Sort By
Publication Year
Deposit Date
Title
Type
Access
Publication Year
2020 (2)
2018 (1)
2016 (1)
2015 (4)
2014 (1)
2012 (2)

Milenković, Marina

Link to this page

Authority KeyName Variants
orcid::0000-0002-6298-0599
  • Milenković, Marina (10)
  • Milenković, Marina T. (1)
Projects

Author's Bibliography

Methoxy-substituted hydroxychalcone reduces biofilm production, adhesion, and surface motility of Acinetobacter baumannii by inhibiting ompA gene expression

Ušjak, Dušan; Dinić, Miroslav; Novović, Katarina; Ivković, Branka; Filipović, Nenad; Stevanović, Magdalena; Milenković, Marina

(2020)

TY  - CONF
AU  - Ušjak, Dušan
AU  - Dinić, Miroslav
AU  - Novović, Katarina
AU  - Ivković, Branka
AU  - Filipović, Nenad
AU  - Stevanović, Magdalena
AU  - Milenković, Marina
PY  - 2020
UR  - https://farfar.pharmacy.bg.ac.rs/handle/123456789/3758
UR  - https://dais.sanu.ac.rs/123456789/10086
AB  - Acinetobacter baumannii je globalno rasprostranjen nozokomijalni patogen koji se odlikuje izuzetnom sposobnošću ekstremno brzog sticanja rezistencije na antibiotike, kao i adaptacije na preživljavanje u suvim uslovima bolničke sredine [1]. Zbog velike zastupljenosti rezistentnih sojeva protiv kojih ne postoji delotvorna terapija, Svetska zdravstvena organizacija (WHO, 2017) i Centri za kontrolu i prevenciju bolesti (CDC, 2019), označili su A. baumannii kao patogen od kritične važnosti za otkriće novih antimikrobnih agenasa ili novih terapijskih strategija [2]. Targetiranje virulencije je oblik alternativnog terapijskog pristupa koji pruža mogućnost prevencije teže kliničke slike kod inficiranih pacijenata posredstvom inhibicije ekspresije ključnih faktora virulencije, uz istovremenu redukovanu selekciju rezistentnih mutanata [3].Rezultati i Diskusija: Od četiri različito supstituisana hidroksihalkona, sintetisanih u postupku bazno-katalizovane Claisen-Schmidt kondenzacije, selektiran je metkosi-supstituisani derivat kao najpotentniji inhibitor produkcije biofilma kod A. baumannii. Primenom Real-Time kvantitativne PCR metode sa reverznom transkriptazom ispitan je uticaj subinhibitornih koncentracija selektiranog jedinjenja (70, 35 i 10 μg/mL) na ekspresiju gena faktora virulencije povezanih sa produkcijom biofilma kod A. baumannii: ompA, bap i abaI. Pokazana je značajna dozno-zavisna nishodna ekspresija ompA gena, koji kodira OmpA protein spoljašnje membrane ćelijskog zida, koji učestvuje u brojnim virulentnim osobinama A. baumannii, kao što su adhezija, citotoksičnost, motilitet i rezistencija na imunski odgovor i antibiotike [4]. Takođe, zabeležena je značajna inhibicija ekspresije bap gena, koja je neophodna za adheziju na humane epitelne ćelije, i abaI gena, integralnog dela bakterijskog kvorum-sensing sistema, koji kodira sintazu autoinduktorskih molekula. Sposobnost antivirulentnog delovanja metoksi-supstituisanog derivata hidroksihalkona potvrđena je demonstracijom inhibicije fenotipske ekspresije faktora virulencije povezanih sa ekspresijom ompA, bap i abaI gena, kao što su adhezija za komponente ekstracelularnog matriksa (fibronektin i kolagen), površinski motilitet i produkcija autoinduktorskih molekula.Zaključak: Metoksi-supstituisani hidroksihalkon ispoljava antivirulentno dejstvo protiv A. baumannii, pre svega posredstvom nishodne regulacije ompA gena, što se reflektuje u inhibiciji produkcije biofilma, sposobnosti adhezije i površinskog motiliteta ovog patogena.
AB  - Over the last two decades, Acinetobacter baumannii has emerged as one of the most troublesome pathogens, rapidly acquiring resistance to virtually all available antibiotics. This has urged researchers to seek alternative ways to fight this pathogen. Targeting its virulence appears to be a promising strategy, as it offers considerably reduced selection of resistant mutants. In this study, we tested antibiofilm activity of four synthetic chalcone derivatives against A. baumannii. Compound that showed the greatest activity was selected for further evaluation of its antivirulence properties. We used quantitative Real-Time PCR to evaluate mRNA expression of virulence-associated genes (ompA, bap, abaI) in extensively drug-resistant (XDR) A. baumannii wound isolate and A. baumannii ATCC 19606 strain, treated with selected compound. Also, we tested biofilm production, fibronectin- and collagen-mediated adhesion, surface motility and quorum-sensing activity of treated strains. The results revealed downregulation of the expression of all tested virulence genes together with the reduction of biofilm production, adhesion and motility. The most notable finding is significant reduction of ompA gene expression, whose encoded protein product is associated with numerous virulence traits of A. baumannii. Therefore, we conclude that selected methoxy-substituted hydroxychalcone exhibits antivirulence activity against A. baumannii by inhibiting the expression of the bacterial adhesins, most importantly OmpA, which is reflected in reduced biofilm formation, adhesion and surface motility.
C3  - FEMS Online Conference on Microbiology
T1  - Methoxy-substituted hydroxychalcone reduces biofilm production, adhesion, and surface motility of Acinetobacter baumannii by inhibiting ompA gene expression
ER  - 
@conference{
author = "Ušjak, Dušan and Dinić, Miroslav and Novović, Katarina and Ivković, Branka and Filipović, Nenad and Stevanović, Magdalena and Milenković, Marina",
year = "2020",
url = "https://farfar.pharmacy.bg.ac.rs/handle/123456789/3758, https://dais.sanu.ac.rs/123456789/10086",
abstract = "Acinetobacter baumannii je globalno rasprostranjen nozokomijalni patogen koji se odlikuje izuzetnom sposobnošću ekstremno brzog sticanja rezistencije na antibiotike, kao i adaptacije na preživljavanje u suvim uslovima bolničke sredine [1]. Zbog velike zastupljenosti rezistentnih sojeva protiv kojih ne postoji delotvorna terapija, Svetska zdravstvena organizacija (WHO, 2017) i Centri za kontrolu i prevenciju bolesti (CDC, 2019), označili su A. baumannii kao patogen od kritične važnosti za otkriće novih antimikrobnih agenasa ili novih terapijskih strategija [2]. Targetiranje virulencije je oblik alternativnog terapijskog pristupa koji pruža mogućnost prevencije teže kliničke slike kod inficiranih pacijenata posredstvom inhibicije ekspresije ključnih faktora virulencije, uz istovremenu redukovanu selekciju rezistentnih mutanata [3].Rezultati i Diskusija: Od četiri različito supstituisana hidroksihalkona, sintetisanih u postupku bazno-katalizovane Claisen-Schmidt kondenzacije, selektiran je metkosi-supstituisani derivat kao najpotentniji inhibitor produkcije biofilma kod A. baumannii. Primenom Real-Time kvantitativne PCR metode sa reverznom transkriptazom ispitan je uticaj subinhibitornih koncentracija selektiranog jedinjenja (70, 35 i 10 μg/mL) na ekspresiju gena faktora virulencije povezanih sa produkcijom biofilma kod A. baumannii: ompA, bap i abaI. Pokazana je značajna dozno-zavisna nishodna ekspresija ompA gena, koji kodira OmpA protein spoljašnje membrane ćelijskog zida, koji učestvuje u brojnim virulentnim osobinama A. baumannii, kao što su adhezija, citotoksičnost, motilitet i rezistencija na imunski odgovor i antibiotike [4]. Takođe, zabeležena je značajna inhibicija ekspresije bap gena, koja je neophodna za adheziju na humane epitelne ćelije, i abaI gena, integralnog dela bakterijskog kvorum-sensing sistema, koji kodira sintazu autoinduktorskih molekula. Sposobnost antivirulentnog delovanja metoksi-supstituisanog derivata hidroksihalkona potvrđena je demonstracijom inhibicije fenotipske ekspresije faktora virulencije povezanih sa ekspresijom ompA, bap i abaI gena, kao što su adhezija za komponente ekstracelularnog matriksa (fibronektin i kolagen), površinski motilitet i produkcija autoinduktorskih molekula.Zaključak: Metoksi-supstituisani hidroksihalkon ispoljava antivirulentno dejstvo protiv A. baumannii, pre svega posredstvom nishodne regulacije ompA gena, što se reflektuje u inhibiciji produkcije biofilma, sposobnosti adhezije i površinskog motiliteta ovog patogena., Over the last two decades, Acinetobacter baumannii has emerged as one of the most troublesome pathogens, rapidly acquiring resistance to virtually all available antibiotics. This has urged researchers to seek alternative ways to fight this pathogen. Targeting its virulence appears to be a promising strategy, as it offers considerably reduced selection of resistant mutants. In this study, we tested antibiofilm activity of four synthetic chalcone derivatives against A. baumannii. Compound that showed the greatest activity was selected for further evaluation of its antivirulence properties. We used quantitative Real-Time PCR to evaluate mRNA expression of virulence-associated genes (ompA, bap, abaI) in extensively drug-resistant (XDR) A. baumannii wound isolate and A. baumannii ATCC 19606 strain, treated with selected compound. Also, we tested biofilm production, fibronectin- and collagen-mediated adhesion, surface motility and quorum-sensing activity of treated strains. The results revealed downregulation of the expression of all tested virulence genes together with the reduction of biofilm production, adhesion and motility. The most notable finding is significant reduction of ompA gene expression, whose encoded protein product is associated with numerous virulence traits of A. baumannii. Therefore, we conclude that selected methoxy-substituted hydroxychalcone exhibits antivirulence activity against A. baumannii by inhibiting the expression of the bacterial adhesins, most importantly OmpA, which is reflected in reduced biofilm formation, adhesion and surface motility.",
journal = "FEMS Online Conference on Microbiology",
title = "Methoxy-substituted hydroxychalcone reduces biofilm production, adhesion, and surface motility of Acinetobacter baumannii by inhibiting ompA gene expression"
}
Ušjak, D., Dinić, M., Novović, K., Ivković, B., Filipović, N., Stevanović, M.,& Milenković, M. (2020). Methoxy-substituted hydroxychalcone reduces biofilm production, adhesion, and surface motility of Acinetobacter baumannii by inhibiting ompA gene expression.
FEMS Online Conference on Microbiology.
Ušjak D, Dinić M, Novović K, Ivković B, Filipović N, Stevanović M, Milenković M. Methoxy-substituted hydroxychalcone reduces biofilm production, adhesion, and surface motility of Acinetobacter baumannii by inhibiting ompA gene expression. FEMS Online Conference on Microbiology. 2020;
Ušjak Dušan, Dinić Miroslav, Novović Katarina, Ivković Branka, Filipović Nenad, Stevanović Magdalena, Milenković Marina, "Methoxy-substituted hydroxychalcone reduces biofilm production, adhesion, and surface motility of Acinetobacter baumannii by inhibiting ompA gene expression" (2020)

Methoxy‐Substituted Hydroxychalcone Reduces Biofilm Production, Adhesion and Surface Motility of Acinetobacter baumannii by Inhibiting ompA Gene Expression

Ušjak, Dušan; Dinić, Miroslav; Novović, Katarina; Ivković, Branka; Filipović, Nenad; Stevanović, Magdalena; Milenković, Marina T.

(Wiley, 2020)

TY  - JOUR
AU  - Ušjak, Dušan
AU  - Dinić, Miroslav
AU  - Novović, Katarina
AU  - Ivković, Branka
AU  - Filipović, Nenad
AU  - Stevanović, Magdalena
AU  - Milenković, Marina T.
PY  - 2020
UR  - https://dais.sanu.ac.rs/123456789/10034
AB  - An increasing lack of available therapeutic options against Acinetobacter baumannii urged researchers to seek alternative ways to fight this extremely resistant nosocomial pathogen. Targeting its virulence appears to be a promising strategy, as it offers considerably reduced selection of resistant mutants. In this study, we tested antibiofilm potential of four synthetic chalcone derivatives against A. baumannii. Compound that showed the greatest activity was selected for further evaluation of its antivirulence properties. Real‐time PCR was used to evaluate mRNA expression of biofilm‐associated virulence factor genes (ompA, bap, abaI) in treated A. baumannii strains. Also, we examined virulence properties related to the expression of these genes, such as fibronectin‐ and collagen‐mediated adhesion, surface motility, and quorum‐sensing activity. The results revealed that the expression of all tested genes is downregulated together with the reduction of adhesion and motility. The conclusion is that 2′‐hydroxy‐2‐methoxychalcone exhibits antivirulence activity against A. baumannii by inhibiting the expression of ompA and bap genes, which is reflected in reduced biofilm formation, adhesion, and surface motility.
PB  - Wiley
T2  - Chemistry & Biodiversity
T1  - Methoxy‐Substituted Hydroxychalcone Reduces Biofilm Production, Adhesion and Surface Motility of                    Acinetobacter baumannii                    by Inhibiting                    ompA                    Gene Expression
DO  - 10.1002/cbdv.202000786
ER  - 
@article{
author = "Ušjak, Dušan and Dinić, Miroslav and Novović, Katarina and Ivković, Branka and Filipović, Nenad and Stevanović, Magdalena and Milenković, Marina T.",
year = "2020",
url = "https://dais.sanu.ac.rs/123456789/10034",
abstract = "An increasing lack of available therapeutic options against Acinetobacter baumannii urged researchers to seek alternative ways to fight this extremely resistant nosocomial pathogen. Targeting its virulence appears to be a promising strategy, as it offers considerably reduced selection of resistant mutants. In this study, we tested antibiofilm potential of four synthetic chalcone derivatives against A. baumannii. Compound that showed the greatest activity was selected for further evaluation of its antivirulence properties. Real‐time PCR was used to evaluate mRNA expression of biofilm‐associated virulence factor genes (ompA, bap, abaI) in treated A. baumannii strains. Also, we examined virulence properties related to the expression of these genes, such as fibronectin‐ and collagen‐mediated adhesion, surface motility, and quorum‐sensing activity. The results revealed that the expression of all tested genes is downregulated together with the reduction of adhesion and motility. The conclusion is that 2′‐hydroxy‐2‐methoxychalcone exhibits antivirulence activity against A. baumannii by inhibiting the expression of ompA and bap genes, which is reflected in reduced biofilm formation, adhesion, and surface motility.",
publisher = "Wiley",
journal = "Chemistry & Biodiversity",
title = "Methoxy‐Substituted Hydroxychalcone Reduces Biofilm Production, Adhesion and Surface Motility of                    Acinetobacter baumannii                    by Inhibiting                    ompA                    Gene Expression",
doi = "10.1002/cbdv.202000786"
}
Ušjak, D., Dinić, M., Novović, K., Ivković, B., Filipović, N., Stevanović, M.,& Milenković, M. T. (2020). Methoxy‐Substituted Hydroxychalcone Reduces Biofilm Production, Adhesion and Surface Motility of                    Acinetobacter baumannii                    by Inhibiting                    ompA                    Gene Expression.
Chemistry & BiodiversityWiley..
https://doi.org/10.1002/cbdv.202000786
Ušjak D, Dinić M, Novović K, Ivković B, Filipović N, Stevanović M, Milenković MT. Methoxy‐Substituted Hydroxychalcone Reduces Biofilm Production, Adhesion and Surface Motility of                    Acinetobacter baumannii                    by Inhibiting                    ompA                    Gene Expression. Chemistry & Biodiversity. 2020;
Ušjak Dušan, Dinić Miroslav, Novović Katarina, Ivković Branka, Filipović Nenad, Stevanović Magdalena, Milenković Marina T., "Methoxy‐Substituted Hydroxychalcone Reduces Biofilm Production, Adhesion and Surface Motility of                    Acinetobacter baumannii                    by Inhibiting                    ompA                    Gene Expression" (2020),
https://doi.org/10.1002/cbdv.202000786 .
3

Exopolysaccharide Produced by Probiotic Strain Lactobacillus paraplantarum BGCG11 Reduces Inflammatory Hyperalgesia in Rats

Dinić, Miroslav; Pecikoza, Uroš; Đokić, Jelena; Stepanović Petrović, Radica; Milenković, Marina; Stevanović, Magdalena; Filipović, Nenad; Begović, Jelena; Golić, Nataša; Lukić, Jovanka

(Lausanne : Frontiers, 2018)

TY  - JOUR
AU  - Dinić, Miroslav
AU  - Pecikoza, Uroš
AU  - Đokić, Jelena
AU  - Stepanović Petrović, Radica
AU  - Milenković, Marina
AU  - Stevanović, Magdalena
AU  - Filipović, Nenad
AU  - Begović, Jelena
AU  - Golić, Nataša
AU  - Lukić, Jovanka
PY  - 2018
UR  - http://dais.sanu.ac.rs/123456789/2347
AB  - The aim of this study was to test the potential of high molecular weight exopolysaccharide (EPS) produced by the putative probiotic strain Lactobacillus paraplantarum BGCG11 (EPS CG11) to alleviate inflammatory pain in Wistar rats. The EPS CG11 was isolated from bacterial surface and was subjected to Fourier-transform infrared spectroscopy (FTIR) and thermal analysis. FTIR spectra confirmed the polysaccharide structure of isolated sample, while the thermal methods revealed good thermal properties of the polymer. The antihyperalgesic and antiedematous effects of the EPS CG11 were examined in the rat model of inflammation induced by carrageenan injection in hind paw. The results showed that the intraperitoneal administration of EPS CG11 produced a significant decrease in pain sensations (mechanical hyperalgesia) and a paw swelling in a dose-dependent manner as it was measured using Von Frey anesthesiometer and plethysmometer, respectively. These effects were followed by a decreased expression of IL-1β and iNOS mRNAs in rat’s paw tissue suggesting that the antihyperalgesic and antiedematous effects of the EPS CG11 are related to the suppression of inflammatory response. Additionally, we demonstrated that EPS CG11 exhibits immunosuppressive properties in the peritonitis model induced by carrageenan. Expression levels of pro-inflammatory mediators IL-1β, TNF-α and iNOS were decreased, together with the enhanced secretion of anti-inflammatory IL-10 and IL-6 cytokines, while neutrophil infiltration was not changed. To the best of our knowledge, this is the first study which reports an antihyperalgesic effect as the novel property of bacterial EPSs. Given the high demands of pharmaceutical industry for the replacement of commonly used analgesics due to numerous side effects, this study describes a promising natural compound for the future pharmacological testing in the area.
PB  - Lausanne : Frontiers
T2  - Frontiers in Pharmacology
T1  - Exopolysaccharide Produced by Probiotic Strain Lactobacillus paraplantarum BGCG11 Reduces Inflammatory Hyperalgesia in Rats
SP  - Article 1
VL  - 9
DO  - 10.3389/fphar.2018.00001
ER  - 
@article{
author = "Dinić, Miroslav and Pecikoza, Uroš and Đokić, Jelena and Stepanović Petrović, Radica and Milenković, Marina and Stevanović, Magdalena and Filipović, Nenad and Begović, Jelena and Golić, Nataša and Lukić, Jovanka",
year = "2018",
url = "http://dais.sanu.ac.rs/123456789/2347",
abstract = "The aim of this study was to test the potential of high molecular weight exopolysaccharide (EPS) produced by the putative probiotic strain Lactobacillus paraplantarum BGCG11 (EPS CG11) to alleviate inflammatory pain in Wistar rats. The EPS CG11 was isolated from bacterial surface and was subjected to Fourier-transform infrared spectroscopy (FTIR) and thermal analysis. FTIR spectra confirmed the polysaccharide structure of isolated sample, while the thermal methods revealed good thermal properties of the polymer. The antihyperalgesic and antiedematous effects of the EPS CG11 were examined in the rat model of inflammation induced by carrageenan injection in hind paw. The results showed that the intraperitoneal administration of EPS CG11 produced a significant decrease in pain sensations (mechanical hyperalgesia) and a paw swelling in a dose-dependent manner as it was measured using Von Frey anesthesiometer and plethysmometer, respectively. These effects were followed by a decreased expression of IL-1β and iNOS mRNAs in rat’s paw tissue suggesting that the antihyperalgesic and antiedematous effects of the EPS CG11 are related to the suppression of inflammatory response. Additionally, we demonstrated that EPS CG11 exhibits immunosuppressive properties in the peritonitis model induced by carrageenan. Expression levels of pro-inflammatory mediators IL-1β, TNF-α and iNOS were decreased, together with the enhanced secretion of anti-inflammatory IL-10 and IL-6 cytokines, while neutrophil infiltration was not changed. To the best of our knowledge, this is the first study which reports an antihyperalgesic effect as the novel property of bacterial EPSs. Given the high demands of pharmaceutical industry for the replacement of commonly used analgesics due to numerous side effects, this study describes a promising natural compound for the future pharmacological testing in the area.",
publisher = "Lausanne : Frontiers",
journal = "Frontiers in Pharmacology",
title = "Exopolysaccharide Produced by Probiotic Strain Lactobacillus paraplantarum BGCG11 Reduces Inflammatory Hyperalgesia in Rats",
pages = "Article 1",
volume = "9",
doi = "10.3389/fphar.2018.00001"
}
Dinić, M., Pecikoza, U., Đokić, J., Stepanović Petrović, R., Milenković, M., Stevanović, M., Filipović, N., Begović, J., Golić, N.,& Lukić, J. (2018). Exopolysaccharide Produced by Probiotic Strain Lactobacillus paraplantarum BGCG11 Reduces Inflammatory Hyperalgesia in Rats.
Frontiers in PharmacologyLausanne : Frontiers., 9, Article 1.
https://doi.org/10.3389/fphar.2018.00001
Dinić M, Pecikoza U, Đokić J, Stepanović Petrović R, Milenković M, Stevanović M, Filipović N, Begović J, Golić N, Lukić J. Exopolysaccharide Produced by Probiotic Strain Lactobacillus paraplantarum BGCG11 Reduces Inflammatory Hyperalgesia in Rats. Frontiers in Pharmacology. 2018;9:Article 1
Dinić Miroslav, Pecikoza Uroš, Đokić Jelena, Stepanović Petrović Radica, Milenković Marina, Stevanović Magdalena, Filipović Nenad, Begović Jelena, Golić Nataša, Lukić Jovanka, "Exopolysaccharide Produced by Probiotic Strain Lactobacillus paraplantarum BGCG11 Reduces Inflammatory Hyperalgesia in Rats" 9 (2018):Article 1,
https://doi.org/10.3389/fphar.2018.00001 .
1
114
13
16

PLGA/Nano-ZnO Composite Particles for Use in Biomedical Applications: Preparation, Characterization, and Antimicrobial Activity

Stanković, Ana; Sezen, Meltem; Milenković, Marina; Kaišarević, Sonja; Andrić, Nebojša; Stevanović, Magdalena

(Hindawi, 2016)

TY  - JOUR
AU  - Stanković, Ana
AU  - Sezen, Meltem
AU  - Milenković, Marina
AU  - Kaišarević, Sonja
AU  - Andrić, Nebojša
AU  - Stevanović, Magdalena
PY  - 2016
UR  - http://dais.sanu.ac.rs/123456789/901
AB  - Copolymer poly (DL-lactide-co-glycolide) (PLGA) is extensively investigated for various biomedical applications such as controlled drug delivery or carriers in the tissue engineering. In addition, zinc oxide (ZnO) is widely used in biomedicine especially for materials like dental composites, as a constituent of creams for the treatment of a variety of skin irritations, to enhance the antibacterial activity of different medicaments and so on. Uniform, spherical ZnO nanoparticles (nano-ZnO) have been synthesized via microwave synthesis method. In addition to obtaining nano-ZnO, a further aim was to examine their immobilization in the PLGA polymer matrix (PLGA/nano-ZnO) and this was done by a simple physicochemical solvent/nonsolvent method. The samples were characterized by X-ray diffraction, scanning electron microscopy, laser diffraction particle size analyzer, differential thermal analysis, and thermal gravimetric analysis. The synthesized PLGA/nano-ZnO particles are spherical, uniform, and with diameters below 1 µm. The influence of the different solvents and the drying methods during the synthesis was investigated too. The biocompatibility of the samples is discussed in terms of in vitro toxicity on human hepatoma HepG2 cells by application of MTT assay and the antimicrobial activity was evaluated by broth microdilution method against different groups of microorganisms (Gram-positive bacteria, Gram-negative bacteria, and yeast Candida albicans).
PB  - Hindawi
T2  - Journal of Nanomaterials
T1  - PLGA/Nano-ZnO Composite Particles for Use in Biomedical Applications: Preparation, Characterization, and Antimicrobial Activity
SP  - 9425289
VL  - 2016
DO  - 10.1155/2016/9425289
ER  - 
@article{
author = "Stanković, Ana and Sezen, Meltem and Milenković, Marina and Kaišarević, Sonja and Andrić, Nebojša and Stevanović, Magdalena",
year = "2016",
url = "http://dais.sanu.ac.rs/123456789/901",
abstract = "Copolymer poly (DL-lactide-co-glycolide) (PLGA) is extensively investigated for various biomedical applications such as controlled drug delivery or carriers in the tissue engineering. In addition, zinc oxide (ZnO) is widely used in biomedicine especially for materials like dental composites, as a constituent of creams for the treatment of a variety of skin irritations, to enhance the antibacterial activity of different medicaments and so on. Uniform, spherical ZnO nanoparticles (nano-ZnO) have been synthesized via microwave synthesis method. In addition to obtaining nano-ZnO, a further aim was to examine their immobilization in the PLGA polymer matrix (PLGA/nano-ZnO) and this was done by a simple physicochemical solvent/nonsolvent method. The samples were characterized by X-ray diffraction, scanning electron microscopy, laser diffraction particle size analyzer, differential thermal analysis, and thermal gravimetric analysis. The synthesized PLGA/nano-ZnO particles are spherical, uniform, and with diameters below 1 µm. The influence of the different solvents and the drying methods during the synthesis was investigated too. The biocompatibility of the samples is discussed in terms of in vitro toxicity on human hepatoma HepG2 cells by application of MTT assay and the antimicrobial activity was evaluated by broth microdilution method against different groups of microorganisms (Gram-positive bacteria, Gram-negative bacteria, and yeast Candida albicans).",
publisher = "Hindawi",
journal = "Journal of Nanomaterials",
title = "PLGA/Nano-ZnO Composite Particles for Use in Biomedical Applications: Preparation, Characterization, and Antimicrobial Activity",
pages = "9425289",
volume = "2016",
doi = "10.1155/2016/9425289"
}
Stanković, A., Sezen, M., Milenković, M., Kaišarević, S., Andrić, N.,& Stevanović, M. (2016). PLGA/Nano-ZnO Composite Particles for Use in Biomedical Applications: Preparation, Characterization, and Antimicrobial Activity.
Journal of NanomaterialsHindawi., 2016, 9425289.
https://doi.org/10.1155/2016/9425289
Stanković A, Sezen M, Milenković M, Kaišarević S, Andrić N, Stevanović M. PLGA/Nano-ZnO Composite Particles for Use in Biomedical Applications: Preparation, Characterization, and Antimicrobial Activity. Journal of Nanomaterials. 2016;2016:9425289
Stanković Ana, Sezen Meltem, Milenković Marina, Kaišarević Sonja, Andrić Nebojša, Stevanović Magdalena, "PLGA/Nano-ZnO Composite Particles for Use in Biomedical Applications: Preparation, Characterization, and Antimicrobial Activity" 2016 (2016):9425289,
https://doi.org/10.1155/2016/9425289 .
5
7
8

45S5Bioglass®-based scaffolds coated with selenium nanoparticles or with poly(lactide-co-glycolide)/selenium particles: Processing, evaluation and antibacterial activity

Stevanović, Magdalena; Filipović, Nenad; Đurđević, Jelena; Lukić, Miodrag J.; Milenković, Marina; Boccaccini, Aldo

(2015)

TY  - JOUR
AU  - Stevanović, Magdalena
AU  - Filipović, Nenad
AU  - Đurđević, Jelena
AU  - Lukić, Miodrag J.
AU  - Milenković, Marina
AU  - Boccaccini, Aldo
PY  - 2015
UR  - http://dais.sanu.ac.rs/123456789/4670
AB  - n the bone tissue engineering field, there is a growing interest in the application of bioactive glass scaffolds (45S5Bioglass®) due to their bone bonding ability, osteoconductivity and osteoinductivity. However, such scaffolds still lack some of the required functionalities to enable the successful formation of new bone, e.g. effective antibacterial properties. A large number of studies suggest that selenium (Se) has significant role in antioxidant protection, enhanced immune surveillance and modulation of cell proliferation. Selenium nanoparticles (SeNp) have also been reported to possess antibacterial as well as antiviral activities. In this investigation, uniform, stable, amorphous SeNp have been synthesized and additionally immobilized within spherical PLGA particles (PLGA/SeNp). These particles were used to coat bioactive glass-based scaffolds synthesized by the foam replica method. Samples were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and transmission electron microscopy (TEM). SeNp, 45S5Bioglass®/SeNp and 45S5Bioglass®/PLGA/SeNp showed a considerable antibacterial activity against Gram positive bacteria, Staphylococcus aureus and Staphylococcus epidermidis, one of the main causative agents of orthopedic infections. The functionalized Se-coated bioactive glass scaffolds represent a new family of bioactive, antibacterial scaffolds for bone tissue engineering applications.
T2  - Colloids and Surfaces B: Biointerfaces
T1  - 45S5Bioglass®-based scaffolds coated with selenium nanoparticles or with poly(lactide-co-glycolide)/selenium particles: Processing, evaluation and antibacterial activity
SP  - 208
EP  - 215
VL  - 132
DO  - 10.1016/j.colsurfb.2015.05.024
ER  - 
@article{
author = "Stevanović, Magdalena and Filipović, Nenad and Đurđević, Jelena and Lukić, Miodrag J. and Milenković, Marina and Boccaccini, Aldo",
year = "2015",
url = "http://dais.sanu.ac.rs/123456789/4670",
abstract = "n the bone tissue engineering field, there is a growing interest in the application of bioactive glass scaffolds (45S5Bioglass®) due to their bone bonding ability, osteoconductivity and osteoinductivity. However, such scaffolds still lack some of the required functionalities to enable the successful formation of new bone, e.g. effective antibacterial properties. A large number of studies suggest that selenium (Se) has significant role in antioxidant protection, enhanced immune surveillance and modulation of cell proliferation. Selenium nanoparticles (SeNp) have also been reported to possess antibacterial as well as antiviral activities. In this investigation, uniform, stable, amorphous SeNp have been synthesized and additionally immobilized within spherical PLGA particles (PLGA/SeNp). These particles were used to coat bioactive glass-based scaffolds synthesized by the foam replica method. Samples were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and transmission electron microscopy (TEM). SeNp, 45S5Bioglass®/SeNp and 45S5Bioglass®/PLGA/SeNp showed a considerable antibacterial activity against Gram positive bacteria, Staphylococcus aureus and Staphylococcus epidermidis, one of the main causative agents of orthopedic infections. The functionalized Se-coated bioactive glass scaffolds represent a new family of bioactive, antibacterial scaffolds for bone tissue engineering applications.",
journal = "Colloids and Surfaces B: Biointerfaces",
title = "45S5Bioglass®-based scaffolds coated with selenium nanoparticles or with poly(lactide-co-glycolide)/selenium particles: Processing, evaluation and antibacterial activity",
pages = "208-215",
volume = "132",
doi = "10.1016/j.colsurfb.2015.05.024"
}
Stevanović, M., Filipović, N., Đurđević, J., Lukić, M. J., Milenković, M.,& Boccaccini, A. (2015). 45S5Bioglass®-based scaffolds coated with selenium nanoparticles or with poly(lactide-co-glycolide)/selenium particles: Processing, evaluation and antibacterial activity.
Colloids and Surfaces B: Biointerfaces, 132, 208-215.
https://doi.org/10.1016/j.colsurfb.2015.05.024
Stevanović M, Filipović N, Đurđević J, Lukić MJ, Milenković M, Boccaccini A. 45S5Bioglass®-based scaffolds coated with selenium nanoparticles or with poly(lactide-co-glycolide)/selenium particles: Processing, evaluation and antibacterial activity. Colloids and Surfaces B: Biointerfaces. 2015;132:208-215
Stevanović Magdalena, Filipović Nenad, Đurđević Jelena, Lukić Miodrag J., Milenković Marina, Boccaccini Aldo, "45S5Bioglass®-based scaffolds coated with selenium nanoparticles or with poly(lactide-co-glycolide)/selenium particles: Processing, evaluation and antibacterial activity" 132 (2015):208-215,
https://doi.org/10.1016/j.colsurfb.2015.05.024 .
1
49
47
48

Synthesis of PLGA /nano-ZnO composite particles for biomedical applications

Stanković, Ana; Lukić, Miodrag J.; Jović, Maja; Sezen, Meltem; Milenković, Marina; Stevanović, Magdalena

(Rovinj : International Association of Physical Chemists, 2015)

TY  - CONF
AU  - Stanković, Ana
AU  - Lukić, Miodrag J.
AU  - Jović, Maja
AU  - Sezen, Meltem
AU  - Milenković, Marina
AU  - Stevanović, Magdalena
PY  - 2015
UR  - http://dais.sanu.ac.rs/123456789/857
AB  - Copolymer poly (DL-lactide-co-glycolide) (PLGA), due of its biodegradable and biocompatible nature, is widely used in various medical applications; controlled release of delivering drugs, carriers in the tissue engineering, etc. On the other hand, zinc oxide (ZnO) is extensively used in medicine and pharmacy for personal care products, as well as in biomedical materials like dental composites, as a material for treatment of a variety of skin irritations, to enhance the antibacterial activity of different medicaments, etc. In this research we have dealt with a procedure to prepare particles of poly (lactide-co-glycolide) and nano zinc oxide (PLGA/nano-ZnO). Nano-ZnO has been synthesized using a microwave synthesis method and additionally immobilized within PLGA by physicochemical solvent/non-solvent method. Firstly, ZnO has been dispersed in acetone and then additionally added dropwise in the PLGA/ethyl acetate (PLGA/nano-ZnO(EtAc) or PLGA/acetone (PLGA/nano-ZnO(Ac)) solutions, respectively. The as-prepared dispersions were dried in air atmosphere for 24 h. 
The characterization of the prepared samples was performed using X-ray powder diffraction (XRPD) method for the structure properties, field emission scanning electron microscopy (FE SEM) for the investigation of particles morphology, as well as Malvern’s Mastersizer instrument for particle size distribution. DTA-TG measurements were performed in order to investigate the samples thermal stability and mass loss percentage. The antimicrobial behavior of the synthesized PLGA/nano-ZnO particles was tested against gram-negative and gram-positive bacteria cultures and also against Candida Albicans, diploid fungus.
PB  - Rovinj : International Association of Physical Chemists
C3  - Joint Event 4th World Conference on Physico-Chemical Methods in Drug Discovery and Development (PCMDDD-4) and 1st World Conference on ADMET and DMPK
T1  - Synthesis of PLGA /nano-ZnO composite particles for biomedical applications
ER  - 
@conference{
author = "Stanković, Ana and Lukić, Miodrag J. and Jović, Maja and Sezen, Meltem and Milenković, Marina and Stevanović, Magdalena",
year = "2015",
url = "http://dais.sanu.ac.rs/123456789/857",
abstract = "Copolymer poly (DL-lactide-co-glycolide) (PLGA), due of its biodegradable and biocompatible nature, is widely used in various medical applications; controlled release of delivering drugs, carriers in the tissue engineering, etc. On the other hand, zinc oxide (ZnO) is extensively used in medicine and pharmacy for personal care products, as well as in biomedical materials like dental composites, as a material for treatment of a variety of skin irritations, to enhance the antibacterial activity of different medicaments, etc. In this research we have dealt with a procedure to prepare particles of poly (lactide-co-glycolide) and nano zinc oxide (PLGA/nano-ZnO). Nano-ZnO has been synthesized using a microwave synthesis method and additionally immobilized within PLGA by physicochemical solvent/non-solvent method. Firstly, ZnO has been dispersed in acetone and then additionally added dropwise in the PLGA/ethyl acetate (PLGA/nano-ZnO(EtAc) or PLGA/acetone (PLGA/nano-ZnO(Ac)) solutions, respectively. The as-prepared dispersions were dried in air atmosphere for 24 h. 
The characterization of the prepared samples was performed using X-ray powder diffraction (XRPD) method for the structure properties, field emission scanning electron microscopy (FE SEM) for the investigation of particles morphology, as well as Malvern’s Mastersizer instrument for particle size distribution. DTA-TG measurements were performed in order to investigate the samples thermal stability and mass loss percentage. The antimicrobial behavior of the synthesized PLGA/nano-ZnO particles was tested against gram-negative and gram-positive bacteria cultures and also against Candida Albicans, diploid fungus.",
publisher = "Rovinj : International Association of Physical Chemists",
journal = "Joint Event 4th World Conference on Physico-Chemical Methods in Drug Discovery and Development (PCMDDD-4) and 1st World Conference on ADMET and DMPK",
title = "Synthesis of PLGA /nano-ZnO composite particles for biomedical applications"
}
Stanković, A., Lukić, M. J., Jović, M., Sezen, M., Milenković, M.,& Stevanović, M. (2015). Synthesis of PLGA /nano-ZnO composite particles for biomedical applications.
Joint Event 4th World Conference on Physico-Chemical Methods in Drug Discovery and Development (PCMDDD-4) and 1st World Conference on ADMET and DMPKRovinj : International Association of Physical Chemists..
Stanković A, Lukić MJ, Jović M, Sezen M, Milenković M, Stevanović M. Synthesis of PLGA /nano-ZnO composite particles for biomedical applications. Joint Event 4th World Conference on Physico-Chemical Methods in Drug Discovery and Development (PCMDDD-4) and 1st World Conference on ADMET and DMPK. 2015;
Stanković Ana, Lukić Miodrag J., Jović Maja, Sezen Meltem, Milenković Marina, Stevanović Magdalena, "Synthesis of PLGA /nano-ZnO composite particles for biomedical applications" (2015)

Development and evaluation of 45S5 bioglass scaffolds coated with selenium nanoparticles or with poly(lactide-co-glycolide)/selenium nanoparticles

Boccaccini, Aldo; Stevanović, Magdalena; Filipović, Nenad; Veselinović, Ljiljana; Lukić, Miodrag J.; Milenković, Marina

(Weimar : Deutsche Gesellschaft für Materialkunde e.V., 2015)

TY  - CONF
AU  - Boccaccini, Aldo
AU  - Stevanović, Magdalena
AU  - Filipović, Nenad
AU  - Veselinović, Ljiljana
AU  - Lukić, Miodrag J.
AU  - Milenković, Marina
PY  - 2015
UR  - http://dais.sanu.ac.rs/123456789/856
AB  - In the bone tissue engineering field, there is growing interest in the application of bioglass scaffolds due to their bone bonding ability and osteoconductivity. However such scaffolds still lack some of the required functionalities to enable the successful formation of new bone, e.g. enhanced bioactivity by incorporation of bioactive molecules or growth factors and effective antibacterial properties. A large number of epidemiological, preclinical, and clinical trials suggest that selenium (Se) has significant role in antioxidant protection, enhanced immune surveillance and modulation of cell proliferation. Selenium nanoparticles (SeNp) have also been reported to possess antibacterial as well as antiviral activities. Studies also provide evidence that Se intake may be necessary for bone health. Poly(lactide-co-glycolide) (PLGA) micro and nanoparticles are used for the controlled delivery of several classes of medicaments such as growth factors, antibiotics, antimicrobial agents etc. Uniform, stable, amorphous SeNps have been synthesized and additionally encapsulated within spherical PLGA particles (PLGA/SeNps). Bioglass scaffolds have been synthesized by foam replica method and additionally coated by SeNp or by PLGA with encapsulated SeNp. Samples were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and transmission electron microscopy (TEM). SeNp, Bioglass®/SeNp and Bioglass®/PLGA/SeNp showed a considerable antibacterial activity against Gram positive bacteria Staphylococcus aureus and Staphylococcus epidermidis, one of the main causative agents of orthopedic infections.
PB  - Weimar : Deutsche Gesellschaft für Materialkunde e.V.
C3  - European Symposium and Exhibition on Biomaterials and Related Areas (Euro BioMAT), Weimar, Germany, 2015
T1  - Development and evaluation of 45S5 bioglass scaffolds coated with selenium nanoparticles or with poly(lactide-co-glycolide)/selenium nanoparticles
ER  - 
@conference{
author = "Boccaccini, Aldo and Stevanović, Magdalena and Filipović, Nenad and Veselinović, Ljiljana and Lukić, Miodrag J. and Milenković, Marina",
year = "2015",
url = "http://dais.sanu.ac.rs/123456789/856",
abstract = "In the bone tissue engineering field, there is growing interest in the application of bioglass scaffolds due to their bone bonding ability and osteoconductivity. However such scaffolds still lack some of the required functionalities to enable the successful formation of new bone, e.g. enhanced bioactivity by incorporation of bioactive molecules or growth factors and effective antibacterial properties. A large number of epidemiological, preclinical, and clinical trials suggest that selenium (Se) has significant role in antioxidant protection, enhanced immune surveillance and modulation of cell proliferation. Selenium nanoparticles (SeNp) have also been reported to possess antibacterial as well as antiviral activities. Studies also provide evidence that Se intake may be necessary for bone health. Poly(lactide-co-glycolide) (PLGA) micro and nanoparticles are used for the controlled delivery of several classes of medicaments such as growth factors, antibiotics, antimicrobial agents etc. Uniform, stable, amorphous SeNps have been synthesized and additionally encapsulated within spherical PLGA particles (PLGA/SeNps). Bioglass scaffolds have been synthesized by foam replica method and additionally coated by SeNp or by PLGA with encapsulated SeNp. Samples were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and transmission electron microscopy (TEM). SeNp, Bioglass®/SeNp and Bioglass®/PLGA/SeNp showed a considerable antibacterial activity against Gram positive bacteria Staphylococcus aureus and Staphylococcus epidermidis, one of the main causative agents of orthopedic infections.",
publisher = "Weimar : Deutsche Gesellschaft für Materialkunde e.V.",
journal = "European Symposium and Exhibition on Biomaterials and Related Areas (Euro BioMAT), Weimar, Germany, 2015",
title = "Development and evaluation of 45S5 bioglass scaffolds coated with selenium nanoparticles or with poly(lactide-co-glycolide)/selenium nanoparticles"
}
Boccaccini, A., Stevanović, M., Filipović, N., Veselinović, L., Lukić, M. J.,& Milenković, M. (2015). Development and evaluation of 45S5 bioglass scaffolds coated with selenium nanoparticles or with poly(lactide-co-glycolide)/selenium nanoparticles.
European Symposium and Exhibition on Biomaterials and Related Areas (Euro BioMAT), Weimar, Germany, 2015Weimar : Deutsche Gesellschaft für Materialkunde e.V...
Boccaccini A, Stevanović M, Filipović N, Veselinović L, Lukić MJ, Milenković M. Development and evaluation of 45S5 bioglass scaffolds coated with selenium nanoparticles or with poly(lactide-co-glycolide)/selenium nanoparticles. European Symposium and Exhibition on Biomaterials and Related Areas (Euro BioMAT), Weimar, Germany, 2015. 2015;
Boccaccini Aldo, Stevanović Magdalena, Filipović Nenad, Veselinović Ljiljana, Lukić Miodrag J., Milenković Marina, "Development and evaluation of 45S5 bioglass scaffolds coated with selenium nanoparticles or with poly(lactide-co-glycolide)/selenium nanoparticles" (2015)

45S5Bioglass®-based scaffolds coated with selenium nanoparticles or with poly(lactide-co-glycolide)/selenium particles: Processing, evaluation and antibacterial activity

Stevanović, Magdalena; Filipović, Nenad; Đurđević, Jelena; Lukić, Miodrag J.; Milenković, Marina; Boccaccini, Aldo

(2015)

TY  - JOUR
AU  - Stevanović, Magdalena
AU  - Filipović, Nenad
AU  - Đurđević, Jelena
AU  - Lukić, Miodrag J.
AU  - Milenković, Marina
AU  - Boccaccini, Aldo
PY  - 2015
UR  - http://dais.sanu.ac.rs/123456789/758
AB  - n the bone tissue engineering field, there is a growing interest in the application of bioactive glass scaffolds (45S5Bioglass®) due to their bone bonding ability, osteoconductivity and osteoinductivity. However, such scaffolds still lack some of the required functionalities to enable the successful formation of new bone, e.g. effective antibacterial properties. A large number of studies suggest that selenium (Se) has significant role in antioxidant protection, enhanced immune surveillance and modulation of cell proliferation. Selenium nanoparticles (SeNp) have also been reported to possess antibacterial as well as antiviral activities. In this investigation, uniform, stable, amorphous SeNp have been synthesized and additionally immobilized within spherical PLGA particles (PLGA/SeNp). These particles were used to coat bioactive glass-based scaffolds synthesized by the foam replica method. Samples were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and transmission electron microscopy (TEM). SeNp, 45S5Bioglass®/SeNp and 45S5Bioglass®/PLGA/SeNp showed a considerable antibacterial activity against Gram positive bacteria, Staphylococcus aureus and Staphylococcus epidermidis, one of the main causative agents of orthopedic infections. The functionalized Se-coated bioactive glass scaffolds represent a new family of bioactive, antibacterial scaffolds for bone tissue engineering applications.
T2  - Colloids and Surfaces B: Biointerfaces
T1  - 45S5Bioglass®-based scaffolds coated with selenium nanoparticles or with poly(lactide-co-glycolide)/selenium particles: Processing, evaluation and antibacterial activity
SP  - 208
EP  - 215
VL  - 132
DO  - 10.1016/j.colsurfb.2015.05.024
ER  - 
@article{
author = "Stevanović, Magdalena and Filipović, Nenad and Đurđević, Jelena and Lukić, Miodrag J. and Milenković, Marina and Boccaccini, Aldo",
year = "2015",
url = "http://dais.sanu.ac.rs/123456789/758",
abstract = "n the bone tissue engineering field, there is a growing interest in the application of bioactive glass scaffolds (45S5Bioglass®) due to their bone bonding ability, osteoconductivity and osteoinductivity. However, such scaffolds still lack some of the required functionalities to enable the successful formation of new bone, e.g. effective antibacterial properties. A large number of studies suggest that selenium (Se) has significant role in antioxidant protection, enhanced immune surveillance and modulation of cell proliferation. Selenium nanoparticles (SeNp) have also been reported to possess antibacterial as well as antiviral activities. In this investigation, uniform, stable, amorphous SeNp have been synthesized and additionally immobilized within spherical PLGA particles (PLGA/SeNp). These particles were used to coat bioactive glass-based scaffolds synthesized by the foam replica method. Samples were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and transmission electron microscopy (TEM). SeNp, 45S5Bioglass®/SeNp and 45S5Bioglass®/PLGA/SeNp showed a considerable antibacterial activity against Gram positive bacteria, Staphylococcus aureus and Staphylococcus epidermidis, one of the main causative agents of orthopedic infections. The functionalized Se-coated bioactive glass scaffolds represent a new family of bioactive, antibacterial scaffolds for bone tissue engineering applications.",
journal = "Colloids and Surfaces B: Biointerfaces",
title = "45S5Bioglass®-based scaffolds coated with selenium nanoparticles or with poly(lactide-co-glycolide)/selenium particles: Processing, evaluation and antibacterial activity",
pages = "208-215",
volume = "132",
doi = "10.1016/j.colsurfb.2015.05.024"
}
Stevanović, M., Filipović, N., Đurđević, J., Lukić, M. J., Milenković, M.,& Boccaccini, A. (2015). 45S5Bioglass®-based scaffolds coated with selenium nanoparticles or with poly(lactide-co-glycolide)/selenium particles: Processing, evaluation and antibacterial activity.
Colloids and Surfaces B: Biointerfaces, 132, 208-215.
https://doi.org/10.1016/j.colsurfb.2015.05.024
Stevanović M, Filipović N, Đurđević J, Lukić MJ, Milenković M, Boccaccini A. 45S5Bioglass®-based scaffolds coated with selenium nanoparticles or with poly(lactide-co-glycolide)/selenium particles: Processing, evaluation and antibacterial activity. Colloids and Surfaces B: Biointerfaces. 2015;132:208-215
Stevanović Magdalena, Filipović Nenad, Đurđević Jelena, Lukić Miodrag J., Milenković Marina, Boccaccini Aldo, "45S5Bioglass®-based scaffolds coated with selenium nanoparticles or with poly(lactide-co-glycolide)/selenium particles: Processing, evaluation and antibacterial activity" 132 (2015):208-215,
https://doi.org/10.1016/j.colsurfb.2015.05.024 .
1
49
47
48

Multifunctional PLGA particles containing poly(l-glutamic acid)-capped silver nanoparticles and ascorbic acid with simultaneous antioxidative and prolonged antimicrobial activity

Stevanović, Magdalena; Bračko, Ines; Milenković, Marina; Filipović, Nenad; Nunić, Jana; Filipič, Metka; Uskoković, Dragan

(Elsevier, 2014)

TY  - JOUR
AU  - Stevanović, Magdalena
AU  - Bračko, Ines
AU  - Milenković, Marina
AU  - Filipović, Nenad
AU  - Nunić, Jana
AU  - Filipič, Metka
AU  - Uskoković, Dragan
PY  - 2014
UR  - http://dais.sanu.ac.rs/123456789/574
AB  - A water-soluble antioxidant (ascorbic acid, vitamin C) was encapsulated together with poly(l-glutamic acid)-capped silver nanoparticles (AgNpPGA) within a poly(lactide-co-glycolide) (PLGA) polymeric matrix and their synergistic effects were studied. The PLGA/AgNpPGA/ascorbic acid particles synthesized by a physicochemical method with solvent/non-solvent systems are spherical, have a mean diameter of 775 nm and a narrow size distribution with a polydispersity index of 0.158. The encapsulation efficiency of AgNpPGA/ascorbic acid within PLGA was determined to be >90%. The entire amount of encapsulated ascorbic acid was released in 68 days, and the entire amount of AgNpPGAs was released in 87 days of degradation. The influence of PLGA/AgNpPGA/ascorbic acid on cell viability, generation of reactive oxygen species (ROS) in HepG2 cells, as well as antimicrobial activity against seven different pathogens was investigated. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay indicated good biocompatibility of these PLGA/AgNpPGA/ascorbic acid particles. We measured the kinetics of ROS formation in HepG2 cells by a DCFH-DA assay, and found that PLGA/AgNpPGA/ascorbic acid caused a significant decrease in DCF fluorescence intensity, which was 2-fold lower than that in control cells after a 5 h exposure. This indicates that the PLGA/AgNpPGA/ascorbic acid microspheres either act as scavengers of intracellular ROS and/or reduce their formation. Also, the results of antimicrobial activity of PLGA/AgNpPGA/ascorbic acid obtained by the broth microdilution method showed superior and extended activity of these particles. The samples were characterized using Fourier transform infrared spectroscopy, field-emission scanning electron microscopy, transmission electron microscopy, zeta potential and particle size analysis. This paper presents a new approach to the treatment of infection that at the same time offers a very pronounced antioxidant effect.
PB  - Elsevier
T2  - Acta Biomaterialia
T1  - Multifunctional PLGA particles containing poly(l-glutamic acid)-capped silver nanoparticles and ascorbic acid with simultaneous antioxidative and prolonged antimicrobial activity
SP  - 151
EP  - 162
VL  - 10
IS  - 1
DO  - 10.1016/j.actbio.2013.08.030
ER  - 
@article{
author = "Stevanović, Magdalena and Bračko, Ines and Milenković, Marina and Filipović, Nenad and Nunić, Jana and Filipič, Metka and Uskoković, Dragan",
year = "2014",
url = "http://dais.sanu.ac.rs/123456789/574",
abstract = "A water-soluble antioxidant (ascorbic acid, vitamin C) was encapsulated together with poly(l-glutamic acid)-capped silver nanoparticles (AgNpPGA) within a poly(lactide-co-glycolide) (PLGA) polymeric matrix and their synergistic effects were studied. The PLGA/AgNpPGA/ascorbic acid particles synthesized by a physicochemical method with solvent/non-solvent systems are spherical, have a mean diameter of 775 nm and a narrow size distribution with a polydispersity index of 0.158. The encapsulation efficiency of AgNpPGA/ascorbic acid within PLGA was determined to be >90%. The entire amount of encapsulated ascorbic acid was released in 68 days, and the entire amount of AgNpPGAs was released in 87 days of degradation. The influence of PLGA/AgNpPGA/ascorbic acid on cell viability, generation of reactive oxygen species (ROS) in HepG2 cells, as well as antimicrobial activity against seven different pathogens was investigated. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay indicated good biocompatibility of these PLGA/AgNpPGA/ascorbic acid particles. We measured the kinetics of ROS formation in HepG2 cells by a DCFH-DA assay, and found that PLGA/AgNpPGA/ascorbic acid caused a significant decrease in DCF fluorescence intensity, which was 2-fold lower than that in control cells after a 5 h exposure. This indicates that the PLGA/AgNpPGA/ascorbic acid microspheres either act as scavengers of intracellular ROS and/or reduce their formation. Also, the results of antimicrobial activity of PLGA/AgNpPGA/ascorbic acid obtained by the broth microdilution method showed superior and extended activity of these particles. The samples were characterized using Fourier transform infrared spectroscopy, field-emission scanning electron microscopy, transmission electron microscopy, zeta potential and particle size analysis. This paper presents a new approach to the treatment of infection that at the same time offers a very pronounced antioxidant effect.",
publisher = "Elsevier",
journal = "Acta Biomaterialia",
title = "Multifunctional PLGA particles containing poly(l-glutamic acid)-capped silver nanoparticles and ascorbic acid with simultaneous antioxidative and prolonged antimicrobial activity",
pages = "151-162",
volume = "10",
number = "1",
doi = "10.1016/j.actbio.2013.08.030"
}
Stevanović, M., Bračko, I., Milenković, M., Filipović, N., Nunić, J., Filipič, M.,& Uskoković, D. (2014). Multifunctional PLGA particles containing poly(l-glutamic acid)-capped silver nanoparticles and ascorbic acid with simultaneous antioxidative and prolonged antimicrobial activity.
Acta BiomaterialiaElsevier., 10(1), 151-162.
https://doi.org/10.1016/j.actbio.2013.08.030
Stevanović M, Bračko I, Milenković M, Filipović N, Nunić J, Filipič M, Uskoković D. Multifunctional PLGA particles containing poly(l-glutamic acid)-capped silver nanoparticles and ascorbic acid with simultaneous antioxidative and prolonged antimicrobial activity. Acta Biomaterialia. 2014;10(1):151-162
Stevanović Magdalena, Bračko Ines, Milenković Marina, Filipović Nenad, Nunić Jana, Filipič Metka, Uskoković Dragan, "Multifunctional PLGA particles containing poly(l-glutamic acid)-capped silver nanoparticles and ascorbic acid with simultaneous antioxidative and prolonged antimicrobial activity" 10, no. 1 (2014):151-162,
https://doi.org/10.1016/j.actbio.2013.08.030 .
56
58
60

Poly(lactide-co-glycolide)/silver nanoparticles: Synthesis, characterization, antimicrobial activity, cytotoxicity assessment and ROS-inducing potential

Stevanović, Magdalena; Škapin, Srečo Davor; Bračko, Ines; Milenković, Marina; Petković, Jana; Filipič, Metka; Uskoković, Dragan

(Elsevier, 2012)

TY  - JOUR
AU  - Stevanović, Magdalena
AU  - Škapin, Srečo Davor
AU  - Bračko, Ines
AU  - Milenković, Marina
AU  - Petković, Jana
AU  - Filipič, Metka
AU  - Uskoković, Dragan
PY  - 2012
UR  - http://dais.sanu.ac.rs/123456789/488
AB  - Silver nanoparticles (AgNps) were prepared by modified chemical reduction with poly (α, γ, l-glutamic acid) (PGA) as capping agent. These Ag/PGA nanoparticles (AgNpPGAs) were highly stable over long periods of time without signs of precipitation. In addition to obtaining stable AgNpPGAs, a further aim was to examine their encapsulation in the poly(L-lactide-co-glycolide) (PLGA) polymer matrix. The current interest of polymer-AgNps in biomedical applications is because a versatile system must have antimicrobial activity upon target contact, without the release of toxic biocides. The synthesis of these PLGA/AgNpPGAs used physicochemical methods with solvent/non-solvent systems. Degradation of these PLGA/AgNpPGAs and the release rate of their AgNPs were studied in physiological solution over three months. The antimicrobial activity of the samples was investigated towards six laboratory control strains from the American Type Culture Collection (ATCC) and one clinical isolate methicillin-resistant Staphylococcus aureus strain by the broth microdilution method and the results showed superior and extended activity of PLGA/AgNpPGAs. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay indicated good biocompatibility of these PLGA/AgNpPGAs. The formation of intracellular reactive oxygen species was measured spectrophotometrically using a fluorescent probe, which showed that these PLGA/AgNpPGAs are not inducers of such species. The samples were characterized by UV–VIS spectrometry, X-ray diffraction, zeta potential measurements, field-emission scanning electron microscopy, and transmission electron microscopy.
PB  - Elsevier
T2  - Polymer
T1  - Poly(lactide-co-glycolide)/silver nanoparticles: Synthesis, characterization, antimicrobial activity, cytotoxicity assessment and ROS-inducing potential
SP  - 2818
EP  - 2828
VL  - 53
IS  - 14
DO  - 10.1016/j.polymer.2012.04.057
ER  - 
@article{
author = "Stevanović, Magdalena and Škapin, Srečo Davor and Bračko, Ines and Milenković, Marina and Petković, Jana and Filipič, Metka and Uskoković, Dragan",
year = "2012",
url = "http://dais.sanu.ac.rs/123456789/488",
abstract = "Silver nanoparticles (AgNps) were prepared by modified chemical reduction with poly (α, γ, l-glutamic acid) (PGA) as capping agent. These Ag/PGA nanoparticles (AgNpPGAs) were highly stable over long periods of time without signs of precipitation. In addition to obtaining stable AgNpPGAs, a further aim was to examine their encapsulation in the poly(L-lactide-co-glycolide) (PLGA) polymer matrix. The current interest of polymer-AgNps in biomedical applications is because a versatile system must have antimicrobial activity upon target contact, without the release of toxic biocides. The synthesis of these PLGA/AgNpPGAs used physicochemical methods with solvent/non-solvent systems. Degradation of these PLGA/AgNpPGAs and the release rate of their AgNPs were studied in physiological solution over three months. The antimicrobial activity of the samples was investigated towards six laboratory control strains from the American Type Culture Collection (ATCC) and one clinical isolate methicillin-resistant Staphylococcus aureus strain by the broth microdilution method and the results showed superior and extended activity of PLGA/AgNpPGAs. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay indicated good biocompatibility of these PLGA/AgNpPGAs. The formation of intracellular reactive oxygen species was measured spectrophotometrically using a fluorescent probe, which showed that these PLGA/AgNpPGAs are not inducers of such species. The samples were characterized by UV–VIS spectrometry, X-ray diffraction, zeta potential measurements, field-emission scanning electron microscopy, and transmission electron microscopy.",
publisher = "Elsevier",
journal = "Polymer",
title = "Poly(lactide-co-glycolide)/silver nanoparticles: Synthesis, characterization, antimicrobial activity, cytotoxicity assessment and ROS-inducing potential",
pages = "2818-2828",
volume = "53",
number = "14",
doi = "10.1016/j.polymer.2012.04.057"
}
Stevanović, M., Škapin, S. D., Bračko, I., Milenković, M., Petković, J., Filipič, M.,& Uskoković, D. (2012). Poly(lactide-co-glycolide)/silver nanoparticles: Synthesis, characterization, antimicrobial activity, cytotoxicity assessment and ROS-inducing potential.
PolymerElsevier., 53(14), 2818-2828.
https://doi.org/10.1016/j.polymer.2012.04.057
Stevanović M, Škapin SD, Bračko I, Milenković M, Petković J, Filipič M, Uskoković D. Poly(lactide-co-glycolide)/silver nanoparticles: Synthesis, characterization, antimicrobial activity, cytotoxicity assessment and ROS-inducing potential. Polymer. 2012;53(14):2818-2828
Stevanović Magdalena, Škapin Srečo Davor, Bračko Ines, Milenković Marina, Petković Jana, Filipič Metka, Uskoković Dragan, "Poly(lactide-co-glycolide)/silver nanoparticles: Synthesis, characterization, antimicrobial activity, cytotoxicity assessment and ROS-inducing potential" 53, no. 14 (2012):2818-2828,
https://doi.org/10.1016/j.polymer.2012.04.057 .
54
54
57

Enhanced antimicrobial efficacy by co-delivery of PGA capped silver nanoparticles and ascorbic acid with poly(lactide-co-glycolide)

Stevanović, Magdalena; Milenković, Marina; Petković, Jana; Filipič, Metka; Uskoković, Dragan

(Belgrade : Materials Research Society of Serbia, 2012)

TY  - CONF
AU  - Stevanović, Magdalena
AU  - Milenković, Marina
AU  - Petković, Jana
AU  - Filipič, Metka
AU  - Uskoković, Dragan
PY  - 2012
UR  - http://dais.sanu.ac.rs/123456789/457
AB  - Silver nanoparticles (AgNps) were prepared by modified chemical reduction with poly (Lglutamic acid) (PGA) as capping agent. These Ag/PGA nanoparticles (AgNpPGAs) were highly stable over the long periods of time without signs of precipitation. Ascorbic acid, a water soluble antioxidant, was encapsulated together with these stable AgNpPGAs within poly(DL-lactide-coglycolide) polymeric matrix and their synergistic antimicrobial effect was studied. The antimicrobial activity of the samples was investigated towards six laboratory control strains from the American Type Culture Collection (ATCC) and one clinical isolate methicillin-resistant Staphylococcus aureus strain by the broth microdilution method. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay indicated good biocompatibility of the samples. To establish the influence of PLGA/AgNpPGA/ascorbic acid nanoparticles on intracellular ROS formation, we measured the kinetics of their formation in HepG2 cells by DCFH-DA assay. The samples were characterized by UV-VIS spectrometry, field-emission scanning electron microscopy, and transmission electron microscopy.
PB  - Belgrade : Materials Research Society of Serbia
C3  - The Fourteenth Annual Conference YUCOMAT 2012: Programme and the Book of Abstracts
T1  - Enhanced antimicrobial efficacy by co-delivery of PGA capped silver nanoparticles and ascorbic acid with poly(lactide-co-glycolide)
SP  - 124
EP  - 124
ER  - 
@conference{
author = "Stevanović, Magdalena and Milenković, Marina and Petković, Jana and Filipič, Metka and Uskoković, Dragan",
year = "2012",
url = "http://dais.sanu.ac.rs/123456789/457",
abstract = "Silver nanoparticles (AgNps) were prepared by modified chemical reduction with poly (Lglutamic acid) (PGA) as capping agent. These Ag/PGA nanoparticles (AgNpPGAs) were highly stable over the long periods of time without signs of precipitation. Ascorbic acid, a water soluble antioxidant, was encapsulated together with these stable AgNpPGAs within poly(DL-lactide-coglycolide) polymeric matrix and their synergistic antimicrobial effect was studied. The antimicrobial activity of the samples was investigated towards six laboratory control strains from the American Type Culture Collection (ATCC) and one clinical isolate methicillin-resistant Staphylococcus aureus strain by the broth microdilution method. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay indicated good biocompatibility of the samples. To establish the influence of PLGA/AgNpPGA/ascorbic acid nanoparticles on intracellular ROS formation, we measured the kinetics of their formation in HepG2 cells by DCFH-DA assay. The samples were characterized by UV-VIS spectrometry, field-emission scanning electron microscopy, and transmission electron microscopy.",
publisher = "Belgrade : Materials Research Society of Serbia",
journal = "The Fourteenth Annual Conference YUCOMAT 2012: Programme and the Book of Abstracts",
title = "Enhanced antimicrobial efficacy by co-delivery of PGA capped silver nanoparticles and ascorbic acid with poly(lactide-co-glycolide)",
pages = "124-124"
}
Stevanović, M., Milenković, M., Petković, J., Filipič, M.,& Uskoković, D. (2012). Enhanced antimicrobial efficacy by co-delivery of PGA capped silver nanoparticles and ascorbic acid with poly(lactide-co-glycolide).
The Fourteenth Annual Conference YUCOMAT 2012: Programme and the Book of AbstractsBelgrade : Materials Research Society of Serbia., 124-124.
Stevanović M, Milenković M, Petković J, Filipič M, Uskoković D. Enhanced antimicrobial efficacy by co-delivery of PGA capped silver nanoparticles and ascorbic acid with poly(lactide-co-glycolide). The Fourteenth Annual Conference YUCOMAT 2012: Programme and the Book of Abstracts. 2012;:124-124
Stevanović Magdalena, Milenković Marina, Petković Jana, Filipič Metka, Uskoković Dragan, "Enhanced antimicrobial efficacy by co-delivery of PGA capped silver nanoparticles and ascorbic acid with poly(lactide-co-glycolide)" (2012):124-124