Radmilović, Nadežda

Link to this page

Authority KeyName Variants
orcid::0000-0002-2806-2997
  • Radmilović, Nadežda (10)

Author's Bibliography

Effect of Bi3+co-doping on the up-converting and photocatalytic properties of SrGd2O4:Yb3+/Ho3+ phase

Stamenković, Tijana; Dinić, Ivana; Vuković, Marina; Radmilović, Nadežda; Barudžija, Tanja; Tomić, Miloš; Mančić, Lidija; Lojpur, Vesna

(Elsevier, 2023)

TY  - JOUR
AU  - Stamenković, Tijana
AU  - Dinić, Ivana
AU  - Vuković, Marina
AU  - Radmilović, Nadežda
AU  - Barudžija, Tanja
AU  - Tomić, Miloš
AU  - Mančić, Lidija
AU  - Lojpur, Vesna
PY  - 2023
UR  - https://dais.sanu.ac.rs/123456789/15138
AB  - In this investigation, samples of strontium-gadolinium-oxide (SrGd2O4) doped with different Yb3+ (2, 4 and 6 at%) and constant Ho3+ (1 at%) contents and co-doped with Bi3+ (2 at%) were prepared using the glycine-assisted sol–gel method. The pure orthorhombic SrGd2O4 phase, space group Pnma, was revealed using X-ray diffraction in all samples. Transmission electron microscopy discovered agglomerated clusters of spherical particles measuring approximately 150 nm in size. The inclusion of Bi3+ ions into the structure influenced the morphology since the formation of larger grains was observed, with sizes reaching up to ∼1.7 μm. The uniform distribution of all constitutive elements was confirmed by energy-dispersive X-ray spectroscopy. In all samples, up-conversion emission spectra revealed two dominant green (540 and 550 nm), red (671 nm), and infrared (758 nm) emission lines, due to the 5F4,5S2→5I8, 5F5→5I8, and 5F4,5S2 → 5I7 transitions, respectively. The sample co-doped with Bi3+ showed the most intense photoluminescent emissions, shorter luminescence decay, and the highest quantum yield. Additionally, a significant decrease in the energy band gap value was detected using diffuse reflectance spectroscopy for this sample. Methylene blue was used as a test pollutant to investigate its photocatalytic efficiency under simulated sunlight irradiation. The results show that Bi3+ co-doping deteriorates the photocatalytic efficiency of the SrGd2O4:Yb3+/Ho3+ phase by reducing hydroxyl radical formation.
PB  - Elsevier
T2  - Ceramics International
T1  - Effect of Bi3+co-doping on the up-converting and photocatalytic properties of SrGd2O4:Yb3+/Ho3+ phase
SP  - 37758
EP  - 37767
VL  - 49
IS  - 23
DO  - 10.1016/j.ceramint.2023.09.103
UR  - https://hdl.handle.net/21.15107/rcub_dais_15138
ER  - 
@article{
author = "Stamenković, Tijana and Dinić, Ivana and Vuković, Marina and Radmilović, Nadežda and Barudžija, Tanja and Tomić, Miloš and Mančić, Lidija and Lojpur, Vesna",
year = "2023",
abstract = "In this investigation, samples of strontium-gadolinium-oxide (SrGd2O4) doped with different Yb3+ (2, 4 and 6 at%) and constant Ho3+ (1 at%) contents and co-doped with Bi3+ (2 at%) were prepared using the glycine-assisted sol–gel method. The pure orthorhombic SrGd2O4 phase, space group Pnma, was revealed using X-ray diffraction in all samples. Transmission electron microscopy discovered agglomerated clusters of spherical particles measuring approximately 150 nm in size. The inclusion of Bi3+ ions into the structure influenced the morphology since the formation of larger grains was observed, with sizes reaching up to ∼1.7 μm. The uniform distribution of all constitutive elements was confirmed by energy-dispersive X-ray spectroscopy. In all samples, up-conversion emission spectra revealed two dominant green (540 and 550 nm), red (671 nm), and infrared (758 nm) emission lines, due to the 5F4,5S2→5I8, 5F5→5I8, and 5F4,5S2 → 5I7 transitions, respectively. The sample co-doped with Bi3+ showed the most intense photoluminescent emissions, shorter luminescence decay, and the highest quantum yield. Additionally, a significant decrease in the energy band gap value was detected using diffuse reflectance spectroscopy for this sample. Methylene blue was used as a test pollutant to investigate its photocatalytic efficiency under simulated sunlight irradiation. The results show that Bi3+ co-doping deteriorates the photocatalytic efficiency of the SrGd2O4:Yb3+/Ho3+ phase by reducing hydroxyl radical formation.",
publisher = "Elsevier",
journal = "Ceramics International",
title = "Effect of Bi3+co-doping on the up-converting and photocatalytic properties of SrGd2O4:Yb3+/Ho3+ phase",
pages = "37758-37767",
volume = "49",
number = "23",
doi = "10.1016/j.ceramint.2023.09.103",
url = "https://hdl.handle.net/21.15107/rcub_dais_15138"
}
Stamenković, T., Dinić, I., Vuković, M., Radmilović, N., Barudžija, T., Tomić, M., Mančić, L.,& Lojpur, V.. (2023). Effect of Bi3+co-doping on the up-converting and photocatalytic properties of SrGd2O4:Yb3+/Ho3+ phase. in Ceramics International
Elsevier., 49(23), 37758-37767.
https://doi.org/10.1016/j.ceramint.2023.09.103
https://hdl.handle.net/21.15107/rcub_dais_15138
Stamenković T, Dinić I, Vuković M, Radmilović N, Barudžija T, Tomić M, Mančić L, Lojpur V. Effect of Bi3+co-doping on the up-converting and photocatalytic properties of SrGd2O4:Yb3+/Ho3+ phase. in Ceramics International. 2023;49(23):37758-37767.
doi:10.1016/j.ceramint.2023.09.103
https://hdl.handle.net/21.15107/rcub_dais_15138 .
Stamenković, Tijana, Dinić, Ivana, Vuković, Marina, Radmilović, Nadežda, Barudžija, Tanja, Tomić, Miloš, Mančić, Lidija, Lojpur, Vesna, "Effect of Bi3+co-doping on the up-converting and photocatalytic properties of SrGd2O4:Yb3+/Ho3+ phase" in Ceramics International, 49, no. 23 (2023):37758-37767,
https://doi.org/10.1016/j.ceramint.2023.09.103 .,
https://hdl.handle.net/21.15107/rcub_dais_15138 .

Quantum yield and energy transfer in up-conversion SrGd2O4:Yb, Er nanoparticles obtained via sol-gel assisted combustion

Stamenković, Tijana; Radmilović, Nadežda; Prekajski-Đorđević, Marija D.; Rabasović, Mihailo; Dinić, Ivana; Tomić, Miloš; Lojpur, Vesna; Mančić, Lidija

(2023)

TY  - JOUR
AU  - Stamenković, Tijana
AU  - Radmilović, Nadežda
AU  - Prekajski-Đorđević, Marija D.
AU  - Rabasović, Mihailo
AU  - Dinić, Ivana
AU  - Tomić, Miloš
AU  - Lojpur, Vesna
AU  - Mančić, Lidija
PY  - 2023
UR  - https://dais.sanu.ac.rs/123456789/13491
AB  - Nanopowders of up-conversion SrGd2O4 orthorhombic (Pnma) phase co-doped with different Yb3+ (1, 2.5 and 5 at%) and constant Er3+ (0.5 at%) ions were successfully prepared via sol-gel assisted combustion. Rietveld refinement indicated unit cell lattice parameters increase with Yb3+ and Er3+ ions doping. Scanning transmission electron microscopy with corresponding energy-dispersive X-ray spectroscopy revealed that obtained powders are composed of agglomerated nanoparticles that have a uniform distribution of all constituting elements. Photoluminescence measurements implied intensification of the up-conversion (UC) emission in the visible part of spectrum with the increase of Yb3+ content, which is followed by a significant change in the green to red ratio. Two-photon UC processes are established as a result of Er3+ f-f electronic transitions: green emission at 523 and 551 nm (2H11/2, 4S3/2 → 4I15/2) as well as a red emission at 661 nm (4F9/2 → 4I15/2). The highest value of absolute quantum yield of 0.055% is determined for SrGd2O4 nanoparticles doped with 0.5 at% of Er3+ and co-doped with 5 at% of Yb3+ (λexc = 976 nm, power density 200 W/cm2).
T2  - Journal of Luminescence
T1  - Quantum yield and energy transfer in up-conversion SrGd2O4:Yb, Er nanoparticles obtained via sol-gel assisted combustion
SP  - 119491
VL  - 253
DO  - 10.1016/j.jlumin.2022.119491
UR  - https://hdl.handle.net/21.15107/rcub_dais_13491
ER  - 
@article{
author = "Stamenković, Tijana and Radmilović, Nadežda and Prekajski-Đorđević, Marija D. and Rabasović, Mihailo and Dinić, Ivana and Tomić, Miloš and Lojpur, Vesna and Mančić, Lidija",
year = "2023",
abstract = "Nanopowders of up-conversion SrGd2O4 orthorhombic (Pnma) phase co-doped with different Yb3+ (1, 2.5 and 5 at%) and constant Er3+ (0.5 at%) ions were successfully prepared via sol-gel assisted combustion. Rietveld refinement indicated unit cell lattice parameters increase with Yb3+ and Er3+ ions doping. Scanning transmission electron microscopy with corresponding energy-dispersive X-ray spectroscopy revealed that obtained powders are composed of agglomerated nanoparticles that have a uniform distribution of all constituting elements. Photoluminescence measurements implied intensification of the up-conversion (UC) emission in the visible part of spectrum with the increase of Yb3+ content, which is followed by a significant change in the green to red ratio. Two-photon UC processes are established as a result of Er3+ f-f electronic transitions: green emission at 523 and 551 nm (2H11/2, 4S3/2 → 4I15/2) as well as a red emission at 661 nm (4F9/2 → 4I15/2). The highest value of absolute quantum yield of 0.055% is determined for SrGd2O4 nanoparticles doped with 0.5 at% of Er3+ and co-doped with 5 at% of Yb3+ (λexc = 976 nm, power density 200 W/cm2).",
journal = "Journal of Luminescence",
title = "Quantum yield and energy transfer in up-conversion SrGd2O4:Yb, Er nanoparticles obtained via sol-gel assisted combustion",
pages = "119491",
volume = "253",
doi = "10.1016/j.jlumin.2022.119491",
url = "https://hdl.handle.net/21.15107/rcub_dais_13491"
}
Stamenković, T., Radmilović, N., Prekajski-Đorđević, M. D., Rabasović, M., Dinić, I., Tomić, M., Lojpur, V.,& Mančić, L.. (2023). Quantum yield and energy transfer in up-conversion SrGd2O4:Yb, Er nanoparticles obtained via sol-gel assisted combustion. in Journal of Luminescence, 253, 119491.
https://doi.org/10.1016/j.jlumin.2022.119491
https://hdl.handle.net/21.15107/rcub_dais_13491
Stamenković T, Radmilović N, Prekajski-Đorđević MD, Rabasović M, Dinić I, Tomić M, Lojpur V, Mančić L. Quantum yield and energy transfer in up-conversion SrGd2O4:Yb, Er nanoparticles obtained via sol-gel assisted combustion. in Journal of Luminescence. 2023;253:119491.
doi:10.1016/j.jlumin.2022.119491
https://hdl.handle.net/21.15107/rcub_dais_13491 .
Stamenković, Tijana, Radmilović, Nadežda, Prekajski-Đorđević, Marija D., Rabasović, Mihailo, Dinić, Ivana, Tomić, Miloš, Lojpur, Vesna, Mančić, Lidija, "Quantum yield and energy transfer in up-conversion SrGd2O4:Yb, Er nanoparticles obtained via sol-gel assisted combustion" in Journal of Luminescence, 253 (2023):119491,
https://doi.org/10.1016/j.jlumin.2022.119491 .,
https://hdl.handle.net/21.15107/rcub_dais_13491 .
6
4

Enhancement of ZnO@RuO2 bifunctional photo-electro catalytic activity toward water splitting

Aleksić, Katarina; Stojković Simatović, Ivana; Stanković, Ana; Veselinović, Ljiljana; Stojadinović, Stevan; Rac, Vladislav; Radmilović, Nadežda; Rajić, Vladimir; Škapin, Srečo Davor; Mančić, Lidija; Marković, Smilja

(Frontiers Media SA, 2023)

TY  - JOUR
AU  - Aleksić, Katarina
AU  - Stojković Simatović, Ivana
AU  - Stanković, Ana
AU  - Veselinović, Ljiljana
AU  - Stojadinović, Stevan
AU  - Rac, Vladislav
AU  - Radmilović, Nadežda
AU  - Rajić, Vladimir
AU  - Škapin, Srečo Davor
AU  - Mančić, Lidija
AU  - Marković, Smilja
PY  - 2023
UR  - https://dais.sanu.ac.rs/123456789/14554
AB  - Catalytic materials are the greatest challenge for the commercial application of water electrolysis (WEs) and fuel cells (FCs) as clean energy technologies. There is a need to find an alternative to expensive and unavailable platinum group metal (PGM) catalysts. This study aimed to reduce the cost of PGM materials by replacing Ru with RuO2 and lowering the amount of RuO2 by adding abundant and multifunctional ZnO. A ZnO@RuO2 composite in a 10:1 molar ratio was synthesized by microwave processing of a precipitate as a green, low-cost, and fast method, and then annealed at 300°C and 600°C to improve the catalytic properties. The physicochemical properties of the ZnO@RuO2 composites were investigated by X-ray powder diffraction (XRD), Raman and Fourier transform infrared (FTIR) spectroscopy, field emission scanning electron microscopy (FESEM), UV-Vis diffuse reflectance spectroscopy (DRS), and photoluminescence (PL) spectroscopy. The electrochemical activity of the samples was investigated by linear sweep voltammetry in acidic and alkaline electrolytes. We observed good bifunctional catalytic activity of the ZnO@RuO2 composites toward HER and OER in both electrolytes. The improved bifunctional catalytic activity of the ZnO@RuO2 composite by annealing was discussed and attributed to the reduced number of bulk oxygen vacancies and the increased number of established heterojunctions.
PB  - Frontiers Media SA
T2  - Frontiers in Chemistry
T1  - Enhancement of ZnO@RuO2 bifunctional photo-electro catalytic activity toward water splitting
VL  - 11
DO  - 10.3389/fchem.2023.1173910
UR  - https://hdl.handle.net/21.15107/rcub_dais_14554
ER  - 
@article{
author = "Aleksić, Katarina and Stojković Simatović, Ivana and Stanković, Ana and Veselinović, Ljiljana and Stojadinović, Stevan and Rac, Vladislav and Radmilović, Nadežda and Rajić, Vladimir and Škapin, Srečo Davor and Mančić, Lidija and Marković, Smilja",
year = "2023",
abstract = "Catalytic materials are the greatest challenge for the commercial application of water electrolysis (WEs) and fuel cells (FCs) as clean energy technologies. There is a need to find an alternative to expensive and unavailable platinum group metal (PGM) catalysts. This study aimed to reduce the cost of PGM materials by replacing Ru with RuO2 and lowering the amount of RuO2 by adding abundant and multifunctional ZnO. A ZnO@RuO2 composite in a 10:1 molar ratio was synthesized by microwave processing of a precipitate as a green, low-cost, and fast method, and then annealed at 300°C and 600°C to improve the catalytic properties. The physicochemical properties of the ZnO@RuO2 composites were investigated by X-ray powder diffraction (XRD), Raman and Fourier transform infrared (FTIR) spectroscopy, field emission scanning electron microscopy (FESEM), UV-Vis diffuse reflectance spectroscopy (DRS), and photoluminescence (PL) spectroscopy. The electrochemical activity of the samples was investigated by linear sweep voltammetry in acidic and alkaline electrolytes. We observed good bifunctional catalytic activity of the ZnO@RuO2 composites toward HER and OER in both electrolytes. The improved bifunctional catalytic activity of the ZnO@RuO2 composite by annealing was discussed and attributed to the reduced number of bulk oxygen vacancies and the increased number of established heterojunctions.",
publisher = "Frontiers Media SA",
journal = "Frontiers in Chemistry",
title = "Enhancement of ZnO@RuO2 bifunctional photo-electro catalytic activity toward water splitting",
volume = "11",
doi = "10.3389/fchem.2023.1173910",
url = "https://hdl.handle.net/21.15107/rcub_dais_14554"
}
Aleksić, K., Stojković Simatović, I., Stanković, A., Veselinović, L., Stojadinović, S., Rac, V., Radmilović, N., Rajić, V., Škapin, S. D., Mančić, L.,& Marković, S.. (2023). Enhancement of ZnO@RuO2 bifunctional photo-electro catalytic activity toward water splitting. in Frontiers in Chemistry
Frontiers Media SA., 11.
https://doi.org/10.3389/fchem.2023.1173910
https://hdl.handle.net/21.15107/rcub_dais_14554
Aleksić K, Stojković Simatović I, Stanković A, Veselinović L, Stojadinović S, Rac V, Radmilović N, Rajić V, Škapin SD, Mančić L, Marković S. Enhancement of ZnO@RuO2 bifunctional photo-electro catalytic activity toward water splitting. in Frontiers in Chemistry. 2023;11.
doi:10.3389/fchem.2023.1173910
https://hdl.handle.net/21.15107/rcub_dais_14554 .
Aleksić, Katarina, Stojković Simatović, Ivana, Stanković, Ana, Veselinović, Ljiljana, Stojadinović, Stevan, Rac, Vladislav, Radmilović, Nadežda, Rajić, Vladimir, Škapin, Srečo Davor, Mančić, Lidija, Marković, Smilja, "Enhancement of ZnO@RuO2 bifunctional photo-electro catalytic activity toward water splitting" in Frontiers in Chemistry, 11 (2023),
https://doi.org/10.3389/fchem.2023.1173910 .,
https://hdl.handle.net/21.15107/rcub_dais_14554 .
1
2
2

Enhancement of up-conversion luminescent characteristics of Yb3+/Ho3+ co-doped Bi3+ based SrGd2O4 nanoparticles

Stamenković, Tijana; Radmilović, Nadežda; Dinić, Ivana; Vuković, Marina; Barudžija, Tanja; Čebela, Maria; Lojpur, Vesna

(Belgrade : Institut za multidisciplinarna istraživanja, 2023)

TY  - CONF
AU  - Stamenković, Tijana
AU  - Radmilović, Nadežda
AU  - Dinić, Ivana
AU  - Vuković, Marina
AU  - Barudžija, Tanja
AU  - Čebela, Maria
AU  - Lojpur, Vesna
PY  - 2023
UR  - https://dais.sanu.ac.rs/123456789/14663
AB  - In this investigation, samples of SrGd2O4 doped with different Yb3+ (2, 4, 6 at.%) ions and constant Ho3+ (1 at.%) and Bi3+ (2 at.%) concentrations were prepared. The sol-gel method with glycine as a fuel and citric acid as a chelator was chosen for sample preparation. All samples were heated in the furnace for 1.5 h at 500 °C and then thermally treated for 2.5 h at 1000 °C. The pure orthorhombic lattice of SrGd2O4, space group Pnma, was revealed by X-ray diffraction (XRD) (JCPDS Card No.:01-072-6387). Transmission electron microscopy (TEM) discovered agglomerated clusters of spherical particles measuring around 150 nm in size. Including Bi3+ ions into the structure influenced the morphology of the sample showing fine packing of pyramidal-shaped nanoparticles. The uniform distribution of constitutive elements in the samples was confirmed by energy dispersive spectroscopy (EDS). Up-conversion emission properties were evaluated from photoluminescent emission spectra and intensity dependence on excitation power after excitation at 976 nm. Dominant green (550 nm), red (671 nm), and infrared (758 nm) 5F4, 5S2 → 5I8, 5F5 → 5I8, 5F4, 5S2 → 5I7 transition emissions, respectively, are detected in all samples. The sample co-doped with Bi3+ showed the most intense photoluminescent emission.
PB  - Belgrade : Institut za multidisciplinarna istraživanja
C3  - Programme and the Book of Abstracts / 7th Conference of The Serbian Society for Ceramic Materials, 7CSCS-2023, June 14-16, 2023 Belgrade, Serbia
T1  - Enhancement of up-conversion luminescent characteristics of Yb3+/Ho3+ co-doped Bi3+ based SrGd2O4 nanoparticles
UR  - https://hdl.handle.net/21.15107/rcub_dais_14663
ER  - 
@conference{
author = "Stamenković, Tijana and Radmilović, Nadežda and Dinić, Ivana and Vuković, Marina and Barudžija, Tanja and Čebela, Maria and Lojpur, Vesna",
year = "2023",
abstract = "In this investigation, samples of SrGd2O4 doped with different Yb3+ (2, 4, 6 at.%) ions and constant Ho3+ (1 at.%) and Bi3+ (2 at.%) concentrations were prepared. The sol-gel method with glycine as a fuel and citric acid as a chelator was chosen for sample preparation. All samples were heated in the furnace for 1.5 h at 500 °C and then thermally treated for 2.5 h at 1000 °C. The pure orthorhombic lattice of SrGd2O4, space group Pnma, was revealed by X-ray diffraction (XRD) (JCPDS Card No.:01-072-6387). Transmission electron microscopy (TEM) discovered agglomerated clusters of spherical particles measuring around 150 nm in size. Including Bi3+ ions into the structure influenced the morphology of the sample showing fine packing of pyramidal-shaped nanoparticles. The uniform distribution of constitutive elements in the samples was confirmed by energy dispersive spectroscopy (EDS). Up-conversion emission properties were evaluated from photoluminescent emission spectra and intensity dependence on excitation power after excitation at 976 nm. Dominant green (550 nm), red (671 nm), and infrared (758 nm) 5F4, 5S2 → 5I8, 5F5 → 5I8, 5F4, 5S2 → 5I7 transition emissions, respectively, are detected in all samples. The sample co-doped with Bi3+ showed the most intense photoluminescent emission.",
publisher = "Belgrade : Institut za multidisciplinarna istraživanja",
journal = "Programme and the Book of Abstracts / 7th Conference of The Serbian Society for Ceramic Materials, 7CSCS-2023, June 14-16, 2023 Belgrade, Serbia",
title = "Enhancement of up-conversion luminescent characteristics of Yb3+/Ho3+ co-doped Bi3+ based SrGd2O4 nanoparticles",
url = "https://hdl.handle.net/21.15107/rcub_dais_14663"
}
Stamenković, T., Radmilović, N., Dinić, I., Vuković, M., Barudžija, T., Čebela, M.,& Lojpur, V.. (2023). Enhancement of up-conversion luminescent characteristics of Yb3+/Ho3+ co-doped Bi3+ based SrGd2O4 nanoparticles. in Programme and the Book of Abstracts / 7th Conference of The Serbian Society for Ceramic Materials, 7CSCS-2023, June 14-16, 2023 Belgrade, Serbia
Belgrade : Institut za multidisciplinarna istraživanja..
https://hdl.handle.net/21.15107/rcub_dais_14663
Stamenković T, Radmilović N, Dinić I, Vuković M, Barudžija T, Čebela M, Lojpur V. Enhancement of up-conversion luminescent characteristics of Yb3+/Ho3+ co-doped Bi3+ based SrGd2O4 nanoparticles. in Programme and the Book of Abstracts / 7th Conference of The Serbian Society for Ceramic Materials, 7CSCS-2023, June 14-16, 2023 Belgrade, Serbia. 2023;.
https://hdl.handle.net/21.15107/rcub_dais_14663 .
Stamenković, Tijana, Radmilović, Nadežda, Dinić, Ivana, Vuković, Marina, Barudžija, Tanja, Čebela, Maria, Lojpur, Vesna, "Enhancement of up-conversion luminescent characteristics of Yb3+/Ho3+ co-doped Bi3+ based SrGd2O4 nanoparticles" in Programme and the Book of Abstracts / 7th Conference of The Serbian Society for Ceramic Materials, 7CSCS-2023, June 14-16, 2023 Belgrade, Serbia (2023),
https://hdl.handle.net/21.15107/rcub_dais_14663 .

Quantum yield and energy transfer in up-conversion SrGd2O4:Yb, Er nanoparticles obtained via sol-gel assisted combustion

Stamenković, Tijana; Radmilović, Nadežda; Prekajski Đorđević, Marija D.; Rabasović, Mihailo; Dinić, Ivana; Tomić, Miloš; Lojpur, Vesna; Mančić, Lidija

(2023)

TY  - JOUR
AU  - Stamenković, Tijana
AU  - Radmilović, Nadežda
AU  - Prekajski Đorđević, Marija D.
AU  - Rabasović, Mihailo
AU  - Dinić, Ivana
AU  - Tomić, Miloš
AU  - Lojpur, Vesna
AU  - Mančić, Lidija
PY  - 2023
UR  - https://dais.sanu.ac.rs/123456789/14550
AB  - Nanopowders of up-conversion SrGd2O4 orthorhombic (Pnma) phase co-doped with different Yb3+ (1, 2.5 and 5 at%) and constant Er3+ (0.5 at%) ions were successfully prepared via sol-gel assisted combustion. Rietveld refinement indicated unit cell lattice parameters increase with Yb3+ and Er3+ ions doping. Scanning transmission electron microscopy with corresponding energy-dispersive X-ray spectroscopy revealed that obtained powders are composed of agglomerated nanoparticles that have a uniform distribution of all constituting elements. Photoluminescence measurements implied intensification of the up-conversion (UC) emission in the visible part of spectrum with the increase of Yb3+ content, which is followed by a significant change in the green to red ratio. Two-photon UC processes are established as a result of Er3+ f-f electronic transitions: green emission at 523 and 551 nm (2H11/2, 4S3/2 → 4I15/2) as well as a red emission at 661 nm (4F9/2 → 4I15/2). The highest value of absolute quantum yield of 0.055% is determined for SrGd2O4 nanoparticles doped with 0.5 at% of Er3+ and co-doped with 5 at% of Yb3+ (λexc = 976 nm, power density 200 W/cm2).
T2  - Journal of Luminescence
T1  - Quantum yield and energy transfer in up-conversion SrGd2O4:Yb, Er nanoparticles obtained via sol-gel assisted combustion
SP  - 119491
VL  - 253
DO  - 10.1016/j.jlumin.2022.119491
UR  - https://hdl.handle.net/21.15107/rcub_dais_13491
ER  - 
@article{
author = "Stamenković, Tijana and Radmilović, Nadežda and Prekajski Đorđević, Marija D. and Rabasović, Mihailo and Dinić, Ivana and Tomić, Miloš and Lojpur, Vesna and Mančić, Lidija",
year = "2023",
abstract = "Nanopowders of up-conversion SrGd2O4 orthorhombic (Pnma) phase co-doped with different Yb3+ (1, 2.5 and 5 at%) and constant Er3+ (0.5 at%) ions were successfully prepared via sol-gel assisted combustion. Rietveld refinement indicated unit cell lattice parameters increase with Yb3+ and Er3+ ions doping. Scanning transmission electron microscopy with corresponding energy-dispersive X-ray spectroscopy revealed that obtained powders are composed of agglomerated nanoparticles that have a uniform distribution of all constituting elements. Photoluminescence measurements implied intensification of the up-conversion (UC) emission in the visible part of spectrum with the increase of Yb3+ content, which is followed by a significant change in the green to red ratio. Two-photon UC processes are established as a result of Er3+ f-f electronic transitions: green emission at 523 and 551 nm (2H11/2, 4S3/2 → 4I15/2) as well as a red emission at 661 nm (4F9/2 → 4I15/2). The highest value of absolute quantum yield of 0.055% is determined for SrGd2O4 nanoparticles doped with 0.5 at% of Er3+ and co-doped with 5 at% of Yb3+ (λexc = 976 nm, power density 200 W/cm2).",
journal = "Journal of Luminescence",
title = "Quantum yield and energy transfer in up-conversion SrGd2O4:Yb, Er nanoparticles obtained via sol-gel assisted combustion",
pages = "119491",
volume = "253",
doi = "10.1016/j.jlumin.2022.119491",
url = "https://hdl.handle.net/21.15107/rcub_dais_13491"
}
Stamenković, T., Radmilović, N., Prekajski Đorđević, M. D., Rabasović, M., Dinić, I., Tomić, M., Lojpur, V.,& Mančić, L.. (2023). Quantum yield and energy transfer in up-conversion SrGd2O4:Yb, Er nanoparticles obtained via sol-gel assisted combustion. in Journal of Luminescence, 253, 119491.
https://doi.org/10.1016/j.jlumin.2022.119491
https://hdl.handle.net/21.15107/rcub_dais_13491
Stamenković T, Radmilović N, Prekajski Đorđević MD, Rabasović M, Dinić I, Tomić M, Lojpur V, Mančić L. Quantum yield and energy transfer in up-conversion SrGd2O4:Yb, Er nanoparticles obtained via sol-gel assisted combustion. in Journal of Luminescence. 2023;253:119491.
doi:10.1016/j.jlumin.2022.119491
https://hdl.handle.net/21.15107/rcub_dais_13491 .
Stamenković, Tijana, Radmilović, Nadežda, Prekajski Đorđević, Marija D., Rabasović, Mihailo, Dinić, Ivana, Tomić, Miloš, Lojpur, Vesna, Mančić, Lidija, "Quantum yield and energy transfer in up-conversion SrGd2O4:Yb, Er nanoparticles obtained via sol-gel assisted combustion" in Journal of Luminescence, 253 (2023):119491,
https://doi.org/10.1016/j.jlumin.2022.119491 .,
https://hdl.handle.net/21.15107/rcub_dais_13491 .
6
4

Different Up-conversion Oxides Co-doped with Er3+/Yb3+ Synthesized at High Temperatures

Radmilović, Nadežda; Stamenković, Tijana; Lojpur, Vesna; Dinić, Ivana; Mančić, Lidija

(Belgrade : Serbian Academy of Sciences and Arts, 2022)

TY  - CONF
AU  - Radmilović, Nadežda
AU  - Stamenković, Tijana
AU  - Lojpur, Vesna
AU  - Dinić, Ivana
AU  - Mančić, Lidija
PY  - 2022
UR  - https://dais.sanu.ac.rs/123456789/14276
AB  - The process where long-wavelength excitation radiation is converted into shorter wavelength output radiation is known as photon upconversion (UC). Research of up conversion materials is mainly focused on chloride, bromide, fluoride and oxide compounds doped with Pr3+, Nd3+, Dy3+, Ho3+, Er3+ and Yb3+ as activators [1]. Activators are incorporated in the form of rear earth elements (REE) at a proper position in the host lattice. The unique emission mechanism of REE is associated with the incompletely filled 4f shell which enables large numbers of sharp intra-4f electronic transitions and the existence of abundant, long-living electronic excited states. Oxides possess relatively low phonon energy, high thermal stability and admirable intrinsic luminescence properties compared to chlorides and fluorides as host crystal lattice [2,3]. Various host latticed and dopant metal ions have been implemented for obtaining new UC compounds and in our work we studied Ln2MoO6 (Ln=Y,Gd) and Sr2Gd2O4 doped with various concentrations of Yb3+ at constant Er3+ concentration. Synthesized powders were examined by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and luminescence emission and excitation spectroscopy. XRD analyses showed that SrGd2O4 single phase is obtained at 1100 °C, Gd2MoO6 phase starts to form at 750 °C and the pure phase is obtained at 900 °C, while Y2MoO6 was obtained at the lowest temperature of 600 °C. TEM analyses gave insight into particle size - powders obtained at lowest temperatures (Y2MoO6) have the smallest particle size in the range of ~10 nm (Figure 1a), while SrGd2O4 exhibited grain sizes in 150-200 nm range (Figure 1b). The EDS mapping confirmed presence of Yb3+, uniformly distributed in host lattice. Photoluminescence spectra of SrGd2O4 showed emission peaks that can be assigned to the trivalent Er3+ f-f electronic transitions in the following way: two green emission bands at 523 and 551 nm while the red emission band at 661 nm. Continual intensification of UC with the increase of Yb3+ content indicates that the SrGd2O4 host matrix easily accommodates high dopant concentration without quenching. Photoluminescence properties showed that co-doped Y2MoO6 has double emitting luminescence with green emission band at 546 and 560 nm (2H11/2, 4S3/2 → 4I15/2) and red emission band at 655 nm (4F9/2 → 4I15/2); Gd2MoO6 showed double emitting luminescence with two green emission bands at 525 and 546 nm as well as a red emission band at 657 nm. The green UC emission intensity increased gradually with the increment of Yb3+ ion concentration. In comparison, the optimal doping concentration for the red UC emission was found to be 2.5 at %, which was much higher than that of the green UC emission. While the change of Yb3+ ion concentration does not influence the band position, it led to the change of the emission intensity. Increase of Yb3+ concentration in the host lattice leads to change of the green to red ratio, showing the ability for fine-tuning of the color output. Therefore, these materials can be used in lasers and devices for optical communications because of the infrared-to-visible light conversion.
PB  - Belgrade : Serbian Academy of Sciences and Arts
C3  - Program & Book of Abstracts / Second International Conference ELMINA 2022, Belgrade, Serbia, August 22nd-26th, 2022
T1  - Different Up-conversion Oxides Co-doped with Er3+/Yb3+ Synthesized at High Temperatures
SP  - 194
EP  - 195
UR  - https://hdl.handle.net/21.15107/rcub_dais_14276
ER  - 
@conference{
author = "Radmilović, Nadežda and Stamenković, Tijana and Lojpur, Vesna and Dinić, Ivana and Mančić, Lidija",
year = "2022",
abstract = "The process where long-wavelength excitation radiation is converted into shorter wavelength output radiation is known as photon upconversion (UC). Research of up conversion materials is mainly focused on chloride, bromide, fluoride and oxide compounds doped with Pr3+, Nd3+, Dy3+, Ho3+, Er3+ and Yb3+ as activators [1]. Activators are incorporated in the form of rear earth elements (REE) at a proper position in the host lattice. The unique emission mechanism of REE is associated with the incompletely filled 4f shell which enables large numbers of sharp intra-4f electronic transitions and the existence of abundant, long-living electronic excited states. Oxides possess relatively low phonon energy, high thermal stability and admirable intrinsic luminescence properties compared to chlorides and fluorides as host crystal lattice [2,3]. Various host latticed and dopant metal ions have been implemented for obtaining new UC compounds and in our work we studied Ln2MoO6 (Ln=Y,Gd) and Sr2Gd2O4 doped with various concentrations of Yb3+ at constant Er3+ concentration. Synthesized powders were examined by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and luminescence emission and excitation spectroscopy. XRD analyses showed that SrGd2O4 single phase is obtained at 1100 °C, Gd2MoO6 phase starts to form at 750 °C and the pure phase is obtained at 900 °C, while Y2MoO6 was obtained at the lowest temperature of 600 °C. TEM analyses gave insight into particle size - powders obtained at lowest temperatures (Y2MoO6) have the smallest particle size in the range of ~10 nm (Figure 1a), while SrGd2O4 exhibited grain sizes in 150-200 nm range (Figure 1b). The EDS mapping confirmed presence of Yb3+, uniformly distributed in host lattice. Photoluminescence spectra of SrGd2O4 showed emission peaks that can be assigned to the trivalent Er3+ f-f electronic transitions in the following way: two green emission bands at 523 and 551 nm while the red emission band at 661 nm. Continual intensification of UC with the increase of Yb3+ content indicates that the SrGd2O4 host matrix easily accommodates high dopant concentration without quenching. Photoluminescence properties showed that co-doped Y2MoO6 has double emitting luminescence with green emission band at 546 and 560 nm (2H11/2, 4S3/2 → 4I15/2) and red emission band at 655 nm (4F9/2 → 4I15/2); Gd2MoO6 showed double emitting luminescence with two green emission bands at 525 and 546 nm as well as a red emission band at 657 nm. The green UC emission intensity increased gradually with the increment of Yb3+ ion concentration. In comparison, the optimal doping concentration for the red UC emission was found to be 2.5 at %, which was much higher than that of the green UC emission. While the change of Yb3+ ion concentration does not influence the band position, it led to the change of the emission intensity. Increase of Yb3+ concentration in the host lattice leads to change of the green to red ratio, showing the ability for fine-tuning of the color output. Therefore, these materials can be used in lasers and devices for optical communications because of the infrared-to-visible light conversion.",
publisher = "Belgrade : Serbian Academy of Sciences and Arts",
journal = "Program & Book of Abstracts / Second International Conference ELMINA 2022, Belgrade, Serbia, August 22nd-26th, 2022",
title = "Different Up-conversion Oxides Co-doped with Er3+/Yb3+ Synthesized at High Temperatures",
pages = "194-195",
url = "https://hdl.handle.net/21.15107/rcub_dais_14276"
}
Radmilović, N., Stamenković, T., Lojpur, V., Dinić, I.,& Mančić, L.. (2022). Different Up-conversion Oxides Co-doped with Er3+/Yb3+ Synthesized at High Temperatures. in Program & Book of Abstracts / Second International Conference ELMINA 2022, Belgrade, Serbia, August 22nd-26th, 2022
Belgrade : Serbian Academy of Sciences and Arts., 194-195.
https://hdl.handle.net/21.15107/rcub_dais_14276
Radmilović N, Stamenković T, Lojpur V, Dinić I, Mančić L. Different Up-conversion Oxides Co-doped with Er3+/Yb3+ Synthesized at High Temperatures. in Program & Book of Abstracts / Second International Conference ELMINA 2022, Belgrade, Serbia, August 22nd-26th, 2022. 2022;:194-195.
https://hdl.handle.net/21.15107/rcub_dais_14276 .
Radmilović, Nadežda, Stamenković, Tijana, Lojpur, Vesna, Dinić, Ivana, Mančić, Lidija, "Different Up-conversion Oxides Co-doped with Er3+/Yb3+ Synthesized at High Temperatures" in Program & Book of Abstracts / Second International Conference ELMINA 2022, Belgrade, Serbia, August 22nd-26th, 2022 (2022):194-195,
https://hdl.handle.net/21.15107/rcub_dais_14276 .

Scanning and Transmission Electron Microscopy Investigation of SrGd2O4: Yb,Tm Up-conversion Luminescent Material

Stamenković, Tijana; Dinić, Ivana; Vuković, Marina; Rajić, Vladimir B.; Radmilović, Nadežda; Mančić, Lidija; Lojpur, Vesna

(Belgrade : Serbian Academy of Sciences and Arts, 2022)

TY  - CONF
AU  - Stamenković, Tijana
AU  - Dinić, Ivana
AU  - Vuković, Marina
AU  - Rajić, Vladimir B.
AU  - Radmilović, Nadežda
AU  - Mančić, Lidija
AU  - Lojpur, Vesna
PY  - 2022
UR  - https://dais.sanu.ac.rs/123456789/14275
AB  - In recent decades, inorganic luminescent materials have gathered significant attention due to their great potential for various applications [1-4]. The rare-earth (RE)-based UC luminescent materials are particularly interesting for their exceptional optical, electronic, and magnetic properties. These materials have distinct intra-4f electronic transitions and existence of plenty long-living electronic excited states at different energies, all of which makes electron promotion to high-energy states possible [5, 6]. RE-based UC luminescent materials are composed of a host material (matrix), a sensitizer (absorbs the IC radiation), and an activator (provides emission in the visible and UV part of the spectrum) [7]. So far, the best results have been gained by co-doping the matrix using Yb3+ as sensitizer and Er3+, Ho3+, Tm3+, etc. as activators [8-10]. As for the hosts, rare-earth oxides (ARE2O4; A = Ca, Sr, Ba and RE = trivalent rare-earth ions) have great perspective for producing highly efficient luminescent materials. To the best of our knowledge, SrGd2O4 has been poorly investigated so far, although it has an enormous potential for variety of applications since it is environmentally friendly, has high thermal stability and good chemical durability [11]. In this work, we will present new UC luminescent material composed of SrGd2O4 (host) doped with Yb3+ (sensitizer) and Tm3+ (activator). Control of particle morphology has attracted a great deal of attention from researchers, so efforts for finding appropriate synthesis method are still very current issue. The morphology of the obtained particles is mostly influenced by the synthesis methods used for preparing the material. Luminescent properties mainly interested for us, are in very close connection with the morphology. Here, samples were synthesized using glycine-assisted combustion method, with constant concentration of Tm3+ (1 at%) and different concentration of Yb3+ (2, 4, 6 at%). All samples were heated in the furnace at 500 °C for 1.5h and then thermally treated for 2.5 h at 1000 °C. X-ray diffraction (XRD) was used to see phase crystallinity and purity, and revealed that all peaks are assigned to the pure orthorhombic lattice of SrGd2O4 with space group Pnma (JCPDS Card No.:01-072-6387). Luminescent properties were investigated after recording UC luminescence spectra at room temperature under 980 nm excitation for all samples. The spectra revealed strong blue emission bands which originates from Tm3+ ions 1D2 → 3F4 and 1G4 → 3H6 and weak red emission 1G4 → 3F4 transitions. Morphology and structure were thoroughly studied by field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM), whilst energy dispersive spectroscopy (EDS) was used to provide additional information about constituting elements and their distribution. FE-SEM analysis revealed irregular spherical-like morphology with all samples, and particle size of around 100 nm. TEM examination showed nanostructures organized as a group of agglomerated nanoparticles. EDS verified uniform distribution of all composing elements through every sample [12].
PB  - Belgrade : Serbian Academy of Sciences and Arts
C3  - Program & Book of Abstracts / Second International Conference ELMINA 2022, Belgrade, Serbia, August 22nd-26th, 2022
T1  - Scanning and Transmission Electron Microscopy Investigation of SrGd2O4: Yb,Tm Up-conversion Luminescent Material
SP  - 192
EP  - 193
UR  - https://hdl.handle.net/21.15107/rcub_dais_14275
ER  - 
@conference{
author = "Stamenković, Tijana and Dinić, Ivana and Vuković, Marina and Rajić, Vladimir B. and Radmilović, Nadežda and Mančić, Lidija and Lojpur, Vesna",
year = "2022",
abstract = "In recent decades, inorganic luminescent materials have gathered significant attention due to their great potential for various applications [1-4]. The rare-earth (RE)-based UC luminescent materials are particularly interesting for their exceptional optical, electronic, and magnetic properties. These materials have distinct intra-4f electronic transitions and existence of plenty long-living electronic excited states at different energies, all of which makes electron promotion to high-energy states possible [5, 6]. RE-based UC luminescent materials are composed of a host material (matrix), a sensitizer (absorbs the IC radiation), and an activator (provides emission in the visible and UV part of the spectrum) [7]. So far, the best results have been gained by co-doping the matrix using Yb3+ as sensitizer and Er3+, Ho3+, Tm3+, etc. as activators [8-10]. As for the hosts, rare-earth oxides (ARE2O4; A = Ca, Sr, Ba and RE = trivalent rare-earth ions) have great perspective for producing highly efficient luminescent materials. To the best of our knowledge, SrGd2O4 has been poorly investigated so far, although it has an enormous potential for variety of applications since it is environmentally friendly, has high thermal stability and good chemical durability [11]. In this work, we will present new UC luminescent material composed of SrGd2O4 (host) doped with Yb3+ (sensitizer) and Tm3+ (activator). Control of particle morphology has attracted a great deal of attention from researchers, so efforts for finding appropriate synthesis method are still very current issue. The morphology of the obtained particles is mostly influenced by the synthesis methods used for preparing the material. Luminescent properties mainly interested for us, are in very close connection with the morphology. Here, samples were synthesized using glycine-assisted combustion method, with constant concentration of Tm3+ (1 at%) and different concentration of Yb3+ (2, 4, 6 at%). All samples were heated in the furnace at 500 °C for 1.5h and then thermally treated for 2.5 h at 1000 °C. X-ray diffraction (XRD) was used to see phase crystallinity and purity, and revealed that all peaks are assigned to the pure orthorhombic lattice of SrGd2O4 with space group Pnma (JCPDS Card No.:01-072-6387). Luminescent properties were investigated after recording UC luminescence spectra at room temperature under 980 nm excitation for all samples. The spectra revealed strong blue emission bands which originates from Tm3+ ions 1D2 → 3F4 and 1G4 → 3H6 and weak red emission 1G4 → 3F4 transitions. Morphology and structure were thoroughly studied by field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM), whilst energy dispersive spectroscopy (EDS) was used to provide additional information about constituting elements and their distribution. FE-SEM analysis revealed irregular spherical-like morphology with all samples, and particle size of around 100 nm. TEM examination showed nanostructures organized as a group of agglomerated nanoparticles. EDS verified uniform distribution of all composing elements through every sample [12].",
publisher = "Belgrade : Serbian Academy of Sciences and Arts",
journal = "Program & Book of Abstracts / Second International Conference ELMINA 2022, Belgrade, Serbia, August 22nd-26th, 2022",
title = "Scanning and Transmission Electron Microscopy Investigation of SrGd2O4: Yb,Tm Up-conversion Luminescent Material",
pages = "192-193",
url = "https://hdl.handle.net/21.15107/rcub_dais_14275"
}
Stamenković, T., Dinić, I., Vuković, M., Rajić, V. B., Radmilović, N., Mančić, L.,& Lojpur, V.. (2022). Scanning and Transmission Electron Microscopy Investigation of SrGd2O4: Yb,Tm Up-conversion Luminescent Material. in Program & Book of Abstracts / Second International Conference ELMINA 2022, Belgrade, Serbia, August 22nd-26th, 2022
Belgrade : Serbian Academy of Sciences and Arts., 192-193.
https://hdl.handle.net/21.15107/rcub_dais_14275
Stamenković T, Dinić I, Vuković M, Rajić VB, Radmilović N, Mančić L, Lojpur V. Scanning and Transmission Electron Microscopy Investigation of SrGd2O4: Yb,Tm Up-conversion Luminescent Material. in Program & Book of Abstracts / Second International Conference ELMINA 2022, Belgrade, Serbia, August 22nd-26th, 2022. 2022;:192-193.
https://hdl.handle.net/21.15107/rcub_dais_14275 .
Stamenković, Tijana, Dinić, Ivana, Vuković, Marina, Rajić, Vladimir B., Radmilović, Nadežda, Mančić, Lidija, Lojpur, Vesna, "Scanning and Transmission Electron Microscopy Investigation of SrGd2O4: Yb,Tm Up-conversion Luminescent Material" in Program & Book of Abstracts / Second International Conference ELMINA 2022, Belgrade, Serbia, August 22nd-26th, 2022 (2022):192-193,
https://hdl.handle.net/21.15107/rcub_dais_14275 .

Optically active SrGd2O4 phase: Yb3+/Ho3+ and Yb3+/Tm3+ co-doping

Stamenković, Tijana; Lojpur, Vesna; Radmilović, Nadežda; Vuković, Marina; Dinić, Ivana; Mančić, Lidija

(Belgrade : Serbian Ceramic Society, 2022)

TY  - CONF
AU  - Stamenković, Tijana
AU  - Lojpur, Vesna
AU  - Radmilović, Nadežda
AU  - Vuković, Marina
AU  - Dinić, Ivana
AU  - Mančić, Lidija
PY  - 2022
UR  - https://dais.sanu.ac.rs/123456789/13629
AB  - Optically active materials have a wide range of applications. The phenomenon of light conversion includes two main types: up-conversion, which is the ability of convertion lower energy photons into the ones with the higher energy, and down-conversion, which is vice versa. Orthorhorhombic SrGd2O4 doped with rare earth elements is established to have promising optical characteristics, but rarely explored until nowadays as up-converting material. Due to the phonon energy of around 475 cm-1, which is lower than in many other compounds commonly used hosts, this one has a great perspective as an optically active material. Here, for the first time two combinations of rare earth dopant ions, Yb3+/Ho3+ and Yb3+/Tm3+, with different mutual ratios were chosen as pairs for inducing up-conversion. Sol-gel assisted combustion synthesis, which comprises citric acid as chelator and glycine as fuel, was used to obtain powdered samples that are subsequently thermally treated for 3.5 h at 1100°C. X-ray powder diffraction analysis (XRPD) was performed to determine crystal structure. Morphology characteristics were observed by scanning and transmission electron microscopy (SEM/TEM). Photoluminescent up-converting properties were measured in function of laser power (976 nm) in order to define optimal doping concentration and upconversion mechanism.
PB  - Belgrade : Serbian Ceramic Society
C3  - Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application X New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 26-27. September 2022.
T1  - Optically active SrGd2O4 phase: Yb3+/Ho3+ and Yb3+/Tm3+ co-doping
SP  - 76
EP  - 77
UR  - https://hdl.handle.net/21.15107/rcub_dais_13629
ER  - 
@conference{
author = "Stamenković, Tijana and Lojpur, Vesna and Radmilović, Nadežda and Vuković, Marina and Dinić, Ivana and Mančić, Lidija",
year = "2022",
abstract = "Optically active materials have a wide range of applications. The phenomenon of light conversion includes two main types: up-conversion, which is the ability of convertion lower energy photons into the ones with the higher energy, and down-conversion, which is vice versa. Orthorhorhombic SrGd2O4 doped with rare earth elements is established to have promising optical characteristics, but rarely explored until nowadays as up-converting material. Due to the phonon energy of around 475 cm-1, which is lower than in many other compounds commonly used hosts, this one has a great perspective as an optically active material. Here, for the first time two combinations of rare earth dopant ions, Yb3+/Ho3+ and Yb3+/Tm3+, with different mutual ratios were chosen as pairs for inducing up-conversion. Sol-gel assisted combustion synthesis, which comprises citric acid as chelator and glycine as fuel, was used to obtain powdered samples that are subsequently thermally treated for 3.5 h at 1100°C. X-ray powder diffraction analysis (XRPD) was performed to determine crystal structure. Morphology characteristics were observed by scanning and transmission electron microscopy (SEM/TEM). Photoluminescent up-converting properties were measured in function of laser power (976 nm) in order to define optimal doping concentration and upconversion mechanism.",
publisher = "Belgrade : Serbian Ceramic Society",
journal = "Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application X New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 26-27. September 2022.",
title = "Optically active SrGd2O4 phase: Yb3+/Ho3+ and Yb3+/Tm3+ co-doping",
pages = "76-77",
url = "https://hdl.handle.net/21.15107/rcub_dais_13629"
}
Stamenković, T., Lojpur, V., Radmilović, N., Vuković, M., Dinić, I.,& Mančić, L.. (2022). Optically active SrGd2O4 phase: Yb3+/Ho3+ and Yb3+/Tm3+ co-doping. in Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application X New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 26-27. September 2022.
Belgrade : Serbian Ceramic Society., 76-77.
https://hdl.handle.net/21.15107/rcub_dais_13629
Stamenković T, Lojpur V, Radmilović N, Vuković M, Dinić I, Mančić L. Optically active SrGd2O4 phase: Yb3+/Ho3+ and Yb3+/Tm3+ co-doping. in Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application X New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 26-27. September 2022.. 2022;:76-77.
https://hdl.handle.net/21.15107/rcub_dais_13629 .
Stamenković, Tijana, Lojpur, Vesna, Radmilović, Nadežda, Vuković, Marina, Dinić, Ivana, Mančić, Lidija, "Optically active SrGd2O4 phase: Yb3+/Ho3+ and Yb3+/Tm3+ co-doping" in Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application X New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 26-27. September 2022. (2022):76-77,
https://hdl.handle.net/21.15107/rcub_dais_13629 .

Quantum efficiency of up-converting SrGd2O4:Yb,Er nanoparticles

Dinić, Ivana; Stamenković, Tijana; Radmilović, Nadežda; Vuković, Marina; Rabasović, Mihailo; Lojpur, Vesna; Mančić, Lidija

(Belgrade : Serbian Ceramic Society, 2022)

TY  - CONF
AU  - Dinić, Ivana
AU  - Stamenković, Tijana
AU  - Radmilović, Nadežda
AU  - Vuković, Marina
AU  - Rabasović, Mihailo
AU  - Lojpur, Vesna
AU  - Mančić, Lidija
PY  - 2022
UR  - https://dais.sanu.ac.rs/123456789/13621
AB  - Up-conversion properties of SrGd2O4 nanoparticles co-doped with different Yb3+ and constant Er3+ ions were successfully prepared via sol- gel assisted combustion. Rietveld refinement and scanning/transmission electron microscopy with corresponding energydispersive X-ray spectroscopy revealed that obtained powders are composed of agglomerated nanoparticles with orthorhombic (Pnma) structure that have a uniform distribution of all constituting elements. Photoluminescence measurements implied intensification of the upconversion (UC) emission in the visible part of spectrum with the increase of Yb3+ content, which is followed by a significant change in the green to red ratio. Two-photon UC processes are established as a result of Er3+ f-f electronic transitions: green emission at 523 and 551 nm (2H11/2, 4S3/2 → 4I15/2) as well as a red emission at 661 nm (4F9/2 → 4I15/2). The highest value of absolute quantum efficiency (0.055%) is determined for SrGd2O4 nanoparticles doped with 0.5 at% of Er3+ and co-doped with 5 at% of Yb3+ (λexc=976 nm, power density 200W/cm2).
PB  - Belgrade : Serbian Ceramic Society
C3  - Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application X New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 26-27. September 2022.
T1  - Quantum efficiency of up-converting SrGd2O4:Yb,Er nanoparticles
SP  - 59
EP  - 59
UR  - https://hdl.handle.net/21.15107/rcub_dais_13621
ER  - 
@conference{
author = "Dinić, Ivana and Stamenković, Tijana and Radmilović, Nadežda and Vuković, Marina and Rabasović, Mihailo and Lojpur, Vesna and Mančić, Lidija",
year = "2022",
abstract = "Up-conversion properties of SrGd2O4 nanoparticles co-doped with different Yb3+ and constant Er3+ ions were successfully prepared via sol- gel assisted combustion. Rietveld refinement and scanning/transmission electron microscopy with corresponding energydispersive X-ray spectroscopy revealed that obtained powders are composed of agglomerated nanoparticles with orthorhombic (Pnma) structure that have a uniform distribution of all constituting elements. Photoluminescence measurements implied intensification of the upconversion (UC) emission in the visible part of spectrum with the increase of Yb3+ content, which is followed by a significant change in the green to red ratio. Two-photon UC processes are established as a result of Er3+ f-f electronic transitions: green emission at 523 and 551 nm (2H11/2, 4S3/2 → 4I15/2) as well as a red emission at 661 nm (4F9/2 → 4I15/2). The highest value of absolute quantum efficiency (0.055%) is determined for SrGd2O4 nanoparticles doped with 0.5 at% of Er3+ and co-doped with 5 at% of Yb3+ (λexc=976 nm, power density 200W/cm2).",
publisher = "Belgrade : Serbian Ceramic Society",
journal = "Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application X New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 26-27. September 2022.",
title = "Quantum efficiency of up-converting SrGd2O4:Yb,Er nanoparticles",
pages = "59-59",
url = "https://hdl.handle.net/21.15107/rcub_dais_13621"
}
Dinić, I., Stamenković, T., Radmilović, N., Vuković, M., Rabasović, M., Lojpur, V.,& Mančić, L.. (2022). Quantum efficiency of up-converting SrGd2O4:Yb,Er nanoparticles. in Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application X New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 26-27. September 2022.
Belgrade : Serbian Ceramic Society., 59-59.
https://hdl.handle.net/21.15107/rcub_dais_13621
Dinić I, Stamenković T, Radmilović N, Vuković M, Rabasović M, Lojpur V, Mančić L. Quantum efficiency of up-converting SrGd2O4:Yb,Er nanoparticles. in Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application X New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 26-27. September 2022.. 2022;:59-59.
https://hdl.handle.net/21.15107/rcub_dais_13621 .
Dinić, Ivana, Stamenković, Tijana, Radmilović, Nadežda, Vuković, Marina, Rabasović, Mihailo, Lojpur, Vesna, Mančić, Lidija, "Quantum efficiency of up-converting SrGd2O4:Yb,Er nanoparticles" in Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application X New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 26-27. September 2022. (2022):59-59,
https://hdl.handle.net/21.15107/rcub_dais_13621 .

Characterization of a new Yb3+/Er3+ doped SrGd2O4 up-conversion nanomaterial obtained via glycine-assisted combustion synthesis

Stamenković, Tijana; Radmilović, Nadežda; Prekajski Đorđević, Marija; Dinić, Ivana; Mančić, Lidija; Lojpur, Vesna

(Belgrade : Institute of Technical Sciences of SASA, 2021)

TY  - CONF
AU  - Stamenković, Tijana
AU  - Radmilović, Nadežda
AU  - Prekajski Đorđević, Marija
AU  - Dinić, Ivana
AU  - Mančić, Lidija
AU  - Lojpur, Vesna
PY  - 2021
UR  - https://dais.sanu.ac.rs/123456789/12277
AB  - In this work we present new up-conversion materials, consisted of SrGd2O4 matrix co-doped with different Yb3+ (1, 2.5 and 5 at%) and constant Er3+ (0.5 at%) concentrations, prepared by gycine-assisted combustion method. X-ray powder diffraction (XRPD) showed that assynthesized nanoparticles have orthorhombic structure (Pnma), assigned to the JCPDS Card No:01-072-6387. Rietveld refinement indicated a decrease in the size of the unit cell, lattice parameters, and cell volume, due to successful doping of Yb3+ and Er3+ ions into the matrix. Transmission electron microscopy (TEM) revealed that obtained nanostructure is composed of agglomerated nanoparticles, while energy dispersive spectroscopy (EDS) confirmed uniform distribution of all constituting elements in them. Up-conversion (UC) luminescence spectra measured in function of laser pumping power indicated that two-photon UC process is established in nanoparticles as a result of the trivalent erbium f-f electronic transitions: there are two green emission bands at 523 and 551 nm (2H11/2, 4S3/2 → 4I15/2) and a red emission band at 661 nm (4F9/2 → 4I15/2). The rise of Yb3+ concentration from 1 to 5 at% provokes a considerable change of the green to red ratio which indicates the possibility to optimize the color output.
PB  - Belgrade : Institute of Technical Sciences of SASA
C3  - Program and the Book of abstracts / Nineteenth Young Researchers' Conference Materials Science and Engineering, December 1-3, 2021, Belgrade, Serbia
T1  - Characterization of a new Yb3+/Er3+ doped SrGd2O4 up-conversion nanomaterial obtained via glycine-assisted combustion synthesis
SP  - 33
EP  - 33
UR  - https://hdl.handle.net/21.15107/rcub_dais_12277
ER  - 
@conference{
author = "Stamenković, Tijana and Radmilović, Nadežda and Prekajski Đorđević, Marija and Dinić, Ivana and Mančić, Lidija and Lojpur, Vesna",
year = "2021",
abstract = "In this work we present new up-conversion materials, consisted of SrGd2O4 matrix co-doped with different Yb3+ (1, 2.5 and 5 at%) and constant Er3+ (0.5 at%) concentrations, prepared by gycine-assisted combustion method. X-ray powder diffraction (XRPD) showed that assynthesized nanoparticles have orthorhombic structure (Pnma), assigned to the JCPDS Card No:01-072-6387. Rietveld refinement indicated a decrease in the size of the unit cell, lattice parameters, and cell volume, due to successful doping of Yb3+ and Er3+ ions into the matrix. Transmission electron microscopy (TEM) revealed that obtained nanostructure is composed of agglomerated nanoparticles, while energy dispersive spectroscopy (EDS) confirmed uniform distribution of all constituting elements in them. Up-conversion (UC) luminescence spectra measured in function of laser pumping power indicated that two-photon UC process is established in nanoparticles as a result of the trivalent erbium f-f electronic transitions: there are two green emission bands at 523 and 551 nm (2H11/2, 4S3/2 → 4I15/2) and a red emission band at 661 nm (4F9/2 → 4I15/2). The rise of Yb3+ concentration from 1 to 5 at% provokes a considerable change of the green to red ratio which indicates the possibility to optimize the color output.",
publisher = "Belgrade : Institute of Technical Sciences of SASA",
journal = "Program and the Book of abstracts / Nineteenth Young Researchers' Conference Materials Science and Engineering, December 1-3, 2021, Belgrade, Serbia",
title = "Characterization of a new Yb3+/Er3+ doped SrGd2O4 up-conversion nanomaterial obtained via glycine-assisted combustion synthesis",
pages = "33-33",
url = "https://hdl.handle.net/21.15107/rcub_dais_12277"
}
Stamenković, T., Radmilović, N., Prekajski Đorđević, M., Dinić, I., Mančić, L.,& Lojpur, V.. (2021). Characterization of a new Yb3+/Er3+ doped SrGd2O4 up-conversion nanomaterial obtained via glycine-assisted combustion synthesis. in Program and the Book of abstracts / Nineteenth Young Researchers' Conference Materials Science and Engineering, December 1-3, 2021, Belgrade, Serbia
Belgrade : Institute of Technical Sciences of SASA., 33-33.
https://hdl.handle.net/21.15107/rcub_dais_12277
Stamenković T, Radmilović N, Prekajski Đorđević M, Dinić I, Mančić L, Lojpur V. Characterization of a new Yb3+/Er3+ doped SrGd2O4 up-conversion nanomaterial obtained via glycine-assisted combustion synthesis. in Program and the Book of abstracts / Nineteenth Young Researchers' Conference Materials Science and Engineering, December 1-3, 2021, Belgrade, Serbia. 2021;:33-33.
https://hdl.handle.net/21.15107/rcub_dais_12277 .
Stamenković, Tijana, Radmilović, Nadežda, Prekajski Đorđević, Marija, Dinić, Ivana, Mančić, Lidija, Lojpur, Vesna, "Characterization of a new Yb3+/Er3+ doped SrGd2O4 up-conversion nanomaterial obtained via glycine-assisted combustion synthesis" in Program and the Book of abstracts / Nineteenth Young Researchers' Conference Materials Science and Engineering, December 1-3, 2021, Belgrade, Serbia (2021):33-33,
https://hdl.handle.net/21.15107/rcub_dais_12277 .