magnetic behavior of starch-coated cobalt ferrites, well-established synthetic methods, i.e., coprecipitation, mechanochemical, ultrasonically assisted coprecipitation, microemulsion, and microwave-assisted hydrothermal syntheses were chosen for their preparation. The obtained materials had pure single-phase spinel structures. Scanning and transmission electron microscopy analyses revealed that the morphology of the samples is not uniform, and particle aggregation is a dominant process. Fourier transform infrared spectra and thermogravimetric analysis confirmed the presence of starch in all–coated samples. The unusually higher saturation magnetization of starch-coated samples than their as-prepared analogs, obtained by coprecipitation, ultrasonically assisted coprecipitation, and microwave-assisted hydrothermal methods, might be explained by the Ostwald ripening mechanism induced by the coating process. A decrease in magnetization was noticed for the starch-functionalized nanomaterials synthesized by mechanochemical and microemulsion methods, in comparison to their as-prepared analogs, i.e., the size distribution of such nanoparticles is narrow, and the average diameter of the grains is near critical for the Ostwald ripening process.",
publisher = "Elsevier",
journal = "Materials Research Bulletin",
title = "The influence of the starch coating on the magnetic properties of nanosized cobalt ferrites obtained by different synthetic methods",
pages = "111117",
volume = "134",
doi = "10.1016/j.materresbull.2020.111117",
url = "https://hdl.handle.net/21.15107/rcub_dais_9514"
}
Šuljagić, M., Vulić, P., Jeremić, D., Pavlović, V. B., Filipović, S., Kilanski, L., Lewinska, S., Slawska-Waniewska, A., Milenković, M., Nikolić, A. S.,& Anđelković, L.. (2021). The influence of the starch coating on the magnetic properties of nanosized cobalt ferrites obtained by different synthetic methods. in Materials Research Bulletin
Elsevier., 134, 111117.
https://doi.org/10.1016/j.materresbull.2020.111117
https://hdl.handle.net/21.15107/rcub_dais_9514
Šuljagić M, Vulić P, Jeremić D, Pavlović VB, Filipović S, Kilanski L, Lewinska S, Slawska-Waniewska A, Milenković M, Nikolić AS, Anđelković L. The influence of the starch coating on the magnetic properties of nanosized cobalt ferrites obtained by different synthetic methods. in Materials Research Bulletin. 2021;134:111117.
doi:10.1016/j.materresbull.2020.111117
https://hdl.handle.net/21.15107/rcub_dais_9514 .
Šuljagić, Marija, Vulić, Predrag, Jeremić, Dejan, Pavlović, Vladimir B., Filipović, Suzana, Kilanski, Lukasz, Lewinska, Sabina, Slawska-Waniewska, Anna, Milenković, Milica, Nikolić, Aleksandar S., Anđelković, Ljubica, "The influence of the starch coating on the magnetic properties of nanosized cobalt ferrites obtained by different synthetic methods" in Materials Research Bulletin, 134 (2021):111117,
https://doi.org/10.1016/j.materresbull.2020.111117 .,
https://hdl.handle.net/21.15107/rcub_dais_9514 .
6
5
6

One-pot combustion synthesis of nickel oxide and hematite: From simple coordination compounds to high purity metal oxide nanoparticles

Jeremić, Dejan; Anđelković, Ljubica; Milenković, Milica R.; Šuljagić, Marija; Šumar Ristović, Maja; Ostojić, Sanja; Nikolić, Aleksandar S.; Vulić, Predrag; Brčeski, Ilija; Pavlović, Vladimir B.

(2020)

TY  - JOUR
AU  - Jeremić, Dejan
AU  - Anđelković, Ljubica
AU  - Milenković, Milica R.
AU  - Šuljagić, Marija
AU  - Šumar Ristović, Maja
AU  - Ostojić, Sanja
AU  - Nikolić, Aleksandar S.
AU  - Vulić, Predrag
AU  - Brčeski, Ilija
AU  - Pavlović, Vladimir B.
PY  - 2020
UR  - https://dais.sanu.ac.rs/123456789/12085
AB  - This work is the first report of a very simple and fast one-pot synthesis of nickel oxide (NiO) and hematite (α-Fe2O3) nanoparticles by thermal decomposition of transition metal aqua complexes with camphor sulfonate anions. Obtained nanopowders were characterized by X-ray powder diffraction, Fourier transform IR analysis, scanning electron microscopy, and Energy-dispersive X-ray spectroscopy. X-ray powder diffraction confirmed the formation of high purity NiO and α-Fe2O3 crystal phases. In the case of α-Fe2O3, about five times larger average crystallite size was obtained. Fourier transform IR spectra of synthesized materials showed characteristic peaks for NiO and α-Fe2O3 nanostructures. To visualize the morphology and the chemical composition of the final products Scanning electron microscopy and Energy-dispersive X-ray spectroscopy were performed. The thermogravimetric analysis was done for a better understanding of the general thermal behavior of precursor compounds. This easy-to-perform and fast preparation method opens a broad range of obtained materials’ usage, particularly due to its economic viability
T2  - Science of Sintering
T1  - One-pot combustion synthesis of nickel oxide and hematite: From simple coordination compounds to high purity metal oxide nanoparticles
SP  - 481
EP  - 490
VL  - 52
IS  - 4
DO  - 10.2298/SOS2004481J
UR  - https://hdl.handle.net/21.15107/rcub_dais_12085
ER  - 
@article{
author = "Jeremić, Dejan and Anđelković, Ljubica and Milenković, Milica R. and Šuljagić, Marija and Šumar Ristović, Maja and Ostojić, Sanja and Nikolić, Aleksandar S. and Vulić, Predrag and Brčeski, Ilija and Pavlović, Vladimir B.",
year = "2020",
abstract = "This work is the first report of a very simple and fast one-pot synthesis of nickel oxide (NiO) and hematite (α-Fe2O3) nanoparticles by thermal decomposition of transition metal aqua complexes with camphor sulfonate anions. Obtained nanopowders were characterized by X-ray powder diffraction, Fourier transform IR analysis, scanning electron microscopy, and Energy-dispersive X-ray spectroscopy. X-ray powder diffraction confirmed the formation of high purity NiO and α-Fe2O3 crystal phases. In the case of α-Fe2O3, about five times larger average crystallite size was obtained. Fourier transform IR spectra of synthesized materials showed characteristic peaks for NiO and α-Fe2O3 nanostructures. To visualize the morphology and the chemical composition of the final products Scanning electron microscopy and Energy-dispersive X-ray spectroscopy were performed. The thermogravimetric analysis was done for a better understanding of the general thermal behavior of precursor compounds. This easy-to-perform and fast preparation method opens a broad range of obtained materials’ usage, particularly due to its economic viability",
journal = "Science of Sintering",
title = "One-pot combustion synthesis of nickel oxide and hematite: From simple coordination compounds to high purity metal oxide nanoparticles",
pages = "481-490",
volume = "52",
number = "4",
doi = "10.2298/SOS2004481J",
url = "https://hdl.handle.net/21.15107/rcub_dais_12085"
}
Jeremić, D., Anđelković, L., Milenković, M. R., Šuljagić, M., Šumar Ristović, M., Ostojić, S., Nikolić, A. S., Vulić, P., Brčeski, I.,& Pavlović, V. B.. (2020). One-pot combustion synthesis of nickel oxide and hematite: From simple coordination compounds to high purity metal oxide nanoparticles. in Science of Sintering, 52(4), 481-490.
https://doi.org/10.2298/SOS2004481J
https://hdl.handle.net/21.15107/rcub_dais_12085
Jeremić D, Anđelković L, Milenković MR, Šuljagić M, Šumar Ristović M, Ostojić S, Nikolić AS, Vulić P, Brčeski I, Pavlović VB. One-pot combustion synthesis of nickel oxide and hematite: From simple coordination compounds to high purity metal oxide nanoparticles. in Science of Sintering. 2020;52(4):481-490.
doi:10.2298/SOS2004481J
https://hdl.handle.net/21.15107/rcub_dais_12085 .
Jeremić, Dejan, Anđelković, Ljubica, Milenković, Milica R., Šuljagić, Marija, Šumar Ristović, Maja, Ostojić, Sanja, Nikolić, Aleksandar S., Vulić, Predrag, Brčeski, Ilija, Pavlović, Vladimir B., "One-pot combustion synthesis of nickel oxide and hematite: From simple coordination compounds to high purity metal oxide nanoparticles" in Science of Sintering, 52, no. 4 (2020):481-490,
https://doi.org/10.2298/SOS2004481J .,
https://hdl.handle.net/21.15107/rcub_dais_12085 .
3
3
6