Fort, R.

Link to this page

Authority KeyName Variants
81020582-bd59-4766-aa7b-3796f9fda0ca
  • Fort, R. (3)

Author's Bibliography

Atomic scale study of the dehydration/structural transformation in micro and nanostructured brucite (Mg(OH)2) particles: Influence of the hydrothermal synthesis conditions

Gómez-Villalba, Luz Stella; Sierra-Fernández, Aránzazu; Milošević, Olivera; Fort, R.; Rabanal, Maria Eugenia

(Elsevier, 2017)

TY  - JOUR
AU  - Gómez-Villalba, Luz Stella
AU  - Sierra-Fernández, Aránzazu
AU  - Milošević, Olivera
AU  - Fort, R.
AU  - Rabanal, Maria Eugenia
PY  - 2017
UR  - https://dais.sanu.ac.rs/123456789/15970
AB  - Micro and nanostructured brucite (Mg(OH2)) particles synthesized by hydrothermal method from solutions with high content of hydrazine (0.14 M) and nitrate (0.24 g) were compared with samples obtained from low hydrazine content (0.0002 M) and nitrate (0.12 g). The samples were heated at 180 °C for 4 h, 6 h and 12 h. XRD, TEM-HRTEM, SAED and image analysis techniques were used for the morphological and structural characterization. The effect of electron beam irradiation on the brucite dehydration was observed in atomic resolution images at 300 kV. Hexagonal crystals show differences in crystallinity, strains and kinetic of reaction. High hydrazine/nitrate samples have slightly larger crystals with better crystallinity, showing a strong preferential orientation. Rietveld refinements show how unit cell parameters are bigger in samples obtained with higher hydrazine/nitrate content, confirming also the preferential orientation along the 0 0 0 1 plane. Differences in the dehydration process show the rapid formation of a porous surface, the amorphised cortex or the presence of highly oriented strains in samples prepared from higher hydrazine/nitrate content. Conversely, crystals slightly smaller with randomly scattered defect surfaces showing the Mg(OH)2/MgO interphase in samples prepared with low hydrazine/nitrate content. Significant differences in the kinetic of reaction indicate how the dehydration process is faster in samples prepared with high hydrazine/nitrate content.
PB  - Elsevier
T2  - Advanced Powder Technology
T1  - Atomic scale study of the dehydration/structural transformation in micro and nanostructured brucite (Mg(OH)2) particles: Influence of the hydrothermal synthesis conditions
SP  - 61
EP  - 72
VL  - 28
IS  - 1
DO  - 10.1016/j.apt.2016.08.014
UR  - https://hdl.handle.net/21.15107/rcub_dais_15970
ER  - 
@article{
author = "Gómez-Villalba, Luz Stella and Sierra-Fernández, Aránzazu and Milošević, Olivera and Fort, R. and Rabanal, Maria Eugenia",
year = "2017",
abstract = "Micro and nanostructured brucite (Mg(OH2)) particles synthesized by hydrothermal method from solutions with high content of hydrazine (0.14 M) and nitrate (0.24 g) were compared with samples obtained from low hydrazine content (0.0002 M) and nitrate (0.12 g). The samples were heated at 180 °C for 4 h, 6 h and 12 h. XRD, TEM-HRTEM, SAED and image analysis techniques were used for the morphological and structural characterization. The effect of electron beam irradiation on the brucite dehydration was observed in atomic resolution images at 300 kV. Hexagonal crystals show differences in crystallinity, strains and kinetic of reaction. High hydrazine/nitrate samples have slightly larger crystals with better crystallinity, showing a strong preferential orientation. Rietveld refinements show how unit cell parameters are bigger in samples obtained with higher hydrazine/nitrate content, confirming also the preferential orientation along the 0 0 0 1 plane. Differences in the dehydration process show the rapid formation of a porous surface, the amorphised cortex or the presence of highly oriented strains in samples prepared from higher hydrazine/nitrate content. Conversely, crystals slightly smaller with randomly scattered defect surfaces showing the Mg(OH)2/MgO interphase in samples prepared with low hydrazine/nitrate content. Significant differences in the kinetic of reaction indicate how the dehydration process is faster in samples prepared with high hydrazine/nitrate content.",
publisher = "Elsevier",
journal = "Advanced Powder Technology",
title = "Atomic scale study of the dehydration/structural transformation in micro and nanostructured brucite (Mg(OH)2) particles: Influence of the hydrothermal synthesis conditions",
pages = "61-72",
volume = "28",
number = "1",
doi = "10.1016/j.apt.2016.08.014",
url = "https://hdl.handle.net/21.15107/rcub_dais_15970"
}
Gómez-Villalba, L. S., Sierra-Fernández, A., Milošević, O., Fort, R.,& Rabanal, M. E.. (2017). Atomic scale study of the dehydration/structural transformation in micro and nanostructured brucite (Mg(OH)2) particles: Influence of the hydrothermal synthesis conditions. in Advanced Powder Technology
Elsevier., 28(1), 61-72.
https://doi.org/10.1016/j.apt.2016.08.014
https://hdl.handle.net/21.15107/rcub_dais_15970
Gómez-Villalba LS, Sierra-Fernández A, Milošević O, Fort R, Rabanal ME. Atomic scale study of the dehydration/structural transformation in micro and nanostructured brucite (Mg(OH)2) particles: Influence of the hydrothermal synthesis conditions. in Advanced Powder Technology. 2017;28(1):61-72.
doi:10.1016/j.apt.2016.08.014
https://hdl.handle.net/21.15107/rcub_dais_15970 .
Gómez-Villalba, Luz Stella, Sierra-Fernández, Aránzazu, Milošević, Olivera, Fort, R., Rabanal, Maria Eugenia, "Atomic scale study of the dehydration/structural transformation in micro and nanostructured brucite (Mg(OH)2) particles: Influence of the hydrothermal synthesis conditions" in Advanced Powder Technology, 28, no. 1 (2017):61-72,
https://doi.org/10.1016/j.apt.2016.08.014 .,
https://hdl.handle.net/21.15107/rcub_dais_15970 .
2
5
5
5

Synthesis and morpho-structural characterization of nanostructured magnesium hydroxide obtained by a hydrothermal method

Sierra-Fernández, Aránzazu; Gómez-Villalba, Luz Stella; Milošević, Olivera; Fort, R.; Rabanal, Maria Eugenia

(Elsevier, 2014)

TY  - JOUR
AU  - Sierra-Fernández, Aránzazu
AU  - Gómez-Villalba, Luz Stella
AU  - Milošević, Olivera
AU  - Fort, R.
AU  - Rabanal, Maria Eugenia
PY  - 2014
UR  - https://dais.sanu.ac.rs/123456789/566
AB  - Controlled magnesium hydroxide particles were successfully synthesized via a simple hydrothermal method. The influence of temperature and reaction time on the hydrothermal synthesis of Mg(OH)2 was studied. The results provide new parameters to control the morphologies, particle sizes, agglomeration level and crystallographic structures of the brucite nanosized. The physic–chemical properties of synthesized Mg(OH)2 nanoparticles have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) combined with selected area electron diffraction (SAED), high resolution transmission electron microscopy (HR-TEM) and thermogravimetry/ differential scanning calorimetry (TG/DSC). It has been shown that the prolongation of reaction time improves the crystalline degree of magnesium hydroxide particles. It was also possible to detect a relevant increase in the degree of crystallinity and a faster crystal growth with defined hexagonal morphologies in the samples obtained at higher temperature. Our results show that this simple hydrothermal route is highly interesting for the large scale production of these nanomaterials.
PB  - Elsevier
T2  - Ceramics International
T1  - Synthesis and morpho-structural characterization of nanostructured magnesium hydroxide obtained by a hydrothermal method
SP  - 12285
EP  - 12292
VL  - 40
IS  - 8, Part A
DO  - 10.1016/j.ceramint.2014.04.073
UR  - https://hdl.handle.net/21.15107/rcub_dais_566
ER  - 
@article{
author = "Sierra-Fernández, Aránzazu and Gómez-Villalba, Luz Stella and Milošević, Olivera and Fort, R. and Rabanal, Maria Eugenia",
year = "2014",
abstract = "Controlled magnesium hydroxide particles were successfully synthesized via a simple hydrothermal method. The influence of temperature and reaction time on the hydrothermal synthesis of Mg(OH)2 was studied. The results provide new parameters to control the morphologies, particle sizes, agglomeration level and crystallographic structures of the brucite nanosized. The physic–chemical properties of synthesized Mg(OH)2 nanoparticles have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) combined with selected area electron diffraction (SAED), high resolution transmission electron microscopy (HR-TEM) and thermogravimetry/ differential scanning calorimetry (TG/DSC). It has been shown that the prolongation of reaction time improves the crystalline degree of magnesium hydroxide particles. It was also possible to detect a relevant increase in the degree of crystallinity and a faster crystal growth with defined hexagonal morphologies in the samples obtained at higher temperature. Our results show that this simple hydrothermal route is highly interesting for the large scale production of these nanomaterials.",
publisher = "Elsevier",
journal = "Ceramics International",
title = "Synthesis and morpho-structural characterization of nanostructured magnesium hydroxide obtained by a hydrothermal method",
pages = "12285-12292",
volume = "40",
number = "8, Part A",
doi = "10.1016/j.ceramint.2014.04.073",
url = "https://hdl.handle.net/21.15107/rcub_dais_566"
}
Sierra-Fernández, A., Gómez-Villalba, L. S., Milošević, O., Fort, R.,& Rabanal, M. E.. (2014). Synthesis and morpho-structural characterization of nanostructured magnesium hydroxide obtained by a hydrothermal method. in Ceramics International
Elsevier., 40(8, Part A), 12285-12292.
https://doi.org/10.1016/j.ceramint.2014.04.073
https://hdl.handle.net/21.15107/rcub_dais_566
Sierra-Fernández A, Gómez-Villalba LS, Milošević O, Fort R, Rabanal ME. Synthesis and morpho-structural characterization of nanostructured magnesium hydroxide obtained by a hydrothermal method. in Ceramics International. 2014;40(8, Part A):12285-12292.
doi:10.1016/j.ceramint.2014.04.073
https://hdl.handle.net/21.15107/rcub_dais_566 .
Sierra-Fernández, Aránzazu, Gómez-Villalba, Luz Stella, Milošević, Olivera, Fort, R., Rabanal, Maria Eugenia, "Synthesis and morpho-structural characterization of nanostructured magnesium hydroxide obtained by a hydrothermal method" in Ceramics International, 40, no. 8, Part A (2014):12285-12292,
https://doi.org/10.1016/j.ceramint.2014.04.073 .,
https://hdl.handle.net/21.15107/rcub_dais_566 .
46
34
54

Synthesis and Characterization of Magnesium Hydroxide Nanoparticles via Hydrothermal Method

Sierra-Fernández, Aránzazu; Flores-Carrasco, Gregorio; Gómez-Villalba, Luz Stella; Milošević, Olivera; Fort, R.; Rabanal, Maria Eugenia

(Belgrade : Serbian Ceramic Society, 2014)

TY  - CONF
AU  - Sierra-Fernández, Aránzazu
AU  - Flores-Carrasco, Gregorio
AU  - Gómez-Villalba, Luz Stella
AU  - Milošević, Olivera
AU  - Fort, R.
AU  - Rabanal, Maria Eugenia
PY  - 2014
UR  - https://dais.sanu.ac.rs/123456789/592
AB  - The interest in the nanostructured magnesium hydroxide (Mg(OH)2) is rapidly growing due to the fact that its physical and chemical properties makes it appropriate for multiple applications. So far, it has been used in medicine, industry, or more recently, in the conservation of cultural heritage. The current research is based on the synthesis and the characterization of functional and nanocrystalline Mg(OH)2 with different particle sizes, morphologies and high purity. The synthesis was carried out via the hydrothermal method using hydrazine hydrate as a precipitator. Moreover, due to it is essential to study the behaviour of this type of nanoparticles under factors as the time of exposition, the relative humidity and CO2 concentration, they were exposed to controlled atmosphere at high relative humidity (75%RH). The carbonation process was also studied, identifying the different magnesium carbonate polymorphs.The physical and chemical property of synthesizedMg(OH)2 nanoparticles have been characterized by X Ray diffraction (XRD), Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), High resolution Transmission electron Microscopy (HR-TEM), thermogravimetry (TG) and differential scanning calorimetry (DSC). The results showed the successful use of this synthesis route to obtain Mg(OH)2 nanostructured with important properties for the preservation of the stone heritage and promising CO2 adsorption properties.
PB  - Belgrade : Serbian Ceramic Society
C3  - Advanced Ceramics and Application : new frontiers in multifunctional material science and processing : program and the book of abstracts / III Serbian Ceramic Society Conference, 29th September - 1st October, Belgrade, 2014
T1  - Synthesis and Characterization of Magnesium Hydroxide Nanoparticles via Hydrothermal Method
SP  - 52
EP  - 52
UR  - https://hdl.handle.net/21.15107/rcub_dais_592
ER  - 
@conference{
author = "Sierra-Fernández, Aránzazu and Flores-Carrasco, Gregorio and Gómez-Villalba, Luz Stella and Milošević, Olivera and Fort, R. and Rabanal, Maria Eugenia",
year = "2014",
abstract = "The interest in the nanostructured magnesium hydroxide (Mg(OH)2) is rapidly growing due to the fact that its physical and chemical properties makes it appropriate for multiple applications. So far, it has been used in medicine, industry, or more recently, in the conservation of cultural heritage. The current research is based on the synthesis and the characterization of functional and nanocrystalline Mg(OH)2 with different particle sizes, morphologies and high purity. The synthesis was carried out via the hydrothermal method using hydrazine hydrate as a precipitator. Moreover, due to it is essential to study the behaviour of this type of nanoparticles under factors as the time of exposition, the relative humidity and CO2 concentration, they were exposed to controlled atmosphere at high relative humidity (75%RH). The carbonation process was also studied, identifying the different magnesium carbonate polymorphs.The physical and chemical property of synthesizedMg(OH)2 nanoparticles have been characterized by X Ray diffraction (XRD), Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), High resolution Transmission electron Microscopy (HR-TEM), thermogravimetry (TG) and differential scanning calorimetry (DSC). The results showed the successful use of this synthesis route to obtain Mg(OH)2 nanostructured with important properties for the preservation of the stone heritage and promising CO2 adsorption properties.",
publisher = "Belgrade : Serbian Ceramic Society",
journal = "Advanced Ceramics and Application : new frontiers in multifunctional material science and processing : program and the book of abstracts / III Serbian Ceramic Society Conference, 29th September - 1st October, Belgrade, 2014",
title = "Synthesis and Characterization of Magnesium Hydroxide Nanoparticles via Hydrothermal Method",
pages = "52-52",
url = "https://hdl.handle.net/21.15107/rcub_dais_592"
}
Sierra-Fernández, A., Flores-Carrasco, G., Gómez-Villalba, L. S., Milošević, O., Fort, R.,& Rabanal, M. E.. (2014). Synthesis and Characterization of Magnesium Hydroxide Nanoparticles via Hydrothermal Method. in Advanced Ceramics and Application : new frontiers in multifunctional material science and processing : program and the book of abstracts / III Serbian Ceramic Society Conference, 29th September - 1st October, Belgrade, 2014
Belgrade : Serbian Ceramic Society., 52-52.
https://hdl.handle.net/21.15107/rcub_dais_592
Sierra-Fernández A, Flores-Carrasco G, Gómez-Villalba LS, Milošević O, Fort R, Rabanal ME. Synthesis and Characterization of Magnesium Hydroxide Nanoparticles via Hydrothermal Method. in Advanced Ceramics and Application : new frontiers in multifunctional material science and processing : program and the book of abstracts / III Serbian Ceramic Society Conference, 29th September - 1st October, Belgrade, 2014. 2014;:52-52.
https://hdl.handle.net/21.15107/rcub_dais_592 .
Sierra-Fernández, Aránzazu, Flores-Carrasco, Gregorio, Gómez-Villalba, Luz Stella, Milošević, Olivera, Fort, R., Rabanal, Maria Eugenia, "Synthesis and Characterization of Magnesium Hydroxide Nanoparticles via Hydrothermal Method" in Advanced Ceramics and Application : new frontiers in multifunctional material science and processing : program and the book of abstracts / III Serbian Ceramic Society Conference, 29th September - 1st October, Belgrade, 2014 (2014):52-52,
https://hdl.handle.net/21.15107/rcub_dais_592 .