Nikolić, Marko G.

Link to this page

Authority KeyName Variants
3ec6c399-cc9d-4033-bf07-99faedbc464e
  • Nikolić, Marko G. (30)
Projects

Author's Bibliography

The gadolinium effect on crystallization behavior and luminescence of β-NaYF4:Yb,Er phase

Vuković, Marina; Mančić, Lidija; Dinić, Ivana; Vulić, Predrag; Nikolić, Marko G.; Tan, Zhenquan; Milošević, Olivera

(Wiley, 2020)

TY  - JOUR
AU  - Vuković, Marina
AU  - Mančić, Lidija
AU  - Dinić, Ivana
AU  - Vulić, Predrag
AU  - Nikolić, Marko G.
AU  - Tan, Zhenquan
AU  - Milošević, Olivera
PY  - 2020
AB  - Single phase β-NaY0.8-xGdxYb0.18Er0.02F4 nanoparticles with different concentrations of gadolinium ions were prepared via PVP-assisted solvothermal treating at 200°C (PVP- polyvinylpyrrolidone). With the increase in Gd3+ concentration, size of the nanoparticles decreased. The up-converting spectra recorded upon 980 nm irradiation showed the green (510-560 nm) and red (640-690 nm) emissions, due to 2H11/2, 4S3/2 → 4I15/2 and 4F9/2 → 4I15/2 transitions, respectively. The strongest up-conversion luminescence was detected in 15 mol% Gd3+-doped nanoparticles obtained after 20 hours of solvothermal treating. With the rise of Gd3+ content up-conversion emission decreased due to increased defect concentration in the NaYF4 matrix. Fourier transform infrared spectroscopy proved in situ generation of hydrophilic nanoparticles as a result of PVP ligands retention at the particle surface.
PB  - Wiley
T2  - International Journal of Applied Ceramic Technology
T1  - The gadolinium effect on crystallization behavior and luminescence of β-NaYF4:Yb,Er phase
SP  - 1445
EP  - 1452
VL  - 17
IS  - 3
DO  - 10.1111/ijac.13363
UR  - https://hdl.handle.net/21.15107/rcub_dais_8947
ER  - 
@article{
author = "Vuković, Marina and Mančić, Lidija and Dinić, Ivana and Vulić, Predrag and Nikolić, Marko G. and Tan, Zhenquan and Milošević, Olivera",
year = "2020",
abstract = "Single phase β-NaY0.8-xGdxYb0.18Er0.02F4 nanoparticles with different concentrations of gadolinium ions were prepared via PVP-assisted solvothermal treating at 200°C (PVP- polyvinylpyrrolidone). With the increase in Gd3+ concentration, size of the nanoparticles decreased. The up-converting spectra recorded upon 980 nm irradiation showed the green (510-560 nm) and red (640-690 nm) emissions, due to 2H11/2, 4S3/2 → 4I15/2 and 4F9/2 → 4I15/2 transitions, respectively. The strongest up-conversion luminescence was detected in 15 mol% Gd3+-doped nanoparticles obtained after 20 hours of solvothermal treating. With the rise of Gd3+ content up-conversion emission decreased due to increased defect concentration in the NaYF4 matrix. Fourier transform infrared spectroscopy proved in situ generation of hydrophilic nanoparticles as a result of PVP ligands retention at the particle surface.",
publisher = "Wiley",
journal = "International Journal of Applied Ceramic Technology",
title = "The gadolinium effect on crystallization behavior and luminescence of β-NaYF4:Yb,Er phase",
pages = "1445-1452",
volume = "17",
number = "3",
doi = "10.1111/ijac.13363",
url = "https://hdl.handle.net/21.15107/rcub_dais_8947"
}
Vuković, M., Mančić, L., Dinić, I., Vulić, P., Nikolić, M. G., Tan, Z.,& Milošević, O. (2020). The gadolinium effect on crystallization behavior and luminescence of β-NaYF4:Yb,Er phase.
International Journal of Applied Ceramic Technology
Wiley., 17(3), 1445-1452.
https://doi.org/10.1111/ijac.13363
Vuković M, Mančić L, Dinić I, Vulić P, Nikolić MG, Tan Z, Milošević O. The gadolinium effect on crystallization behavior and luminescence of β-NaYF4:Yb,Er phase. International Journal of Applied Ceramic Technology. 2020;17(3):1445-1452.
doi:10.1111/ijac.13363.
Vuković Marina, Mančić Lidija, Dinić Ivana, Vulić Predrag, Nikolić Marko G., Tan Zhenquan, Milošević Olivera, "The gadolinium effect on crystallization behavior and luminescence of β-NaYF4:Yb,Er phase" International Journal of Applied Ceramic Technology, 17, no. 3 (2020):1445-1452,
https://doi.org/10.1111/ijac.13363 .
1
1
1

The gadolinium effect on crystallization behavior and luminescence of β-NaYF4:Yb,Er phase

Vuković, Marina; Mančić, Lidija; Dinić, Ivana; Vulić, Predrag; Nikolić, Marko G.; Tan, Zhenquan; Milošević, Olivera

(Wiley, 2020)

TY  - JOUR
AU  - Vuković, Marina
AU  - Mančić, Lidija
AU  - Dinić, Ivana
AU  - Vulić, Predrag
AU  - Nikolić, Marko G.
AU  - Tan, Zhenquan
AU  - Milošević, Olivera
PY  - 2020
AB  - Single phase β-NaY0.8-xGdxYb0.18Er0.02F4 nanoparticles with different concentrations of gadolinium ions were prepared via PVP-assisted solvothermal treating at 200°C (PVP- polyvinylpyrrolidone). With the increase in Gd3+ concentration, size of the nanoparticles decreased. The up-converting spectra recorded upon 980 nm irradiation showed the green (510-560 nm) and red (640-690 nm) emissions, due to 2H11/2, 4S3/2 → 4I15/2 and 4F9/2 → 4I15/2 transitions, respectively. The strongest up-conversion luminescence was detected in 15 mol% Gd3+-doped nanoparticles obtained after 20 hours of solvothermal treating. With the rise of Gd3+ content up-conversion emission decreased due to increased defect concentration in the NaYF4 matrix. Fourier transform infrared spectroscopy proved in situ generation of hydrophilic nanoparticles as a result of PVP ligands retention at the particle surface.
PB  - Wiley
T2  - International Journal of Applied Ceramic Technology
T1  - The gadolinium effect on crystallization behavior and luminescence of β-NaYF4:Yb,Er phase
SP  - 1445
EP  - 1452
VL  - 17
IS  - 3
DO  - 10.1111/ijac.13363
ER  - 
@article{
author = "Vuković, Marina and Mančić, Lidija and Dinić, Ivana and Vulić, Predrag and Nikolić, Marko G. and Tan, Zhenquan and Milošević, Olivera",
year = "2020",
abstract = "Single phase β-NaY0.8-xGdxYb0.18Er0.02F4 nanoparticles with different concentrations of gadolinium ions were prepared via PVP-assisted solvothermal treating at 200°C (PVP- polyvinylpyrrolidone). With the increase in Gd3+ concentration, size of the nanoparticles decreased. The up-converting spectra recorded upon 980 nm irradiation showed the green (510-560 nm) and red (640-690 nm) emissions, due to 2H11/2, 4S3/2 → 4I15/2 and 4F9/2 → 4I15/2 transitions, respectively. The strongest up-conversion luminescence was detected in 15 mol% Gd3+-doped nanoparticles obtained after 20 hours of solvothermal treating. With the rise of Gd3+ content up-conversion emission decreased due to increased defect concentration in the NaYF4 matrix. Fourier transform infrared spectroscopy proved in situ generation of hydrophilic nanoparticles as a result of PVP ligands retention at the particle surface.",
publisher = "Wiley",
journal = "International Journal of Applied Ceramic Technology",
title = "The gadolinium effect on crystallization behavior and luminescence of β-NaYF4:Yb,Er phase",
pages = "1445-1452",
volume = "17",
number = "3",
doi = "10.1111/ijac.13363"
}
Vuković, M., Mančić, L., Dinić, I., Vulić, P., Nikolić, M. G., Tan, Z.,& Milošević, O. (2020). The gadolinium effect on crystallization behavior and luminescence of β-NaYF4:Yb,Er phase.
International Journal of Applied Ceramic Technology
Wiley., 17(3), 1445-1452.
https://doi.org/10.1111/ijac.13363
Vuković M, Mančić L, Dinić I, Vulić P, Nikolić MG, Tan Z, Milošević O. The gadolinium effect on crystallization behavior and luminescence of β-NaYF4:Yb,Er phase. International Journal of Applied Ceramic Technology. 2020;17(3):1445-1452.
doi:10.1111/ijac.13363.
Vuković Marina, Mančić Lidija, Dinić Ivana, Vulić Predrag, Nikolić Marko G., Tan Zhenquan, Milošević Olivera, "The gadolinium effect on crystallization behavior and luminescence of β-NaYF4:Yb,Er phase" International Journal of Applied Ceramic Technology, 17, no. 3 (2020):1445-1452,
https://doi.org/10.1111/ijac.13363 .
1
1
1

Effects of different polymers and solvents on crystallization of theNaYF4:Yb/Er phase

Vuković, Marina; Dinić, Ivana; Nikolić, Marko G.; Marinković, Bojan A.; Costa, Antonio Mario Leal Martins; Radulović, Katarina; Milošević, Olivera; Mančić, Lidija

(Springer, 2020)

TY  - JOUR
AU  - Vuković, Marina
AU  - Dinić, Ivana
AU  - Nikolić, Marko G.
AU  - Marinković, Bojan A.
AU  - Costa, Antonio Mario Leal Martins
AU  - Radulović, Katarina
AU  - Milošević, Olivera
AU  - Mančić, Lidija
PY  - 2020
AB  - Up-converting NaYF4:Yb,Er nanoparticles were obtained by polymer-assisted solvothermal synthesis using a common solution of hydrated RE nitrates in ethanol or ethylene glycol. It was shown that polymer choice (polyacrylic acid—PAA, polyvinylpyrrolidone—PVP and chitosan—CS) controls the size and shape of NaYF4:Yb,Er nanoparticles, while the solvent type and pH value affect their crystallinity. Consequently, the spherical nanoparticles of a cubic (α) phase, the average size of which ranged from 60 to 140 nm, were obtained either when PVP/ethanol or PVP/ethylene glycol were used solely during synthesis, whereas NaOH addition induced hexagonal (β) phase nucleation. The formation of the hierarchically organized spherical aggregates and nanofoils was observed when CS and PAA were used during synthesis, respectively. The average crystallite size, microstrain, doping level, lattice parameters, as well as, the presence of the certain ligands on the particle surface were determined and correlated with the intensity of visible-light emission observed under 980 nm laser-diode excitation.
PB  - Springer
T2  - Bulletin of Materials Science
T1  - Effects of different polymers and solvents on crystallization of theNaYF4:Yb/Er phase
SP  - 2
VL  - 43
IS  - 1
DO  - 10.1007/s12034-019-1975-1
ER  - 
@article{
author = "Vuković, Marina and Dinić, Ivana and Nikolić, Marko G. and Marinković, Bojan A. and Costa, Antonio Mario Leal Martins and Radulović, Katarina and Milošević, Olivera and Mančić, Lidija",
year = "2020",
abstract = "Up-converting NaYF4:Yb,Er nanoparticles were obtained by polymer-assisted solvothermal synthesis using a common solution of hydrated RE nitrates in ethanol or ethylene glycol. It was shown that polymer choice (polyacrylic acid—PAA, polyvinylpyrrolidone—PVP and chitosan—CS) controls the size and shape of NaYF4:Yb,Er nanoparticles, while the solvent type and pH value affect their crystallinity. Consequently, the spherical nanoparticles of a cubic (α) phase, the average size of which ranged from 60 to 140 nm, were obtained either when PVP/ethanol or PVP/ethylene glycol were used solely during synthesis, whereas NaOH addition induced hexagonal (β) phase nucleation. The formation of the hierarchically organized spherical aggregates and nanofoils was observed when CS and PAA were used during synthesis, respectively. The average crystallite size, microstrain, doping level, lattice parameters, as well as, the presence of the certain ligands on the particle surface were determined and correlated with the intensity of visible-light emission observed under 980 nm laser-diode excitation.",
publisher = "Springer",
journal = "Bulletin of Materials Science",
title = "Effects of different polymers and solvents on crystallization of theNaYF4:Yb/Er phase",
pages = "2",
volume = "43",
number = "1",
doi = "10.1007/s12034-019-1975-1"
}
Vuković, M., Dinić, I., Nikolić, M. G., Marinković, B. A., Costa, A. M. L. M., Radulović, K., Milošević, O.,& Mančić, L. (2020). Effects of different polymers and solvents on crystallization of theNaYF4:Yb/Er phase.
Bulletin of Materials Science
Springer., 43(1), 2.
https://doi.org/10.1007/s12034-019-1975-1
Vuković M, Dinić I, Nikolić MG, Marinković BA, Costa AMLM, Radulović K, Milošević O, Mančić L. Effects of different polymers and solvents on crystallization of theNaYF4:Yb/Er phase. Bulletin of Materials Science. 2020;43(1):2.
doi:10.1007/s12034-019-1975-1.
Vuković Marina, Dinić Ivana, Nikolić Marko G., Marinković Bojan A., Costa Antonio Mario Leal Martins, Radulović Katarina, Milošević Olivera, Mančić Lidija, "Effects of different polymers and solvents on crystallization of theNaYF4:Yb/Er phase" Bulletin of Materials Science, 43, no. 1 (2020):2,
https://doi.org/10.1007/s12034-019-1975-1 .
1

Effects of different polymers and solvents on crystallization of theNaYF4:Yb/Er phase

Vuković, Marina; Dinić, Ivana; Nikolić, Marko G.; Marinković, Bojan A.; Costa, Antonio Mario Leal Martins; Radulović, Katarina; Milošević, Olivera; Mančić, Lidija

(Springer, 2020)

TY  - JOUR
AU  - Vuković, Marina
AU  - Dinić, Ivana
AU  - Nikolić, Marko G.
AU  - Marinković, Bojan A.
AU  - Costa, Antonio Mario Leal Martins
AU  - Radulović, Katarina
AU  - Milošević, Olivera
AU  - Mančić, Lidija
PY  - 2020
AB  - Up-converting NaYF4:Yb,Er nanoparticles were obtained by polymer-assisted solvothermal synthesis using a common solution of hydrated RE nitrates in ethanol or ethylene glycol. It was shown that polymer choice (polyacrylic acid—PAA, polyvinylpyrrolidone—PVP and chitosan—CS) controls the size and shape of NaYF4:Yb,Er nanoparticles, while the solvent type and pH value affect their crystallinity. Consequently, the spherical nanoparticles of a cubic (α) phase, the average size of which ranged from 60 to 140 nm, were obtained either when PVP/ethanol or PVP/ethylene glycol were used solely during synthesis, whereas NaOH addition induced hexagonal (β) phase nucleation. The formation of the hierarchically organized spherical aggregates and nanofoils was observed when CS and PAA were used during synthesis, respectively. The average crystallite size, microstrain, doping level, lattice parameters, as well as, the presence of the certain ligands on the particle surface were determined and correlated with the intensity of visible-light emission observed under 980 nm laser-diode excitation.
PB  - Springer
T2  - Bulletin of Materials Science
T1  - Effects of different polymers and solvents on crystallization of theNaYF4:Yb/Er phase
SP  - 2
VL  - 43
IS  - 1
DO  - 10.1007/s12034-019-1975-1
ER  - 
@article{
author = "Vuković, Marina and Dinić, Ivana and Nikolić, Marko G. and Marinković, Bojan A. and Costa, Antonio Mario Leal Martins and Radulović, Katarina and Milošević, Olivera and Mančić, Lidija",
year = "2020",
abstract = "Up-converting NaYF4:Yb,Er nanoparticles were obtained by polymer-assisted solvothermal synthesis using a common solution of hydrated RE nitrates in ethanol or ethylene glycol. It was shown that polymer choice (polyacrylic acid—PAA, polyvinylpyrrolidone—PVP and chitosan—CS) controls the size and shape of NaYF4:Yb,Er nanoparticles, while the solvent type and pH value affect their crystallinity. Consequently, the spherical nanoparticles of a cubic (α) phase, the average size of which ranged from 60 to 140 nm, were obtained either when PVP/ethanol or PVP/ethylene glycol were used solely during synthesis, whereas NaOH addition induced hexagonal (β) phase nucleation. The formation of the hierarchically organized spherical aggregates and nanofoils was observed when CS and PAA were used during synthesis, respectively. The average crystallite size, microstrain, doping level, lattice parameters, as well as, the presence of the certain ligands on the particle surface were determined and correlated with the intensity of visible-light emission observed under 980 nm laser-diode excitation.",
publisher = "Springer",
journal = "Bulletin of Materials Science",
title = "Effects of different polymers and solvents on crystallization of theNaYF4:Yb/Er phase",
pages = "2",
volume = "43",
number = "1",
doi = "10.1007/s12034-019-1975-1"
}
Vuković, M., Dinić, I., Nikolić, M. G., Marinković, B. A., Costa, A. M. L. M., Radulović, K., Milošević, O.,& Mančić, L. (2020). Effects of different polymers and solvents on crystallization of theNaYF4:Yb/Er phase.
Bulletin of Materials Science
Springer., 43(1), 2.
https://doi.org/10.1007/s12034-019-1975-1
Vuković M, Dinić I, Nikolić MG, Marinković BA, Costa AMLM, Radulović K, Milošević O, Mančić L. Effects of different polymers and solvents on crystallization of theNaYF4:Yb/Er phase. Bulletin of Materials Science. 2020;43(1):2.
doi:10.1007/s12034-019-1975-1.
Vuković Marina, Dinić Ivana, Nikolić Marko G., Marinković Bojan A., Costa Antonio Mario Leal Martins, Radulović Katarina, Milošević Olivera, Mančić Lidija, "Effects of different polymers and solvents on crystallization of theNaYF4:Yb/Er phase" Bulletin of Materials Science, 43, no. 1 (2020):2,
https://doi.org/10.1007/s12034-019-1975-1 .
1

Up-converting nanoparticles synthesis using hydroxyl-carboxyl chelating agents: Fluoride source effect

Dinić, Ivana; Vuković, Marina; Nikolić, Marko G.; Tan, Zhenquan; Milošević, Olivera; Mančić, Lidija

(American Institute of Physics, 2020)

TY  - JOUR
AU  - Dinić, Ivana
AU  - Vuković, Marina
AU  - Nikolić, Marko G.
AU  - Tan, Zhenquan
AU  - Milošević, Olivera
AU  - Mančić, Lidija
PY  - 2020
AB  - The synthesis of lanthanide doped up-converting nanoparticles (UCNPs), whose morphological, structural, and luminescence properties are well suited for applications in optoelectronics, forensics, security, or biomedicine, is of tremendous significance. The most commonly used synthesis method comprises decomposition of organometallic compounds in an oxygen-free environment and subsequent infliction of a biocompatible layer on the particle surface. In this work, hydroxyl-carboxyl (- OH/ - COOH) type of chelating agents (citric acid and sodium citrate) are used in situ for the solvothermal synthesis of hydrophilic NaY0.5Gd0.3F4:Yb,Er UCNPs from rare earth nitrate salts and different fluoride sources (NaF, NH4F, and NH4HF2). X-ray powder diffraction showed crystallization of cubic and hexagonal NaY0.5Gd0.3F4:Yb,Er phases in nano- and micro-sized particles, respectively. The content of the hexagonal phase prevails in the samples obtained when Na-citrate is used, while the size and shape of the synthesized mesocrystals are affected by the choice of fluoride source used for precipitation. All particles are functionalized with citrate ligands and emit intense green light at 519 nm and 539 nm (2H11/2, 4S3/2 → 4I15/2) under near infrared light. The intensity of this emission is distressed by the change in the origin of phonon energy of the host matrix revealed by the change in the number of the excitation photons absorbed per emitted photon.
PB  - American Institute of Physics
T2  - The Journal of Chemical Physics
T1  - Up-converting nanoparticles synthesis using hydroxyl-carboxyl chelating agents: Fluoride source effect
SP  - 084706
VL  - 153
IS  - 8
DO  - 10.1063/5.0016559
ER  - 
@article{
author = "Dinić, Ivana and Vuković, Marina and Nikolić, Marko G. and Tan, Zhenquan and Milošević, Olivera and Mančić, Lidija",
year = "2020",
abstract = "The synthesis of lanthanide doped up-converting nanoparticles (UCNPs), whose morphological, structural, and luminescence properties are well suited for applications in optoelectronics, forensics, security, or biomedicine, is of tremendous significance. The most commonly used synthesis method comprises decomposition of organometallic compounds in an oxygen-free environment and subsequent infliction of a biocompatible layer on the particle surface. In this work, hydroxyl-carboxyl (- OH/ - COOH) type of chelating agents (citric acid and sodium citrate) are used in situ for the solvothermal synthesis of hydrophilic NaY0.5Gd0.3F4:Yb,Er UCNPs from rare earth nitrate salts and different fluoride sources (NaF, NH4F, and NH4HF2). X-ray powder diffraction showed crystallization of cubic and hexagonal NaY0.5Gd0.3F4:Yb,Er phases in nano- and micro-sized particles, respectively. The content of the hexagonal phase prevails in the samples obtained when Na-citrate is used, while the size and shape of the synthesized mesocrystals are affected by the choice of fluoride source used for precipitation. All particles are functionalized with citrate ligands and emit intense green light at 519 nm and 539 nm (2H11/2, 4S3/2 → 4I15/2) under near infrared light. The intensity of this emission is distressed by the change in the origin of phonon energy of the host matrix revealed by the change in the number of the excitation photons absorbed per emitted photon.",
publisher = "American Institute of Physics",
journal = "The Journal of Chemical Physics",
title = "Up-converting nanoparticles synthesis using hydroxyl-carboxyl chelating agents: Fluoride source effect",
pages = "084706",
volume = "153",
number = "8",
doi = "10.1063/5.0016559"
}
Dinić, I., Vuković, M., Nikolić, M. G., Tan, Z., Milošević, O.,& Mančić, L. (2020). Up-converting nanoparticles synthesis using hydroxyl-carboxyl chelating agents: Fluoride source effect.
The Journal of Chemical Physics
American Institute of Physics., 153(8), 084706.
https://doi.org/10.1063/5.0016559
Dinić I, Vuković M, Nikolić MG, Tan Z, Milošević O, Mančić L. Up-converting nanoparticles synthesis using hydroxyl-carboxyl chelating agents: Fluoride source effect. The Journal of Chemical Physics. 2020;153(8):084706.
doi:10.1063/5.0016559.
Dinić Ivana, Vuković Marina, Nikolić Marko G., Tan Zhenquan, Milošević Olivera, Mančić Lidija, "Up-converting nanoparticles synthesis using hydroxyl-carboxyl chelating agents: Fluoride source effect" The Journal of Chemical Physics, 153, no. 8 (2020):084706,
https://doi.org/10.1063/5.0016559 .
1
1
1

Up-converting nanoparticles synthesis using hydroxyl-carboxyl chelating agents: Fluoride source effect

Dinić, Ivana; Vuković, Marina; Nikolić, Marko G.; Tan, Zhenquan; Milošević, Olivera; Mančić, Lidija

(American Institute of Physics, 2020)

TY  - JOUR
AU  - Dinić, Ivana
AU  - Vuković, Marina
AU  - Nikolić, Marko G.
AU  - Tan, Zhenquan
AU  - Milošević, Olivera
AU  - Mančić, Lidija
PY  - 2020
AB  - The synthesis of lanthanide doped up-converting nanoparticles (UCNPs), whose morphological, structural, and luminescence properties are well suited for applications in optoelectronics, forensics, security, or biomedicine, is of tremendous significance. The most commonly used synthesis method comprises decomposition of organometallic compounds in an oxygen-free environment and subsequent infliction of a biocompatible layer on the particle surface. In this work, hydroxyl-carboxyl (- OH/ - COOH) type of chelating agents (citric acid and sodium citrate) are used in situ for the solvothermal synthesis of hydrophilic NaY0.5Gd0.3F4:Yb,Er UCNPs from rare earth nitrate salts and different fluoride sources (NaF, NH4F, and NH4HF2). X-ray powder diffraction showed crystallization of cubic and hexagonal NaY0.5Gd0.3F4:Yb,Er phases in nano- and micro-sized particles, respectively. The content of the hexagonal phase prevails in the samples obtained when Na-citrate is used, while the size and shape of the synthesized mesocrystals are affected by the choice of fluoride source used for precipitation. All particles are functionalized with citrate ligands and emit intense green light at 519 nm and 539 nm (2H11/2, 4S3/2 → 4I15/2) under near infrared light. The intensity of this emission is distressed by the change in the origin of phonon energy of the host matrix revealed by the change in the number of the excitation photons absorbed per emitted photon.
PB  - American Institute of Physics
T2  - The Journal of Chemical Physics
T1  - Up-converting nanoparticles synthesis using hydroxyl-carboxyl chelating agents: Fluoride source effect
SP  - 084706
VL  - 153
IS  - 8
DO  - 10.1063/5.0016559
ER  - 
@article{
author = "Dinić, Ivana and Vuković, Marina and Nikolić, Marko G. and Tan, Zhenquan and Milošević, Olivera and Mančić, Lidija",
year = "2020",
abstract = "The synthesis of lanthanide doped up-converting nanoparticles (UCNPs), whose morphological, structural, and luminescence properties are well suited for applications in optoelectronics, forensics, security, or biomedicine, is of tremendous significance. The most commonly used synthesis method comprises decomposition of organometallic compounds in an oxygen-free environment and subsequent infliction of a biocompatible layer on the particle surface. In this work, hydroxyl-carboxyl (- OH/ - COOH) type of chelating agents (citric acid and sodium citrate) are used in situ for the solvothermal synthesis of hydrophilic NaY0.5Gd0.3F4:Yb,Er UCNPs from rare earth nitrate salts and different fluoride sources (NaF, NH4F, and NH4HF2). X-ray powder diffraction showed crystallization of cubic and hexagonal NaY0.5Gd0.3F4:Yb,Er phases in nano- and micro-sized particles, respectively. The content of the hexagonal phase prevails in the samples obtained when Na-citrate is used, while the size and shape of the synthesized mesocrystals are affected by the choice of fluoride source used for precipitation. All particles are functionalized with citrate ligands and emit intense green light at 519 nm and 539 nm (2H11/2, 4S3/2 → 4I15/2) under near infrared light. The intensity of this emission is distressed by the change in the origin of phonon energy of the host matrix revealed by the change in the number of the excitation photons absorbed per emitted photon.",
publisher = "American Institute of Physics",
journal = "The Journal of Chemical Physics",
title = "Up-converting nanoparticles synthesis using hydroxyl-carboxyl chelating agents: Fluoride source effect",
pages = "084706",
volume = "153",
number = "8",
doi = "10.1063/5.0016559"
}
Dinić, I., Vuković, M., Nikolić, M. G., Tan, Z., Milošević, O.,& Mančić, L. (2020). Up-converting nanoparticles synthesis using hydroxyl-carboxyl chelating agents: Fluoride source effect.
The Journal of Chemical Physics
American Institute of Physics., 153(8), 084706.
https://doi.org/10.1063/5.0016559
Dinić I, Vuković M, Nikolić MG, Tan Z, Milošević O, Mančić L. Up-converting nanoparticles synthesis using hydroxyl-carboxyl chelating agents: Fluoride source effect. The Journal of Chemical Physics. 2020;153(8):084706.
doi:10.1063/5.0016559.
Dinić Ivana, Vuković Marina, Nikolić Marko G., Tan Zhenquan, Milošević Olivera, Mančić Lidija, "Up-converting nanoparticles synthesis using hydroxyl-carboxyl chelating agents: Fluoride source effect" The Journal of Chemical Physics, 153, no. 8 (2020):084706,
https://doi.org/10.1063/5.0016559 .
1
1
1

Citrate assisted solvothermal synthesis of beta-NaYF4: Yb, Er up-converting nanoparticles

Dinić, Ivana; Vuković, Marina; Vulić, Predrag; Nikolić, Marko G.; Milošević, Olivera; Mančić, Lidija

(Belgrade : Materials Research Society of Serbia, 2019)

TY  - CONF
AU  - Dinić, Ivana
AU  - Vuković, Marina
AU  - Vulić, Predrag
AU  - Nikolić, Marko G.
AU  - Milošević, Olivera
AU  - Mančić, Lidija
PY  - 2019
AB  - Thanks to the unique optical properties, up-converting nanoparticles (UCNPs) have a wide application in optoelectronics, forensics, security and biomedicine. The synthesis of the most efficient hexagonal β-NaYF4: Yb/Er phase is usually performed through thermal decomposition of organic precursors which could cause the UCNP cytotoxicity. Since cubic polymorph is kinetically more stable than hexagonal, we used citric acid and Na-citrate for the nucleation of hexagonal NaYF4: Yb, Er phase in nanosized particles. Additionally, effect of different precipitation agents (NaF, NH4F and NH4HF2) used during solvothermal synthesis is explored. The XRPD analysis showed that using of citric acid led to a product composed from mixture of cubic and hexagonal NaYF4: Yb/Er phase, while the presence of Na-citrate influences the nucleation of well crystallized hexagonal β-NaYF4: Yb/Er phase, regardless of precipitation agents used. All samples are composed of polycrystalline spherical particles which size is influenced by the precursor chemistry. UCNPs emit intense green emission due to the (2H11/2, 4S3/2) → 4I15/2 electronic transitions, after been excited with infrared light (λ=978 nm).
PB  - Belgrade : Materials Research Society of Serbia
C3  - Programme and The Book of abstracts / Twenty-first Annual Conference YUCOMAT 2019 & Eleventh World Round Table Conference on Sintering WRTCS 2019, Herceg Novi, Montenegro, September 2-6, 2019
T1  - Citrate assisted solvothermal synthesis of beta-NaYF4: Yb, Er up-converting nanoparticles
SP  - 128
EP  - 128
ER  - 
@conference{
author = "Dinić, Ivana and Vuković, Marina and Vulić, Predrag and Nikolić, Marko G. and Milošević, Olivera and Mančić, Lidija",
year = "2019",
abstract = "Thanks to the unique optical properties, up-converting nanoparticles (UCNPs) have a wide application in optoelectronics, forensics, security and biomedicine. The synthesis of the most efficient hexagonal β-NaYF4: Yb/Er phase is usually performed through thermal decomposition of organic precursors which could cause the UCNP cytotoxicity. Since cubic polymorph is kinetically more stable than hexagonal, we used citric acid and Na-citrate for the nucleation of hexagonal NaYF4: Yb, Er phase in nanosized particles. Additionally, effect of different precipitation agents (NaF, NH4F and NH4HF2) used during solvothermal synthesis is explored. The XRPD analysis showed that using of citric acid led to a product composed from mixture of cubic and hexagonal NaYF4: Yb/Er phase, while the presence of Na-citrate influences the nucleation of well crystallized hexagonal β-NaYF4: Yb/Er phase, regardless of precipitation agents used. All samples are composed of polycrystalline spherical particles which size is influenced by the precursor chemistry. UCNPs emit intense green emission due to the (2H11/2, 4S3/2) → 4I15/2 electronic transitions, after been excited with infrared light (λ=978 nm).",
publisher = "Belgrade : Materials Research Society of Serbia",
journal = "Programme and The Book of abstracts / Twenty-first Annual Conference YUCOMAT 2019 & Eleventh World Round Table Conference on Sintering WRTCS 2019, Herceg Novi, Montenegro, September 2-6, 2019",
title = "Citrate assisted solvothermal synthesis of beta-NaYF4: Yb, Er up-converting nanoparticles",
pages = "128-128"
}
Dinić, I., Vuković, M., Vulić, P., Nikolić, M. G., Milošević, O.,& Mančić, L. (2019). Citrate assisted solvothermal synthesis of beta-NaYF4: Yb, Er up-converting nanoparticles.
Programme and The Book of abstracts / Twenty-first Annual Conference YUCOMAT 2019 & Eleventh World Round Table Conference on Sintering WRTCS 2019, Herceg Novi, Montenegro, September 2-6, 2019
Belgrade : Materials Research Society of Serbia., 128-128.
Dinić I, Vuković M, Vulić P, Nikolić MG, Milošević O, Mančić L. Citrate assisted solvothermal synthesis of beta-NaYF4: Yb, Er up-converting nanoparticles. Programme and The Book of abstracts / Twenty-first Annual Conference YUCOMAT 2019 & Eleventh World Round Table Conference on Sintering WRTCS 2019, Herceg Novi, Montenegro, September 2-6, 2019. 2019;:128-128.
Dinić Ivana, Vuković Marina, Vulić Predrag, Nikolić Marko G., Milošević Olivera, Mančić Lidija, "Citrate assisted solvothermal synthesis of beta-NaYF4: Yb, Er up-converting nanoparticles" Programme and The Book of abstracts / Twenty-first Annual Conference YUCOMAT 2019 & Eleventh World Round Table Conference on Sintering WRTCS 2019, Herceg Novi, Montenegro, September 2-6, 2019 (2019):128-128

Hydroxyapatite nano particles doped with Gd3+, Yb3+/Tm3+ and Eu3+ as lumino-magnetic multimodal contrast agents

Ignjatović, Nenad; Mančić, Lidija; Vuković, Marina; Stojanović, Zoran S.; Nikolić, Marko G.; Škapin, Srečo Davor; Jovanović, Sonja; Veselinović, Ljiljana; Lazić, Snežana; Marković, Smilja; Uskoković, Dragan

(Belgrade : Materials Research Society of Serbia, 2019)

TY  - CONF
AU  - Ignjatović, Nenad
AU  - Mančić, Lidija
AU  - Vuković, Marina
AU  - Stojanović, Zoran S.
AU  - Nikolić, Marko G.
AU  - Škapin, Srečo Davor
AU  - Jovanović, Sonja
AU  - Veselinović, Ljiljana
AU  - Lazić, Snežana
AU  - Marković, Smilja
AU  - Uskoković, Dragan
PY  - 2019
AB  - Hydroxyapatite (HAp) has been widely used as bone reconstruction materials due to their similarity to bone tissue. The improvement of HAp properties was achieved by doping its crystal lattice with different ions. Lanthanides, i.e. Rare Earth Elements (RE) are also suitable for doping HAp. The aim of the presented research was to investigate the possibility of creating lumino-magnetic particles of HAp doped with gadolinium (Gd3+) ions and co-doped with ytterbium/thulium (Yb3+/Tm3+) or europium (Eu3+) ions for potential use in multimodal imaging (MI). Pure HAp (Ca5(PO4)3(OH)), magnetic HAp:Gd (Ca4.85Gd0.15(PO4)3(OH)), and lumino-magnetic HAp:Gd/Yb/Tm (Ca4.85Gd0.03Yb0.1Tm0.02(PO4)3(OH)) and HAp:Gd/Eu (Ca4.94Gd0.02Eu0.04(PO4)3(OH)) particles were synthesized using emulsification process and hydrothermal processing. All synthesized particles had an elongated shape and exhibited a paramagnetic behavior. Reduction of the unit cell volume as a result of replacement of Ca2+ ions by ions with a smaller ionic radius (Gd3+, Yb3+, Tm3+, Eu3+) confirmed by using XRD and Rietveld refined plots. The energy band gap values of the synthesized samples range from 4.93 to 3.18 eV and decrease in the following order: HAp:Gd >HAp>HAp:Gd/Eu>HAp:Gd/Yb/Tm. The results of photoluminescence emission spectra of HAp:Gd/Yb/Tm and HAp:Gd/Eu particles showed characteristic transitions of Tm3+ and Eu3+, respectively.
PB  - Belgrade : Materials Research Society of Serbia
C3  - Programme and The Book of abstracts / Twenty-first Annual Conference YUCOMAT 2019 & Eleventh World Round Table Conference on Sintering WRTCS 2019, Herceg Novi, Montenegro, September 2-6, 2019
T1  - Hydroxyapatite nano particles doped with Gd3+, Yb3+/Tm3+ and Eu3+ as lumino-magnetic multimodal contrast agents
SP  - 76
EP  - 76
UR  - https://hdl.handle.net/21.15107/rcub_dais_6676
ER  - 
@conference{
author = "Ignjatović, Nenad and Mančić, Lidija and Vuković, Marina and Stojanović, Zoran S. and Nikolić, Marko G. and Škapin, Srečo Davor and Jovanović, Sonja and Veselinović, Ljiljana and Lazić, Snežana and Marković, Smilja and Uskoković, Dragan",
year = "2019",
abstract = "Hydroxyapatite (HAp) has been widely used as bone reconstruction materials due to their similarity to bone tissue. The improvement of HAp properties was achieved by doping its crystal lattice with different ions. Lanthanides, i.e. Rare Earth Elements (RE) are also suitable for doping HAp. The aim of the presented research was to investigate the possibility of creating lumino-magnetic particles of HAp doped with gadolinium (Gd3+) ions and co-doped with ytterbium/thulium (Yb3+/Tm3+) or europium (Eu3+) ions for potential use in multimodal imaging (MI). Pure HAp (Ca5(PO4)3(OH)), magnetic HAp:Gd (Ca4.85Gd0.15(PO4)3(OH)), and lumino-magnetic HAp:Gd/Yb/Tm (Ca4.85Gd0.03Yb0.1Tm0.02(PO4)3(OH)) and HAp:Gd/Eu (Ca4.94Gd0.02Eu0.04(PO4)3(OH)) particles were synthesized using emulsification process and hydrothermal processing. All synthesized particles had an elongated shape and exhibited a paramagnetic behavior. Reduction of the unit cell volume as a result of replacement of Ca2+ ions by ions with a smaller ionic radius (Gd3+, Yb3+, Tm3+, Eu3+) confirmed by using XRD and Rietveld refined plots. The energy band gap values of the synthesized samples range from 4.93 to 3.18 eV and decrease in the following order: HAp:Gd >HAp>HAp:Gd/Eu>HAp:Gd/Yb/Tm. The results of photoluminescence emission spectra of HAp:Gd/Yb/Tm and HAp:Gd/Eu particles showed characteristic transitions of Tm3+ and Eu3+, respectively.",
publisher = "Belgrade : Materials Research Society of Serbia",
journal = "Programme and The Book of abstracts / Twenty-first Annual Conference YUCOMAT 2019 & Eleventh World Round Table Conference on Sintering WRTCS 2019, Herceg Novi, Montenegro, September 2-6, 2019",
title = "Hydroxyapatite nano particles doped with Gd3+, Yb3+/Tm3+ and Eu3+ as lumino-magnetic multimodal contrast agents",
pages = "76-76",
url = "https://hdl.handle.net/21.15107/rcub_dais_6676"
}
Ignjatović, N., Mančić, L., Vuković, M., Stojanović, Z. S., Nikolić, M. G., Škapin, S. D., Jovanović, S., Veselinović, L., Lazić, S., Marković, S.,& Uskoković, D. (2019). Hydroxyapatite nano particles doped with Gd3+, Yb3+/Tm3+ and Eu3+ as lumino-magnetic multimodal contrast agents.
Programme and The Book of abstracts / Twenty-first Annual Conference YUCOMAT 2019 & Eleventh World Round Table Conference on Sintering WRTCS 2019, Herceg Novi, Montenegro, September 2-6, 2019
Belgrade : Materials Research Society of Serbia., 76-76.
Ignjatović N, Mančić L, Vuković M, Stojanović ZS, Nikolić MG, Škapin SD, Jovanović S, Veselinović L, Lazić S, Marković S, Uskoković D. Hydroxyapatite nano particles doped with Gd3+, Yb3+/Tm3+ and Eu3+ as lumino-magnetic multimodal contrast agents. Programme and The Book of abstracts / Twenty-first Annual Conference YUCOMAT 2019 & Eleventh World Round Table Conference on Sintering WRTCS 2019, Herceg Novi, Montenegro, September 2-6, 2019. 2019;:76-76.
Ignjatović Nenad, Mančić Lidija, Vuković Marina, Stojanović Zoran S., Nikolić Marko G., Škapin Srečo Davor, Jovanović Sonja, Veselinović Ljiljana, Lazić Snežana, Marković Smilja, Uskoković Dragan, "Hydroxyapatite nano particles doped with Gd3+, Yb3+/Tm3+ and Eu3+ as lumino-magnetic multimodal contrast agents" Programme and The Book of abstracts / Twenty-first Annual Conference YUCOMAT 2019 & Eleventh World Round Table Conference on Sintering WRTCS 2019, Herceg Novi, Montenegro, September 2-6, 2019 (2019):76-76

Rare-earth (Gd 3+ ,Yb 3+ /Tm 3+ , Eu 3+ ) co-doped hydroxyapatite as magnetic, up-conversion and down-conversion materials for multimodal imaging

Ignjatović, Nenad; Mančić, Lidija; Vuković, Marina; Stojanović, Zoran; Nikolić, Marko G.; Škapin, Srečo Davor; Jovanović, Sonja; Veselinović, Ljiljana; Uskoković, Vuk; Lazić, Snežana; Marković, Smilja; Lazarević, Miloš M.; Uskoković, Dragan

(Springer Nature, 2019)

TY  - JOUR
AU  - Ignjatović, Nenad
AU  - Mančić, Lidija
AU  - Vuković, Marina
AU  - Stojanović, Zoran
AU  - Nikolić, Marko G.
AU  - Škapin, Srečo Davor
AU  - Jovanović, Sonja
AU  - Veselinović, Ljiljana
AU  - Uskoković, Vuk
AU  - Lazić, Snežana
AU  - Marković, Smilja
AU  - Lazarević, Miloš M.
AU  - Uskoković, Dragan
PY  - 2019
AB  - Taking advantage of the flexibility of the apatite structure, nano- and micro-particles of hydroxyapatite (HAp) were doped with different combinations of rare earth ions (RE3+ = Gd, Eu, Yb, Tm) to achieve a synergy among their magnetic and optical properties and to enable their application in preventive medicine, particularly diagnostics based on multimodal imaging. All powders were synthesized through hydrothermal processing at T ≤ 200 °C. An X-ray powder diffraction analysis showed that all powders crystallized in P63/m space group of the hexagonal crystal structure. The refined unit-cell parameters reflected a decrease in the unit cell volume as a result of the partial substitution of Ca2+ with smaller RE3+ ions at both cation positions. The FTIR analysis additionally suggested that a synergy may exist solely in the triply doped system, where the lattice symmetry and vibration modes become more coherent than in the singly or doubly doped systems. HAp:RE3+ optical characterization revealed a change in the energy band gap and the appearance of a weak blue luminescence (λex = 370 nm) due to an increased concentration of defects. The “up”- and the “down”-conversion spectra of HAp:Gd/Yb/Tm and HAp:Gd/Eu powders showed characteristic transitions of Tm3+ and Eu3+, respectively. Furthermore, in contrast to diamagnetic HAp, all HAp:RE3+ powders exhibited paramagnetic behavior. Cell viability tests of HAp:Gd/Yb/Tm and HAp:Gd/Eu powders in human dental pulp stem cell cultures indicated their good biocompatibility.
PB  - Springer Nature
T2  - Scientific Reports
T1  - Rare-earth (Gd 3+ ,Yb 3+ /Tm 3+ , Eu 3+ ) co-doped hydroxyapatite as magnetic, up-conversion and down-conversion materials for multimodal imaging
SP  - 1
EP  - 15
VL  - 9
IS  - 1
DO  - 10.1038/s41598-019-52885-0
UR  - https://hdl.handle.net/21.15107/rcub_dais_6950
ER  - 
@article{
author = "Ignjatović, Nenad and Mančić, Lidija and Vuković, Marina and Stojanović, Zoran and Nikolić, Marko G. and Škapin, Srečo Davor and Jovanović, Sonja and Veselinović, Ljiljana and Uskoković, Vuk and Lazić, Snežana and Marković, Smilja and Lazarević, Miloš M. and Uskoković, Dragan",
year = "2019",
abstract = "Taking advantage of the flexibility of the apatite structure, nano- and micro-particles of hydroxyapatite (HAp) were doped with different combinations of rare earth ions (RE3+ = Gd, Eu, Yb, Tm) to achieve a synergy among their magnetic and optical properties and to enable their application in preventive medicine, particularly diagnostics based on multimodal imaging. All powders were synthesized through hydrothermal processing at T ≤ 200 °C. An X-ray powder diffraction analysis showed that all powders crystallized in P63/m space group of the hexagonal crystal structure. The refined unit-cell parameters reflected a decrease in the unit cell volume as a result of the partial substitution of Ca2+ with smaller RE3+ ions at both cation positions. The FTIR analysis additionally suggested that a synergy may exist solely in the triply doped system, where the lattice symmetry and vibration modes become more coherent than in the singly or doubly doped systems. HAp:RE3+ optical characterization revealed a change in the energy band gap and the appearance of a weak blue luminescence (λex = 370 nm) due to an increased concentration of defects. The “up”- and the “down”-conversion spectra of HAp:Gd/Yb/Tm and HAp:Gd/Eu powders showed characteristic transitions of Tm3+ and Eu3+, respectively. Furthermore, in contrast to diamagnetic HAp, all HAp:RE3+ powders exhibited paramagnetic behavior. Cell viability tests of HAp:Gd/Yb/Tm and HAp:Gd/Eu powders in human dental pulp stem cell cultures indicated their good biocompatibility.",
publisher = "Springer Nature",
journal = "Scientific Reports",
title = "Rare-earth (Gd 3+ ,Yb 3+ /Tm 3+ , Eu 3+ ) co-doped hydroxyapatite as magnetic, up-conversion and down-conversion materials for multimodal imaging",
pages = "1-15",
volume = "9",
number = "1",
doi = "10.1038/s41598-019-52885-0",
url = "https://hdl.handle.net/21.15107/rcub_dais_6950"
}
Ignjatović, N., Mančić, L., Vuković, M., Stojanović, Z., Nikolić, M. G., Škapin, S. D., Jovanović, S., Veselinović, L., Uskoković, V., Lazić, S., Marković, S., Lazarević, M. M.,& Uskoković, D. (2019). Rare-earth (Gd 3+ ,Yb 3+ /Tm 3+ , Eu 3+ ) co-doped hydroxyapatite as magnetic, up-conversion and down-conversion materials for multimodal imaging.
Scientific Reports
Springer Nature., 9(1), 1-15.
https://doi.org/10.1038/s41598-019-52885-0
Ignjatović N, Mančić L, Vuković M, Stojanović Z, Nikolić MG, Škapin SD, Jovanović S, Veselinović L, Uskoković V, Lazić S, Marković S, Lazarević MM, Uskoković D. Rare-earth (Gd 3+ ,Yb 3+ /Tm 3+ , Eu 3+ ) co-doped hydroxyapatite as magnetic, up-conversion and down-conversion materials for multimodal imaging. Scientific Reports. 2019;9(1):1-15.
doi:10.1038/s41598-019-52885-0.
Ignjatović Nenad, Mančić Lidija, Vuković Marina, Stojanović Zoran, Nikolić Marko G., Škapin Srečo Davor, Jovanović Sonja, Veselinović Ljiljana, Uskoković Vuk, Lazić Snežana, Marković Smilja, Lazarević Miloš M., Uskoković Dragan, "Rare-earth (Gd 3+ ,Yb 3+ /Tm 3+ , Eu 3+ ) co-doped hydroxyapatite as magnetic, up-conversion and down-conversion materials for multimodal imaging" Scientific Reports, 9, no. 1 (2019):1-15,
https://doi.org/10.1038/s41598-019-52885-0 .
1
23
13
23

Effect of Gd3+ introduction on YF3: Yb, Er structural, morphological and optical properties

Dinić, Ivana; Vuković, Marina; Vulić, Predrag; Nikolić, Marko G.; Milošević, Olivera; Mančić, Lidija

(Belgrade : Institute of Technical Sciences of SASA, 2019)

TY  - CONF
AU  - Dinić, Ivana
AU  - Vuković, Marina
AU  - Vulić, Predrag
AU  - Nikolić, Marko G.
AU  - Milošević, Olivera
AU  - Mančić, Lidija
PY  - 2019
AB  - Monosized up-converting nanoparticles (UCNPs) with a spherical shape and biocompatible surface have a wide application in biomedicine as new cell markers or light-triggered drug delivery agents. The synthesis of the hexagonal β-NaYF4:Yb/Er phase is of a great interest, because of its most efficient up-conversion luminescence. Beside it, synthesis of the UCNPs based on YF3:Yb/Er phase is also attractive due to its orthorhombic phase arrangement and fact that higher concentration of dopants could be introduced in such crystal lattice. In this work the synthesis of pure and Gd-doped YF3:Yb/Er phases were performed through hydro/solvo thermal method using a biocompatible chitosan as a surfactant. The XRD analysis showed that independently of the gadolinium content formation of the orthorhombic phase is achieved, but intensity of the green emission due to the (2H11/2, 4S3/2) → 4I15/2 electronic transitions was highest for un-doped YF3:Yb/Er sample.
PB  - Belgrade : Institute of Technical Sciences of SASA
C3  - Program and the Book of abstracts / Eighteenth Young Researchers' Conference Materials Sciences and Engineering, December 4-6, 2019, Belgrade, Serbia
T1  - Effect of Gd3+ introduction on YF3: Yb, Er structural, morphological and optical properties
SP  - 33
EP  - 33
ER  - 
@conference{
author = "Dinić, Ivana and Vuković, Marina and Vulić, Predrag and Nikolić, Marko G. and Milošević, Olivera and Mančić, Lidija",
year = "2019",
abstract = "Monosized up-converting nanoparticles (UCNPs) with a spherical shape and biocompatible surface have a wide application in biomedicine as new cell markers or light-triggered drug delivery agents. The synthesis of the hexagonal β-NaYF4:Yb/Er phase is of a great interest, because of its most efficient up-conversion luminescence. Beside it, synthesis of the UCNPs based on YF3:Yb/Er phase is also attractive due to its orthorhombic phase arrangement and fact that higher concentration of dopants could be introduced in such crystal lattice. In this work the synthesis of pure and Gd-doped YF3:Yb/Er phases were performed through hydro/solvo thermal method using a biocompatible chitosan as a surfactant. The XRD analysis showed that independently of the gadolinium content formation of the orthorhombic phase is achieved, but intensity of the green emission due to the (2H11/2, 4S3/2) → 4I15/2 electronic transitions was highest for un-doped YF3:Yb/Er sample.",
publisher = "Belgrade : Institute of Technical Sciences of SASA",
journal = "Program and the Book of abstracts / Eighteenth Young Researchers' Conference Materials Sciences and Engineering, December 4-6, 2019, Belgrade, Serbia",
title = "Effect of Gd3+ introduction on YF3: Yb, Er structural, morphological and optical properties",
pages = "33-33"
}
Dinić, I., Vuković, M., Vulić, P., Nikolić, M. G., Milošević, O.,& Mančić, L. (2019). Effect of Gd3+ introduction on YF3: Yb, Er structural, morphological and optical properties.
Program and the Book of abstracts / Eighteenth Young Researchers' Conference Materials Sciences and Engineering, December 4-6, 2019, Belgrade, Serbia
Belgrade : Institute of Technical Sciences of SASA., 33-33.
Dinić I, Vuković M, Vulić P, Nikolić MG, Milošević O, Mančić L. Effect of Gd3+ introduction on YF3: Yb, Er structural, morphological and optical properties. Program and the Book of abstracts / Eighteenth Young Researchers' Conference Materials Sciences and Engineering, December 4-6, 2019, Belgrade, Serbia. 2019;:33-33.
Dinić Ivana, Vuković Marina, Vulić Predrag, Nikolić Marko G., Milošević Olivera, Mančić Lidija, "Effect of Gd3+ introduction on YF3: Yb, Er structural, morphological and optical properties" Program and the Book of abstracts / Eighteenth Young Researchers' Conference Materials Sciences and Engineering, December 4-6, 2019, Belgrade, Serbia (2019):33-33

The usage of different fluoride sources during solvothermal synthesis of UCNPs in hydroxyl-carboxyl chelated precursor

Vuković, Marina; Dinić, Ivana; Mančić, Lidija; Vulić, Predrag J.; Nikolić, Marko G.; Milošević, Olivera

(Belgrade : Serbian Ceramic Society, 2019)

TY  - CONF
AU  - Vuković, Marina
AU  - Dinić, Ivana
AU  - Mančić, Lidija
AU  - Vulić, Predrag J.
AU  - Nikolić, Marko G.
AU  - Milošević, Olivera
PY  - 2019
AB  - There is a great interest for the synthesis of rare earth (RE) doped up-converting nanoparticles (UCNPs) which morphological and luminescence properties are well suited for application in optoelectronics, forensics, security and biomedicine. The synthesis of such particles usually comprises decomposition of organometallic compounds in an oxygen-free environment followed with coating of biocompatible layer or ligands exchange. In this work hydroxyl-carboxyl (HO-C) type of chelators (citric acid and sodium citrate) are used for the stabilization of NaYF4:Gd,Yb,Er UCNPs during solvothermal treatment of rare earth nitrate salts with different fluoride sources (NaF, NH4F and NH4HF2). The x-ray powder diffraction (XRPD) showed that all powders contain the mixture of cubic and hexagonal NaYF4:Gd,Yb,Er phase in nano and micro-sized particles respectively. However, the content of later one prevails in samples obtain when Nacitrate is used as chelator, regardless of which fluoride source is used for precipitation. Additionally, variation of the particles size and shape is detected with a variation of fluoride type. All particles have hydrophilic surface due to retention of citrate ligands and emit intense green light emission centered at 519 and 539 nm (2H11/2,4S3/2→4I15/2) when excited with near infrared light.
PB  - Belgrade : Serbian Ceramic Society
C3  - Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VIII : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 23-25. September 2019
T1  - The usage of different fluoride sources during solvothermal synthesis of UCNPs in hydroxyl-carboxyl chelated precursor
SP  - 47
EP  - 47
ER  - 
@conference{
author = "Vuković, Marina and Dinić, Ivana and Mančić, Lidija and Vulić, Predrag J. and Nikolić, Marko G. and Milošević, Olivera",
year = "2019",
abstract = "There is a great interest for the synthesis of rare earth (RE) doped up-converting nanoparticles (UCNPs) which morphological and luminescence properties are well suited for application in optoelectronics, forensics, security and biomedicine. The synthesis of such particles usually comprises decomposition of organometallic compounds in an oxygen-free environment followed with coating of biocompatible layer or ligands exchange. In this work hydroxyl-carboxyl (HO-C) type of chelators (citric acid and sodium citrate) are used for the stabilization of NaYF4:Gd,Yb,Er UCNPs during solvothermal treatment of rare earth nitrate salts with different fluoride sources (NaF, NH4F and NH4HF2). The x-ray powder diffraction (XRPD) showed that all powders contain the mixture of cubic and hexagonal NaYF4:Gd,Yb,Er phase in nano and micro-sized particles respectively. However, the content of later one prevails in samples obtain when Nacitrate is used as chelator, regardless of which fluoride source is used for precipitation. Additionally, variation of the particles size and shape is detected with a variation of fluoride type. All particles have hydrophilic surface due to retention of citrate ligands and emit intense green light emission centered at 519 and 539 nm (2H11/2,4S3/2→4I15/2) when excited with near infrared light.",
publisher = "Belgrade : Serbian Ceramic Society",
journal = "Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VIII : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 23-25. September 2019",
title = "The usage of different fluoride sources during solvothermal synthesis of UCNPs in hydroxyl-carboxyl chelated precursor",
pages = "47-47"
}
Vuković, M., Dinić, I., Mančić, L., Vulić, P. J., Nikolić, M. G.,& Milošević, O. (2019). The usage of different fluoride sources during solvothermal synthesis of UCNPs in hydroxyl-carboxyl chelated precursor.
Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VIII : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 23-25. September 2019
Belgrade : Serbian Ceramic Society., 47-47.
Vuković M, Dinić I, Mančić L, Vulić PJ, Nikolić MG, Milošević O. The usage of different fluoride sources during solvothermal synthesis of UCNPs in hydroxyl-carboxyl chelated precursor. Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VIII : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 23-25. September 2019. 2019;:47-47.
Vuković Marina, Dinić Ivana, Mančić Lidija, Vulić Predrag J., Nikolić Marko G., Milošević Olivera, "The usage of different fluoride sources during solvothermal synthesis of UCNPs in hydroxyl-carboxyl chelated precursor" Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VIII : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 23-25. September 2019 (2019):47-47

Influence of Gd3+ doping on the NaYF4 :YB3+,ER3+ structural and up-conversion properties

Vuković, Marina; Mančić, Lidija; Dinić, Ivana; Vulić, Predrag J.; Nikolić, Marko G.; Tan, Zhenquan; Milošević, Olivera

(Budapest : [s. n.], 2019)

TY  - CONF
AU  - Vuković, Marina
AU  - Mančić, Lidija
AU  - Dinić, Ivana
AU  - Vulić, Predrag J.
AU  - Nikolić, Marko G.
AU  - Tan, Zhenquan
AU  - Milošević, Olivera
PY  - 2019
AB  - application as lasers, displays, photo-thermal agents and biomarkers. Due to efficient two-phonon excitation and the large anti-Stocks shift UCNPs are able to emit visible or UV photons under excitation by near-infrared (NIR). Over the last decade, decomposition of organometallic compounds has been indicated as one of the most convenient method for the synthesis of monodisperse NaYF4:Yb3+,Er3+ UCNPs with a hexagonal crystal structure. Herein, NaY0.8-xGdxYb0.18Er0.02F4 (x= 0.3 or 0.15) up-conversion nanoparticles crystallized in the hexagonal space group P63/m were successfully synthesized solvothermally utilizing rare earth nitrates, NaF and polyvinylpyrrolidone (PVP) in ethanol-water mixture at 200 °C. Rietveld refinement of the X-ray powder diffraction (XRPD) data and high resolution transmission microscopy (HRTEM) analysis show that all UCNPs are monocrystalline (60-70 nm), have low defect concentration and uniform dopants distribution. Fourier-transform infrared (FTIR) spectroscopy indicate existence of the PVP ligands at the UCNPs surface, while photoluminescence (PL) spectra shows characteristic green (at 520 and 540 nm, due to 2H11/2, 4S3/2→4I15/2 transitions) and red (at 655 nm, due to 4F9/2 → 4I15/2 transition) emission lines under excitation by NIR (λ =980 nm) light.
PB  - Budapest : [s. n.]
C3  - Abstracts / International Workshop on Woman in Ceramic Science (WoCeram2019), April 7-9, 2019/ Budapest, Hungary, Novotel Danube Budapest
T1  - Influence of Gd3+ doping on the NaYF4 :YB3+,ER3+ structural and up-conversion properties
SP  - 19
EP  - 20
ER  - 
@conference{
author = "Vuković, Marina and Mančić, Lidija and Dinić, Ivana and Vulić, Predrag J. and Nikolić, Marko G. and Tan, Zhenquan and Milošević, Olivera",
year = "2019",
abstract = "application as lasers, displays, photo-thermal agents and biomarkers. Due to efficient two-phonon excitation and the large anti-Stocks shift UCNPs are able to emit visible or UV photons under excitation by near-infrared (NIR). Over the last decade, decomposition of organometallic compounds has been indicated as one of the most convenient method for the synthesis of monodisperse NaYF4:Yb3+,Er3+ UCNPs with a hexagonal crystal structure. Herein, NaY0.8-xGdxYb0.18Er0.02F4 (x= 0.3 or 0.15) up-conversion nanoparticles crystallized in the hexagonal space group P63/m were successfully synthesized solvothermally utilizing rare earth nitrates, NaF and polyvinylpyrrolidone (PVP) in ethanol-water mixture at 200 °C. Rietveld refinement of the X-ray powder diffraction (XRPD) data and high resolution transmission microscopy (HRTEM) analysis show that all UCNPs are monocrystalline (60-70 nm), have low defect concentration and uniform dopants distribution. Fourier-transform infrared (FTIR) spectroscopy indicate existence of the PVP ligands at the UCNPs surface, while photoluminescence (PL) spectra shows characteristic green (at 520 and 540 nm, due to 2H11/2, 4S3/2→4I15/2 transitions) and red (at 655 nm, due to 4F9/2 → 4I15/2 transition) emission lines under excitation by NIR (λ =980 nm) light.",
publisher = "Budapest : [s. n.]",
journal = "Abstracts / International Workshop on Woman in Ceramic Science (WoCeram2019), April 7-9, 2019/ Budapest, Hungary, Novotel Danube Budapest",
title = "Influence of Gd3+ doping on the NaYF4 :YB3+,ER3+ structural and up-conversion properties",
pages = "19-20"
}
Vuković, M., Mančić, L., Dinić, I., Vulić, P. J., Nikolić, M. G., Tan, Z.,& Milošević, O. (2019). Influence of Gd3+ doping on the NaYF4 :YB3+,ER3+ structural and up-conversion properties.
Abstracts / International Workshop on Woman in Ceramic Science (WoCeram2019), April 7-9, 2019/ Budapest, Hungary, Novotel Danube Budapest
Budapest : [s. n.]., 19-20.
Vuković M, Mančić L, Dinić I, Vulić PJ, Nikolić MG, Tan Z, Milošević O. Influence of Gd3+ doping on the NaYF4 :YB3+,ER3+ structural and up-conversion properties. Abstracts / International Workshop on Woman in Ceramic Science (WoCeram2019), April 7-9, 2019/ Budapest, Hungary, Novotel Danube Budapest. 2019;:19-20.
Vuković Marina, Mančić Lidija, Dinić Ivana, Vulić Predrag J., Nikolić Marko G., Tan Zhenquan, Milošević Olivera, "Influence of Gd3+ doping on the NaYF4 :YB3+,ER3+ structural and up-conversion properties" Abstracts / International Workshop on Woman in Ceramic Science (WoCeram2019), April 7-9, 2019/ Budapest, Hungary, Novotel Danube Budapest (2019):19-20

Tuning the optical, electrical and photoelectrocatalytic properties of Zno materials by varying of intrinsic defects concentration

Marković, Smilja; Rajić, Vladimir; Veselinović, Ljiljana; Stojković Simatović, Ivana; Belošević Čavor, Jelena; Škapin, Srečo Davor; Kovač, Janez; Nikolić, Marko G.; Uskoković, Dragan

(Budapest : [s. n.], 2019)

TY  - CONF
AU  - Marković, Smilja
AU  - Rajić, Vladimir
AU  - Veselinović, Ljiljana
AU  - Stojković Simatović, Ivana
AU  - Belošević Čavor, Jelena
AU  - Škapin, Srečo Davor
AU  - Kovač, Janez
AU  - Nikolić, Marko G.
AU  - Uskoković, Dragan
PY  - 2019
AB  - During the last decade zinc oxide (ZnO) has attracted considerable attention as a promising material for electronic, optoelectronic and spintronic devices. ZnO has a wide bandgap (3.37 eV at room temperature) and relatively large exciton binding energy (60 meV) which enables multifunctional application. Until now ZnO-based materials have been used as UV and blue light emitters, varistors, thermistors, semiconductors, photoanodes, and other. Various approaches have been applied to improve functional properties of zinc oxide, such as: fabrication of ZnO-based heterojunction particles, particles’ surface sensitization, hydrogenation, etc. It has been found that intrinsic defects (vacancies, interstitials and antisites) in the crystal structure of a ZnO strongly influenced its electrical and optical properties. Thus, correlation of the intrinsic defects concentration with optical and electrical properties of ZnO materials is of great importance for their further application in opto-electronic devices. In this study we investigated the influence of intrinsic defects concentration on the optical, electrical and photoelectrocatalytic properties of ZnO materials. To obtain ZnO powder with a high concentration of intrinsic defects microwave processing of precipitate was employed, while for further varying of defects concentration, the powder was thermally treated in three different atmospheres: air, argon and oxygen. The ZnO powder was uniaxially pressed (P = 100 MPa) in cylindrical compacts (R= 6 mm and h approx. 3 mm) which were sintered in different atmospheres by heating rate of 10 °/min up to 1100 °C, and with dwell time of 1 h. To study a crystal structure of ZnO samples XRD and Raman spectroscopy were used, while for microstructural investigation field emission scanning electron micrographs were recorded. Optical properties were studied using UV–Vis diffuse reflectance spectroscopy. To reveal the role of intrinsic defects in ZnO crystal lattice on functional properties, XPS, photoluminescence, electroluminescence and electrochemical impedance spectra were analyzed. A detailed analysis of the experimental results imply that a high concentration of intrinsic defects, in particular oxygen vacancies, is of the greatest importance for tunable light-emitting diode application and significant for the photoanode properties. To support our experimental observation we performed ab initio calculations based on density functional theory (DFT).
PB  - Budapest : [s. n.]
C3  - Abstracts / International Workshop on Woman in Ceramic Science (WoCeram2019), April 7-9, 2019/ Budapest, Hungary, Novotel Danube Budapest
T1  - Tuning the optical, electrical and photoelectrocatalytic properties of Zno materials by varying of intrinsic defects concentration
SP  - 11
EP  - 11
UR  - https://hdl.handle.net/21.15107/rcub_dais_6997
ER  - 
@conference{
author = "Marković, Smilja and Rajić, Vladimir and Veselinović, Ljiljana and Stojković Simatović, Ivana and Belošević Čavor, Jelena and Škapin, Srečo Davor and Kovač, Janez and Nikolić, Marko G. and Uskoković, Dragan",
year = "2019",
abstract = "During the last decade zinc oxide (ZnO) has attracted considerable attention as a promising material for electronic, optoelectronic and spintronic devices. ZnO has a wide bandgap (3.37 eV at room temperature) and relatively large exciton binding energy (60 meV) which enables multifunctional application. Until now ZnO-based materials have been used as UV and blue light emitters, varistors, thermistors, semiconductors, photoanodes, and other. Various approaches have been applied to improve functional properties of zinc oxide, such as: fabrication of ZnO-based heterojunction particles, particles’ surface sensitization, hydrogenation, etc. It has been found that intrinsic defects (vacancies, interstitials and antisites) in the crystal structure of a ZnO strongly influenced its electrical and optical properties. Thus, correlation of the intrinsic defects concentration with optical and electrical properties of ZnO materials is of great importance for their further application in opto-electronic devices. In this study we investigated the influence of intrinsic defects concentration on the optical, electrical and photoelectrocatalytic properties of ZnO materials. To obtain ZnO powder with a high concentration of intrinsic defects microwave processing of precipitate was employed, while for further varying of defects concentration, the powder was thermally treated in three different atmospheres: air, argon and oxygen. The ZnO powder was uniaxially pressed (P = 100 MPa) in cylindrical compacts (R= 6 mm and h approx. 3 mm) which were sintered in different atmospheres by heating rate of 10 °/min up to 1100 °C, and with dwell time of 1 h. To study a crystal structure of ZnO samples XRD and Raman spectroscopy were used, while for microstructural investigation field emission scanning electron micrographs were recorded. Optical properties were studied using UV–Vis diffuse reflectance spectroscopy. To reveal the role of intrinsic defects in ZnO crystal lattice on functional properties, XPS, photoluminescence, electroluminescence and electrochemical impedance spectra were analyzed. A detailed analysis of the experimental results imply that a high concentration of intrinsic defects, in particular oxygen vacancies, is of the greatest importance for tunable light-emitting diode application and significant for the photoanode properties. To support our experimental observation we performed ab initio calculations based on density functional theory (DFT).",
publisher = "Budapest : [s. n.]",
journal = "Abstracts / International Workshop on Woman in Ceramic Science (WoCeram2019), April 7-9, 2019/ Budapest, Hungary, Novotel Danube Budapest",
title = "Tuning the optical, electrical and photoelectrocatalytic properties of Zno materials by varying of intrinsic defects concentration",
pages = "11-11",
url = "https://hdl.handle.net/21.15107/rcub_dais_6997"
}
Marković, S., Rajić, V., Veselinović, L., Stojković Simatović, I., Belošević Čavor, J., Škapin, S. D., Kovač, J., Nikolić, M. G.,& Uskoković, D. (2019). Tuning the optical, electrical and photoelectrocatalytic properties of Zno materials by varying of intrinsic defects concentration.
Abstracts / International Workshop on Woman in Ceramic Science (WoCeram2019), April 7-9, 2019/ Budapest, Hungary, Novotel Danube Budapest
Budapest : [s. n.]., 11-11.
Marković S, Rajić V, Veselinović L, Stojković Simatović I, Belošević Čavor J, Škapin SD, Kovač J, Nikolić MG, Uskoković D. Tuning the optical, electrical and photoelectrocatalytic properties of Zno materials by varying of intrinsic defects concentration. Abstracts / International Workshop on Woman in Ceramic Science (WoCeram2019), April 7-9, 2019/ Budapest, Hungary, Novotel Danube Budapest. 2019;:11-11.
Marković Smilja, Rajić Vladimir, Veselinović Ljiljana, Stojković Simatović Ivana, Belošević Čavor Jelena, Škapin Srečo Davor, Kovač Janez, Nikolić Marko G., Uskoković Dragan, "Tuning the optical, electrical and photoelectrocatalytic properties of Zno materials by varying of intrinsic defects concentration" Abstracts / International Workshop on Woman in Ceramic Science (WoCeram2019), April 7-9, 2019/ Budapest, Hungary, Novotel Danube Budapest (2019):11-11

Calcium phosphate nanoparticles as intrinsic inorganic antimicrobials: In search of the key particle property

Uskoković, Vuk; Tang, Sean; Nikolić, Marko G.; Marković, Smilja; Wu, Victoria M.

(AIP Publishing LLC, 2019)

TY  - JOUR
AU  - Uskoković, Vuk
AU  - Tang, Sean
AU  - Nikolić, Marko G.
AU  - Marković, Smilja
AU  - Wu, Victoria M.
PY  - 2019
AB  - One of the main goals of materials science in the 21st century is the development of materials with rationally designed properties as substitutes for traditional pharmacotherapies. At the same time, there is a lack of understanding of the exact material properties that induce therapeutic effects in biological systems, which limits their rational optimization for the related medical applications. This study sets the foundation for a general approach for elucidating nanoparticle properties as determinants of antibacterial activity, with a particular focus on calcium phosphate nanoparticles. To that end, nine physicochemical effects were studied and a number of them were refuted, thus putting an end to frequently erred hypotheses in the literature. Rather than having one key particle property responsible for eliciting the antibacterial effect, a complex synergy of factors is shown to be at work, including (a) nanoscopic size; (b) elevated intracellular free calcium levels due to nanoparticle solubility; (c) diffusivity and favorable electrostatic properties of the nanoparticle surface, primarily low net charge and high charge density; and (d) the dynamics of perpetual exchange of ultrafine clusters across the particle/solution interface. On the positive side, this multifaceted mechanism is less prone to induce bacterial resistance to the therapy and can be a gateway to the sphere of personalized medicine. On a more problematic side, it implies a less intense effect compared to single-target molecular therapies and a difficulty of elucidating the exact mechanisms of action, while also making the rational design of theirs for this type of medical application a challenge.
PB  - AIP Publishing LLC
T2  - Biointerphases
T1  - Calcium phosphate nanoparticles as intrinsic inorganic antimicrobials: In search of the key particle property
SP  - 031001
VL  - 14
IS  - 3
DO  - 10.1116/1.5090396
UR  - https://hdl.handle.net/21.15107/rcub_dais_6468
ER  - 
@article{
author = "Uskoković, Vuk and Tang, Sean and Nikolić, Marko G. and Marković, Smilja and Wu, Victoria M.",
year = "2019",
abstract = "One of the main goals of materials science in the 21st century is the development of materials with rationally designed properties as substitutes for traditional pharmacotherapies. At the same time, there is a lack of understanding of the exact material properties that induce therapeutic effects in biological systems, which limits their rational optimization for the related medical applications. This study sets the foundation for a general approach for elucidating nanoparticle properties as determinants of antibacterial activity, with a particular focus on calcium phosphate nanoparticles. To that end, nine physicochemical effects were studied and a number of them were refuted, thus putting an end to frequently erred hypotheses in the literature. Rather than having one key particle property responsible for eliciting the antibacterial effect, a complex synergy of factors is shown to be at work, including (a) nanoscopic size; (b) elevated intracellular free calcium levels due to nanoparticle solubility; (c) diffusivity and favorable electrostatic properties of the nanoparticle surface, primarily low net charge and high charge density; and (d) the dynamics of perpetual exchange of ultrafine clusters across the particle/solution interface. On the positive side, this multifaceted mechanism is less prone to induce bacterial resistance to the therapy and can be a gateway to the sphere of personalized medicine. On a more problematic side, it implies a less intense effect compared to single-target molecular therapies and a difficulty of elucidating the exact mechanisms of action, while also making the rational design of theirs for this type of medical application a challenge.",
publisher = "AIP Publishing LLC",
journal = "Biointerphases",
title = "Calcium phosphate nanoparticles as intrinsic inorganic antimicrobials: In search of the key particle property",
pages = "031001",
volume = "14",
number = "3",
doi = "10.1116/1.5090396",
url = "https://hdl.handle.net/21.15107/rcub_dais_6468"
}
Uskoković, V., Tang, S., Nikolić, M. G., Marković, S.,& Wu, V. M. (2019). Calcium phosphate nanoparticles as intrinsic inorganic antimicrobials: In search of the key particle property.
Biointerphases
AIP Publishing LLC., 14(3), 031001.
https://doi.org/10.1116/1.5090396
Uskoković V, Tang S, Nikolić MG, Marković S, Wu VM. Calcium phosphate nanoparticles as intrinsic inorganic antimicrobials: In search of the key particle property. Biointerphases. 2019;14(3):031001.
doi:10.1116/1.5090396.
Uskoković Vuk, Tang Sean, Nikolić Marko G., Marković Smilja, Wu Victoria M., "Calcium phosphate nanoparticles as intrinsic inorganic antimicrobials: In search of the key particle property" Biointerphases, 14, no. 3 (2019):031001,
https://doi.org/10.1116/1.5090396 .
3
16
11
17

Calcium phosphate nanoparticles as intrinsic inorganic antimicrobials: In search of the key particle property

Uskoković, Vuk; Tang, Sean; Nikolić, Marko G.; Marković, Smilja; Wu, Victoria M.

(AIP Publishing LLC, 2019)

TY  - JOUR
AU  - Uskoković, Vuk
AU  - Tang, Sean
AU  - Nikolić, Marko G.
AU  - Marković, Smilja
AU  - Wu, Victoria M.
PY  - 2019
AB  - One of the main goals of materials science in the 21st century is the development of materials with rationally designed properties as substitutes for traditional pharmacotherapies. At the same time, there is a lack of understanding of the exact material properties that induce therapeutic effects in biological systems, which limits their rational optimization for the related medical applications. This study sets the foundation for a general approach for elucidating nanoparticle properties as determinants of antibacterial activity, with a particular focus on calcium phosphate nanoparticles. To that end, nine physicochemical effects were studied and a number of them were refuted, thus putting an end to frequently erred hypotheses in the literature. Rather than having one key particle property responsible for eliciting the antibacterial effect, a complex synergy of factors is shown to be at work, including (a) nanoscopic size; (b) elevated intracellular free calcium levels due to nanoparticle solubility; (c) diffusivity and favorable electrostatic properties of the nanoparticle surface, primarily low net charge and high charge density; and (d) the dynamics of perpetual exchange of ultrafine clusters across the particle/solution interface. On the positive side, this multifaceted mechanism is less prone to induce bacterial resistance to the therapy and can be a gateway to the sphere of personalized medicine. On a more problematic side, it implies a less intense effect compared to single-target molecular therapies and a difficulty of elucidating the exact mechanisms of action, while also making the rational design of theirs for this type of medical application a challenge.
PB  - AIP Publishing LLC
T2  - Biointerphases
T1  - Calcium phosphate nanoparticles as intrinsic inorganic antimicrobials: In search of the key particle property
SP  - 031001
VL  - 14
IS  - 3
DO  - 10.1116/1.5090396
UR  - https://hdl.handle.net/21.15107/rcub_dais_6469
ER  - 
@article{
author = "Uskoković, Vuk and Tang, Sean and Nikolić, Marko G. and Marković, Smilja and Wu, Victoria M.",
year = "2019",
abstract = "One of the main goals of materials science in the 21st century is the development of materials with rationally designed properties as substitutes for traditional pharmacotherapies. At the same time, there is a lack of understanding of the exact material properties that induce therapeutic effects in biological systems, which limits their rational optimization for the related medical applications. This study sets the foundation for a general approach for elucidating nanoparticle properties as determinants of antibacterial activity, with a particular focus on calcium phosphate nanoparticles. To that end, nine physicochemical effects were studied and a number of them were refuted, thus putting an end to frequently erred hypotheses in the literature. Rather than having one key particle property responsible for eliciting the antibacterial effect, a complex synergy of factors is shown to be at work, including (a) nanoscopic size; (b) elevated intracellular free calcium levels due to nanoparticle solubility; (c) diffusivity and favorable electrostatic properties of the nanoparticle surface, primarily low net charge and high charge density; and (d) the dynamics of perpetual exchange of ultrafine clusters across the particle/solution interface. On the positive side, this multifaceted mechanism is less prone to induce bacterial resistance to the therapy and can be a gateway to the sphere of personalized medicine. On a more problematic side, it implies a less intense effect compared to single-target molecular therapies and a difficulty of elucidating the exact mechanisms of action, while also making the rational design of theirs for this type of medical application a challenge.",
publisher = "AIP Publishing LLC",
journal = "Biointerphases",
title = "Calcium phosphate nanoparticles as intrinsic inorganic antimicrobials: In search of the key particle property",
pages = "031001",
volume = "14",
number = "3",
doi = "10.1116/1.5090396",
url = "https://hdl.handle.net/21.15107/rcub_dais_6469"
}
Uskoković, V., Tang, S., Nikolić, M. G., Marković, S.,& Wu, V. M. (2019). Calcium phosphate nanoparticles as intrinsic inorganic antimicrobials: In search of the key particle property.
Biointerphases
AIP Publishing LLC., 14(3), 031001.
https://doi.org/10.1116/1.5090396
Uskoković V, Tang S, Nikolić MG, Marković S, Wu VM. Calcium phosphate nanoparticles as intrinsic inorganic antimicrobials: In search of the key particle property. Biointerphases. 2019;14(3):031001.
doi:10.1116/1.5090396.
Uskoković Vuk, Tang Sean, Nikolić Marko G., Marković Smilja, Wu Victoria M., "Calcium phosphate nanoparticles as intrinsic inorganic antimicrobials: In search of the key particle property" Biointerphases, 14, no. 3 (2019):031001,
https://doi.org/10.1116/1.5090396 .
3
16
11
17

Supplementary file: Mancic, L., Djukic-Vukovic, A., Dinic, I., Nikolic, M.G., Rabasovic, M.D., Krmpot, A.J., Costa, A.M.L.M., Marinkovic, B.A., Mojovic, L., Milosevic, O., 2018. One-step synthesis of amino-functionalized up-converting NaYF4:Yb,Er nanoparticles for in vitro cell imaging. RSC Adv. 8, 27429–27437. https://doi.org/10.1039/C8RA04178D

Mančić, Lidija; Đukić Vuković, Aleksandra; Dinić, Ivana; Nikolić, Marko G.; Rabasović, Mihailo D.; Krmpot, Aleksandar; Costa, Antonio Mario Leal Martins; Marinković, Bojan A.; Mojović, Ljiljana; Milošević, Olivera

(2018)

TY  - BOOK
AU  - Mančić, Lidija
AU  - Đukić Vuković, Aleksandra
AU  - Dinić, Ivana
AU  - Nikolić, Marko G.
AU  - Rabasović, Mihailo D.
AU  - Krmpot, Aleksandar
AU  - Costa, Antonio Mario Leal Martins
AU  - Marinković, Bojan A.
AU  - Mojović, Ljiljana
AU  - Milošević, Olivera
PY  - 2018
AB  - Fig. S1. TEM (a) and HRTEM (b) images of amino modified NaYF4:Yb,Er UCNPs. Corresponding FFT/IFFT given as insets in b, confirms that
much smaller crystallites notable at the particles surfaces (a) revealed periodic array of cubic alpha phase, (111) plane with d value of 3.140 Å; Fig. S2. XPS spectrum of amino-functionalized NaYF4:Yb,Er UCNPs: survey spectrum and fine-scan spectra of Na 1s, Y 3d, Yb 4d, Er 4d, F 1s
and decomposed ones of C 1s, O 1s and N 1s; Fig. S3. Photostability of amino-functionalized up-converting NaYF4:Yb,Er nanoparticles. The emission intensity was traced during 1h;
T2  - RSC Advances
T1  - Supplementary file: Mancic, L., Djukic-Vukovic, A., Dinic, I., Nikolic, M.G., Rabasovic, M.D., Krmpot, A.J., Costa, A.M.L.M., Marinkovic, B.A., Mojovic, L., Milosevic, O., 2018. One-step synthesis of amino-functionalized up-converting NaYF4:Yb,Er nanoparticles for in vitro cell imaging. RSC Adv. 8, 27429–27437. https://doi.org/10.1039/C8RA04178D
VL  - 8
IS  - 48
UR  - https://hdl.handle.net/21.15107/rcub_dais_3785
ER  - 
@book{
author = "Mančić, Lidija and Đukić Vuković, Aleksandra and Dinić, Ivana and Nikolić, Marko G. and Rabasović, Mihailo D. and Krmpot, Aleksandar and Costa, Antonio Mario Leal Martins and Marinković, Bojan A. and Mojović, Ljiljana and Milošević, Olivera",
year = "2018",
abstract = "Fig. S1. TEM (a) and HRTEM (b) images of amino modified NaYF4:Yb,Er UCNPs. Corresponding FFT/IFFT given as insets in b, confirms that
much smaller crystallites notable at the particles surfaces (a) revealed periodic array of cubic alpha phase, (111) plane with d value of 3.140 Å; Fig. S2. XPS spectrum of amino-functionalized NaYF4:Yb,Er UCNPs: survey spectrum and fine-scan spectra of Na 1s, Y 3d, Yb 4d, Er 4d, F 1s
and decomposed ones of C 1s, O 1s and N 1s; Fig. S3. Photostability of amino-functionalized up-converting NaYF4:Yb,Er nanoparticles. The emission intensity was traced during 1h;",
journal = "RSC Advances",
title = "Supplementary file: Mancic, L., Djukic-Vukovic, A., Dinic, I., Nikolic, M.G., Rabasovic, M.D., Krmpot, A.J., Costa, A.M.L.M., Marinkovic, B.A., Mojovic, L., Milosevic, O., 2018. One-step synthesis of amino-functionalized up-converting NaYF4:Yb,Er nanoparticles for in vitro cell imaging. RSC Adv. 8, 27429–27437. https://doi.org/10.1039/C8RA04178D",
volume = "8",
number = "48",
url = "https://hdl.handle.net/21.15107/rcub_dais_3785"
}
Mančić, L., Đukić Vuković, A., Dinić, I., Nikolić, M. G., Rabasović, M. D., Krmpot, A., Costa, A. M. L. M., Marinković, B. A., Mojović, L.,& Milošević, O. (2018). Supplementary file: Mancic, L., Djukic-Vukovic, A., Dinic, I., Nikolic, M.G., Rabasovic, M.D., Krmpot, A.J., Costa, A.M.L.M., Marinkovic, B.A., Mojovic, L., Milosevic, O., 2018. One-step synthesis of amino-functionalized up-converting NaYF4:Yb,Er nanoparticles for in vitro cell imaging. RSC Adv. 8, 27429–27437. https://doi.org/10.1039/C8RA04178D.
RSC Advances, 8(48).
Mančić L, Đukić Vuković A, Dinić I, Nikolić MG, Rabasović MD, Krmpot A, Costa AMLM, Marinković BA, Mojović L, Milošević O. Supplementary file: Mancic, L., Djukic-Vukovic, A., Dinic, I., Nikolic, M.G., Rabasovic, M.D., Krmpot, A.J., Costa, A.M.L.M., Marinkovic, B.A., Mojovic, L., Milosevic, O., 2018. One-step synthesis of amino-functionalized up-converting NaYF4:Yb,Er nanoparticles for in vitro cell imaging. RSC Adv. 8, 27429–27437. https://doi.org/10.1039/C8RA04178D. RSC Advances. 2018;8(48).
Mančić Lidija, Đukić Vuković Aleksandra, Dinić Ivana, Nikolić Marko G., Rabasović Mihailo D., Krmpot Aleksandar, Costa Antonio Mario Leal Martins, Marinković Bojan A., Mojović Ljiljana, Milošević Olivera, "Supplementary file: Mancic, L., Djukic-Vukovic, A., Dinic, I., Nikolic, M.G., Rabasovic, M.D., Krmpot, A.J., Costa, A.M.L.M., Marinkovic, B.A., Mojovic, L., Milosevic, O., 2018. One-step synthesis of amino-functionalized up-converting NaYF4:Yb,Er nanoparticles for in vitro cell imaging. RSC Adv. 8, 27429–27437. https://doi.org/10.1039/C8RA04178D" RSC Advances, 8, no. 48 (2018)

Rare earth dual-doped multifunctional hydroxyapatite particles for potential application in preventive medicine

Ignjatović, Nenad; Mančić, Lidija; Stojanović, Zoran S.; Nikolić, Marko G.; Škapin, Srečo Davor; Veselinović, Ljiljana; Uskoković, Dragan

(2018)

TY  - CONF
AU  - Ignjatović, Nenad
AU  - Mančić, Lidija
AU  - Stojanović, Zoran S.
AU  - Nikolić, Marko G.
AU  - Škapin, Srečo Davor
AU  - Veselinović, Ljiljana
AU  - Uskoković, Dragan
PY  - 2018
AB  - Composite biomaterials based on nano hydroxyapatite (HAp) are the subject of numerous studies in reconstructive medicine. Multifunctional and nanoparticulate systems based on HAp and biodegradable polymers are successfully designed as systems for controlled and systemic drug delivery suitable for use in reconstructive medicine [1, 2]. Thanks to the stability and flexibility of the apatite structure, Ca ions can be replaced with various elements (Zn, Sr, Mg, Co, etc.) [3, 4]. Doping the apatite structure enables potential application of this material in preventive medicine, too. Multimodal imaging (MI) is a new and promising technique for improved diagnosis and it is patient-friendly because it saves time. MI has recently attracted much attention due to the advantageous combination of various imaging modalities, such as computer tomography, photoluminescence and magnetic resonance imaging.
T1  - Rare earth dual-doped multifunctional hydroxyapatite particles for potential application in preventive medicine
UR  - https://hdl.handle.net/21.15107/rcub_dais_4064
ER  - 
@conference{
author = "Ignjatović, Nenad and Mančić, Lidija and Stojanović, Zoran S. and Nikolić, Marko G. and Škapin, Srečo Davor and Veselinović, Ljiljana and Uskoković, Dragan",
year = "2018",
abstract = "Composite biomaterials based on nano hydroxyapatite (HAp) are the subject of numerous studies in reconstructive medicine. Multifunctional and nanoparticulate systems based on HAp and biodegradable polymers are successfully designed as systems for controlled and systemic drug delivery suitable for use in reconstructive medicine [1, 2]. Thanks to the stability and flexibility of the apatite structure, Ca ions can be replaced with various elements (Zn, Sr, Mg, Co, etc.) [3, 4]. Doping the apatite structure enables potential application of this material in preventive medicine, too. Multimodal imaging (MI) is a new and promising technique for improved diagnosis and it is patient-friendly because it saves time. MI has recently attracted much attention due to the advantageous combination of various imaging modalities, such as computer tomography, photoluminescence and magnetic resonance imaging.",
title = "Rare earth dual-doped multifunctional hydroxyapatite particles for potential application in preventive medicine",
url = "https://hdl.handle.net/21.15107/rcub_dais_4064"
}
Ignjatović, N., Mančić, L., Stojanović, Z. S., Nikolić, M. G., Škapin, S. D., Veselinović, L.,& Uskoković, D. (2018). Rare earth dual-doped multifunctional hydroxyapatite particles for potential application in preventive medicine.
.
Ignjatović N, Mančić L, Stojanović ZS, Nikolić MG, Škapin SD, Veselinović L, Uskoković D. Rare earth dual-doped multifunctional hydroxyapatite particles for potential application in preventive medicine. 2018;.
Ignjatović Nenad, Mančić Lidija, Stojanović Zoran S., Nikolić Marko G., Škapin Srečo Davor, Veselinović Ljiljana, Uskoković Dragan, "Rare earth dual-doped multifunctional hydroxyapatite particles for potential application in preventive medicine" (2018)

NIR photo-driven upconversion in NaYF4:Yb,Er/PLGA particles for in vitro bioimaging of cancer cells

Mančić, Lidija; Đukić Vuković, Aleksandra; Dinić, Ivana; Nikolić, Marko G.; Rabasović, Mihailo D.; Krmpot, Aleksandar; Costa, Antonio Mario Leal Martins; Trišić, Dijana; Lazarević, Miloš; Mojović, Ljiljana; Milošević, Olivera

(Elsevier, 2018)

TY  - JOUR
AU  - Mančić, Lidija
AU  - Đukić Vuković, Aleksandra
AU  - Dinić, Ivana
AU  - Nikolić, Marko G.
AU  - Rabasović, Mihailo D.
AU  - Krmpot, Aleksandar
AU  - Costa, Antonio Mario Leal Martins
AU  - Trišić, Dijana
AU  - Lazarević, Miloš
AU  - Mojović, Ljiljana
AU  - Milošević, Olivera
PY  - 2018
AB  - Lanthanide-doped fluoride up-converting nanoparticles (UCNPs) represent the new class of imaging contrast agents which hold great potential for overcoming existing problems associated with traditionally used dyes, proteins and quantum dots. In this study, a new kind of hybrid NaYF4:Yb,Er/PLGA nanoparticles for efficient biolabeling were prepared through one-pot solvothermal synthesis route. Morphological and structural characteristics of the as-designed particles were obtained using X-ray powder diffraction (XRPD), scanning and transmission electron microscopy (SEM/TEM), energy dispersive spectroscopy (EDS), Fourier transform infrared (FTIR) and photoluminescence (PL) spectroscopy, while their cytotoxicity as well as up-conversion (UC) labeling capability were tested in vitro toward human gingival cells (HGC) and oral squamous cell carcinoma (OSCC). The results revealed coexistence of the cubic (Fm-3m) and hexagonal (P63/m) phase in spherical and irregularly shaped nanoparticles, respectively. PLGA [Poly(lactic-co-glycolic acid)] ligands attached at the surface of UCNPs particles provide their enhanced cellular uptake and enable high-quality cells imaging through a near-infrared (NIR) laser scanning microscopy (λex = 980 nm). Moreover, the fact that NaYF4:Yb,Er/PLGA UCNPs show low cytotoxicity against HGC over the whole concentration range (10–50 μg/mL) while a dose dependent viability of OSCC is obtained indicates that these might be a promising candidates for targeted cancer cell therapy. © 2018 Elsevier B.V.
PB  - Elsevier
T2  - Materials Science and Engineering C
T1  - NIR photo-driven upconversion in NaYF4:Yb,Er/PLGA particles for in vitro bioimaging of cancer cells
SP  - 597
EP  - 605
VL  - 91
DO  - 10.1016/j.msec.2018.05.081
UR  - https://hdl.handle.net/21.15107/rcub_dais_4083
ER  - 
@article{
author = "Mančić, Lidija and Đukić Vuković, Aleksandra and Dinić, Ivana and Nikolić, Marko G. and Rabasović, Mihailo D. and Krmpot, Aleksandar and Costa, Antonio Mario Leal Martins and Trišić, Dijana and Lazarević, Miloš and Mojović, Ljiljana and Milošević, Olivera",
year = "2018",
abstract = "Lanthanide-doped fluoride up-converting nanoparticles (UCNPs) represent the new class of imaging contrast agents which hold great potential for overcoming existing problems associated with traditionally used dyes, proteins and quantum dots. In this study, a new kind of hybrid NaYF4:Yb,Er/PLGA nanoparticles for efficient biolabeling were prepared through one-pot solvothermal synthesis route. Morphological and structural characteristics of the as-designed particles were obtained using X-ray powder diffraction (XRPD), scanning and transmission electron microscopy (SEM/TEM), energy dispersive spectroscopy (EDS), Fourier transform infrared (FTIR) and photoluminescence (PL) spectroscopy, while their cytotoxicity as well as up-conversion (UC) labeling capability were tested in vitro toward human gingival cells (HGC) and oral squamous cell carcinoma (OSCC). The results revealed coexistence of the cubic (Fm-3m) and hexagonal (P63/m) phase in spherical and irregularly shaped nanoparticles, respectively. PLGA [Poly(lactic-co-glycolic acid)] ligands attached at the surface of UCNPs particles provide their enhanced cellular uptake and enable high-quality cells imaging through a near-infrared (NIR) laser scanning microscopy (λex = 980 nm). Moreover, the fact that NaYF4:Yb,Er/PLGA UCNPs show low cytotoxicity against HGC over the whole concentration range (10–50 μg/mL) while a dose dependent viability of OSCC is obtained indicates that these might be a promising candidates for targeted cancer cell therapy. © 2018 Elsevier B.V.",
publisher = "Elsevier",
journal = "Materials Science and Engineering C",
title = "NIR photo-driven upconversion in NaYF4:Yb,Er/PLGA particles for in vitro bioimaging of cancer cells",
pages = "597-605",
volume = "91",
doi = "10.1016/j.msec.2018.05.081",
url = "https://hdl.handle.net/21.15107/rcub_dais_4083"
}
Mančić, L., Đukić Vuković, A., Dinić, I., Nikolić, M. G., Rabasović, M. D., Krmpot, A., Costa, A. M. L. M., Trišić, D., Lazarević, M., Mojović, L.,& Milošević, O. (2018). NIR photo-driven upconversion in NaYF4:Yb,Er/PLGA particles for in vitro bioimaging of cancer cells.
Materials Science and Engineering C
Elsevier., 91, 597-605.
https://doi.org/10.1016/j.msec.2018.05.081
Mančić L, Đukić Vuković A, Dinić I, Nikolić MG, Rabasović MD, Krmpot A, Costa AMLM, Trišić D, Lazarević M, Mojović L, Milošević O. NIR photo-driven upconversion in NaYF4:Yb,Er/PLGA particles for in vitro bioimaging of cancer cells. Materials Science and Engineering C. 2018;91:597-605.
doi:10.1016/j.msec.2018.05.081.
Mančić Lidija, Đukić Vuković Aleksandra, Dinić Ivana, Nikolić Marko G., Rabasović Mihailo D., Krmpot Aleksandar, Costa Antonio Mario Leal Martins, Trišić Dijana, Lazarević Miloš, Mojović Ljiljana, Milošević Olivera, "NIR photo-driven upconversion in NaYF4:Yb,Er/PLGA particles for in vitro bioimaging of cancer cells" Materials Science and Engineering C, 91 (2018):597-605,
https://doi.org/10.1016/j.msec.2018.05.081 .
12
8
11

One-step synthesis of amino-functionalized up-converting NaYF4:Yb,Er nanoparticles for: In vitro cell imaging

Mančić, Lidija; Đukić Vuković, Aleksandra; Dinić, Ivana; Nikolić, Marko G.; Rabasović, Mihailo D.; Krmpot, Aleksandar; Costa, Antonio Mario Leal Martins; Marinković, Bojan A.; Mojović, Ljiljana; Milošević, Olivera

(London : Royal Society of Chemistry, 2018)

TY  - JOUR
AU  - Mančić, Lidija
AU  - Đukić Vuković, Aleksandra
AU  - Dinić, Ivana
AU  - Nikolić, Marko G.
AU  - Rabasović, Mihailo D.
AU  - Krmpot, Aleksandar
AU  - Costa, Antonio Mario Leal Martins
AU  - Marinković, Bojan A.
AU  - Mojović, Ljiljana
AU  - Milošević, Olivera
PY  - 2018
AB  - The emerging up-conversion nanoparticles (UCNPs) offer a wide range of biotechnology applications, from biomarkers and deep tissue imaging, to single molecule tracking and drug delivery. Their successful conjugation to biocompatible agents is crucial for specific molecules recognition and usually requires multiple steps which may lead to low reproducibility. Here, we report a simple and rapid one-step procedure for in situ synthesis of biocompatible amino-functionalized NaYF4:Yb,Er UCNPs that could be used for NIR-driven fluorescence cell labeling. X-ray diffraction showed that UCNPs synthesized through chitosan-assisted solvothermal processing are monophasic and crystallize in a cubic α phase. Scanning and transmission electron microscopy revealed that the obtained crystals are spherical in shape with a mean diameter of 120 nm. Photoluminescence spectra indicated weaker green (2H11/2, 4S3/2 → 4I15/2) and stronger red emission (4F9/2 → 4I15/2), as a result of enhanced non-radiative 4I11/2 → 4I13/2 Er3+ relaxation. The presence of chitosan groups at the surface of UCNPs was confirmed by Fourier transform infrared spectroscopy, thermogravimetry and X-ray photoelectron spectroscopy. This provides their enhanced internalization in cells, at low concentration of 10 μg ml-1, without suppression of cell viability after 24 h of exposure. Furthermore, upon 980 nm laser irradiation, the amino-functionalized NaYF4:Yb,Er UCNPs were successfully used in vitro for labeling of two human cell types, normal gingival and oral squamous cell carcinoma. © 2018 The Royal Society of Chemistry.
PB  - London : Royal Society of Chemistry
T2  - RSC Advances
T2  - RSC Advances
T1  - One-step synthesis of amino-functionalized up-converting NaYF4:Yb,Er nanoparticles for: In vitro cell imaging
SP  - 27429
EP  - 27437
VL  - 8
IS  - 48
DO  - 10.1039/c8ra04178d
UR  - https://hdl.handle.net/21.15107/rcub_dais_3748
ER  - 
@article{
author = "Mančić, Lidija and Đukić Vuković, Aleksandra and Dinić, Ivana and Nikolić, Marko G. and Rabasović, Mihailo D. and Krmpot, Aleksandar and Costa, Antonio Mario Leal Martins and Marinković, Bojan A. and Mojović, Ljiljana and Milošević, Olivera",
year = "2018",
abstract = "The emerging up-conversion nanoparticles (UCNPs) offer a wide range of biotechnology applications, from biomarkers and deep tissue imaging, to single molecule tracking and drug delivery. Their successful conjugation to biocompatible agents is crucial for specific molecules recognition and usually requires multiple steps which may lead to low reproducibility. Here, we report a simple and rapid one-step procedure for in situ synthesis of biocompatible amino-functionalized NaYF4:Yb,Er UCNPs that could be used for NIR-driven fluorescence cell labeling. X-ray diffraction showed that UCNPs synthesized through chitosan-assisted solvothermal processing are monophasic and crystallize in a cubic α phase. Scanning and transmission electron microscopy revealed that the obtained crystals are spherical in shape with a mean diameter of 120 nm. Photoluminescence spectra indicated weaker green (2H11/2, 4S3/2 → 4I15/2) and stronger red emission (4F9/2 → 4I15/2), as a result of enhanced non-radiative 4I11/2 → 4I13/2 Er3+ relaxation. The presence of chitosan groups at the surface of UCNPs was confirmed by Fourier transform infrared spectroscopy, thermogravimetry and X-ray photoelectron spectroscopy. This provides their enhanced internalization in cells, at low concentration of 10 μg ml-1, without suppression of cell viability after 24 h of exposure. Furthermore, upon 980 nm laser irradiation, the amino-functionalized NaYF4:Yb,Er UCNPs were successfully used in vitro for labeling of two human cell types, normal gingival and oral squamous cell carcinoma. © 2018 The Royal Society of Chemistry.",
publisher = "London : Royal Society of Chemistry",
journal = "RSC Advances, RSC Advances",
title = "One-step synthesis of amino-functionalized up-converting NaYF4:Yb,Er nanoparticles for: In vitro cell imaging",
pages = "27429-27437",
volume = "8",
number = "48",
doi = "10.1039/c8ra04178d",
url = "https://hdl.handle.net/21.15107/rcub_dais_3748"
}
Mančić, L., Đukić Vuković, A., Dinić, I., Nikolić, M. G., Rabasović, M. D., Krmpot, A., Costa, A. M. L. M., Marinković, B. A., Mojović, L.,& Milošević, O. (2018). One-step synthesis of amino-functionalized up-converting NaYF4:Yb,Er nanoparticles for: In vitro cell imaging.
RSC Advances
London : Royal Society of Chemistry., 8(48), 27429-27437.
https://doi.org/10.1039/c8ra04178d
Mančić L, Đukić Vuković A, Dinić I, Nikolić MG, Rabasović MD, Krmpot A, Costa AMLM, Marinković BA, Mojović L, Milošević O. One-step synthesis of amino-functionalized up-converting NaYF4:Yb,Er nanoparticles for: In vitro cell imaging. RSC Advances. 2018;8(48):27429-27437.
doi:10.1039/c8ra04178d.
Mančić Lidija, Đukić Vuković Aleksandra, Dinić Ivana, Nikolić Marko G., Rabasović Mihailo D., Krmpot Aleksandar, Costa Antonio Mario Leal Martins, Marinković Bojan A., Mojović Ljiljana, Milošević Olivera, "One-step synthesis of amino-functionalized up-converting NaYF4:Yb,Er nanoparticles for: In vitro cell imaging" RSC Advances, 8, no. 48 (2018):27429-27437,
https://doi.org/10.1039/c8ra04178d .
5
4
4

NIR photo-driven upconversion in NaYF4:Yb,Er/PLGA particles for in vitro bioimaging of cancer cells

Mančić, Lidija; Đukić Vuković, Aleksandra; Dinić, Ivana; Nikolić, Marko G.; Rabasović, Mihailo D.; Krmpot, Aleksandar; Costa, Antonio Mario Leal Martins; Trišić, Dijana; Lazarević, Miloš; Mojović, Ljiljana; Milošević, Olivera

(Elsevier, 2018)

TY  - JOUR
AU  - Mančić, Lidija
AU  - Đukić Vuković, Aleksandra
AU  - Dinić, Ivana
AU  - Nikolić, Marko G.
AU  - Rabasović, Mihailo D.
AU  - Krmpot, Aleksandar
AU  - Costa, Antonio Mario Leal Martins
AU  - Trišić, Dijana
AU  - Lazarević, Miloš
AU  - Mojović, Ljiljana
AU  - Milošević, Olivera
PY  - 2018
AB  - Lanthanide-doped fluoride up-converting nanoparticles (UCNPs) represent the new class of imaging contrast agents which hold great potential for overcoming existing problems associated with traditionally used dyes, proteins and quantum dots. In this study, a new kind of hybrid NaYF4:Yb,Er/PLGA nanoparticles for efficient biolabeling were prepared through one-pot solvothermal synthesis route. Morphological and structural characteristics of the as-designed particles were obtained using X-ray powder diffraction (XRPD), scanning and transmission electron microscopy (SEM/TEM), energy dispersive spectroscopy (EDS), Fourier transform infrared (FTIR) and photoluminescence (PL) spectroscopy, while their cytotoxicity as well as up-conversion (UC) labeling capability were tested in vitro toward human gingival cells (HGC) and oral squamous cell carcinoma (OSCC). The results revealed coexistence of the cubic (Fm-3m) and hexagonal (P63/m) phase in spherical and irregularly shaped nanoparticles, respectively. PLGA [Poly(lactic-co-glycolic acid)] ligands attached at the surface of UCNPs particles provide their enhanced cellular uptake and enable high-quality cells imaging through a near-infrared (NIR) laser scanning microscopy (λex = 980 nm). Moreover, the fact that NaYF4:Yb,Er/PLGA UCNPs show low cytotoxicity against HGC over the whole concentration range (10–50 μg/mL) while a dose dependent viability of OSCC is obtained indicates that these might be a promising candidates for targeted cancer cell therapy. © 2018 Elsevier B.V.
PB  - Elsevier
T2  - Materials Science and Engineering C
T1  - NIR photo-driven upconversion in NaYF4:Yb,Er/PLGA particles for in vitro bioimaging of cancer cells
SP  - 597
EP  - 605
VL  - 91
DO  - 10.1016/j.msec.2018.05.081
UR  - https://hdl.handle.net/21.15107/rcub_dais_3693
ER  - 
@article{
author = "Mančić, Lidija and Đukić Vuković, Aleksandra and Dinić, Ivana and Nikolić, Marko G. and Rabasović, Mihailo D. and Krmpot, Aleksandar and Costa, Antonio Mario Leal Martins and Trišić, Dijana and Lazarević, Miloš and Mojović, Ljiljana and Milošević, Olivera",
year = "2018",
abstract = "Lanthanide-doped fluoride up-converting nanoparticles (UCNPs) represent the new class of imaging contrast agents which hold great potential for overcoming existing problems associated with traditionally used dyes, proteins and quantum dots. In this study, a new kind of hybrid NaYF4:Yb,Er/PLGA nanoparticles for efficient biolabeling were prepared through one-pot solvothermal synthesis route. Morphological and structural characteristics of the as-designed particles were obtained using X-ray powder diffraction (XRPD), scanning and transmission electron microscopy (SEM/TEM), energy dispersive spectroscopy (EDS), Fourier transform infrared (FTIR) and photoluminescence (PL) spectroscopy, while their cytotoxicity as well as up-conversion (UC) labeling capability were tested in vitro toward human gingival cells (HGC) and oral squamous cell carcinoma (OSCC). The results revealed coexistence of the cubic (Fm-3m) and hexagonal (P63/m) phase in spherical and irregularly shaped nanoparticles, respectively. PLGA [Poly(lactic-co-glycolic acid)] ligands attached at the surface of UCNPs particles provide their enhanced cellular uptake and enable high-quality cells imaging through a near-infrared (NIR) laser scanning microscopy (λex = 980 nm). Moreover, the fact that NaYF4:Yb,Er/PLGA UCNPs show low cytotoxicity against HGC over the whole concentration range (10–50 μg/mL) while a dose dependent viability of OSCC is obtained indicates that these might be a promising candidates for targeted cancer cell therapy. © 2018 Elsevier B.V.",
publisher = "Elsevier",
journal = "Materials Science and Engineering C",
title = "NIR photo-driven upconversion in NaYF4:Yb,Er/PLGA particles for in vitro bioimaging of cancer cells",
pages = "597-605",
volume = "91",
doi = "10.1016/j.msec.2018.05.081",
url = "https://hdl.handle.net/21.15107/rcub_dais_3693"
}
Mančić, L., Đukić Vuković, A., Dinić, I., Nikolić, M. G., Rabasović, M. D., Krmpot, A., Costa, A. M. L. M., Trišić, D., Lazarević, M., Mojović, L.,& Milošević, O. (2018). NIR photo-driven upconversion in NaYF4:Yb,Er/PLGA particles for in vitro bioimaging of cancer cells.
Materials Science and Engineering C
Elsevier., 91, 597-605.
https://doi.org/10.1016/j.msec.2018.05.081
Mančić L, Đukić Vuković A, Dinić I, Nikolić MG, Rabasović MD, Krmpot A, Costa AMLM, Trišić D, Lazarević M, Mojović L, Milošević O. NIR photo-driven upconversion in NaYF4:Yb,Er/PLGA particles for in vitro bioimaging of cancer cells. Materials Science and Engineering C. 2018;91:597-605.
doi:10.1016/j.msec.2018.05.081.
Mančić Lidija, Đukić Vuković Aleksandra, Dinić Ivana, Nikolić Marko G., Rabasović Mihailo D., Krmpot Aleksandar, Costa Antonio Mario Leal Martins, Trišić Dijana, Lazarević Miloš, Mojović Ljiljana, Milošević Olivera, "NIR photo-driven upconversion in NaYF4:Yb,Er/PLGA particles for in vitro bioimaging of cancer cells" Materials Science and Engineering C, 91 (2018):597-605,
https://doi.org/10.1016/j.msec.2018.05.081 .
12
8
11

Rare earth dual-doped multifunctional hydroxyapatite particles for potential application in preventive medicine

Ignjatović, Nenad; Mančić, Lidija; Stojanović, Zoran S.; Nikolić, Marko G.; Škapin, Srečo Davor; Veselinović, Ljiljana; Uskoković, Dragan

(Belgrade : Materials Research Society of Serbia, 2018)

TY  - CONF
AU  - Ignjatović, Nenad
AU  - Mančić, Lidija
AU  - Stojanović, Zoran S.
AU  - Nikolić, Marko G.
AU  - Škapin, Srečo Davor
AU  - Veselinović, Ljiljana
AU  - Uskoković, Dragan
PY  - 2018
AB  - Composite biomaterials based on nano hydroxyapatite (HAp) are the subject of numerous studies in reconstructive medicine. Multifunctional and nanoparticulate systems based on HAp and biodegradable polymers are successfully designed as systems for controlled and systemic drug delivery suitable for use in reconstructive medicine. Thanks to the stability and flexibility of the apatite structure, Ca ions can be replaced with various elements (Zn, Sr, Mg, Co, etc.). Doping the apatite structure enables potential application of this material in preventive medicine, too. Multimodal imaging (MI) is a new and promising technique for improved diagnosis and it is patient-friendly because it saves time. MI has recently attracted much attention due to the advantageous combination of various imaging modalities, such as computer tomography (CT), photoluminescence (PL) and magnetic resonance imaging (MRI). For such a promising approach, we devised new multimodal contrast agents using the doping of a HAp matrix with rare earth (RE) ions. Pure HAp (Ca5(PO4)3(OH)), magnetic HAp:Gd (Ca4.85Gd0.15(PO4)3(OH)), down-converting HAp:Gd,Eu (Ca4.94Gd0.02Eu0.04(PO4)3(OH)) and up-converting HAp:Gd,Yb/Tm (Ca4.85 Gd0.03Yb0.1Tm0.02(PO4)3(OH)) were synthesized using a hydrothermal procedure. Morphological and structural characteristics of the particles were obtained using X-ray powder diffraction (XRPD), scanning and transmission electron microscopy (SEM/TEM), energy dispersive X-ray spectrometry (EDX), photoluminescence (PL), Fourier Transform Infrared (FTIR) and diffuse reflectance spectroscopy (DRS). The results show that needle-like nano- or microparticles were obtained in all systems. Their phase composition and uniform distribution of dopants were confirmed by the structural refinement of the XRPD data, change in the band gap, and luminescence spectra recorded using different excitation sources (λ= 370, 394 and 977 nm).
PB  - Belgrade : Materials Research Society of Serbia
C3  - Programme and The Book of Abstracts / Twentieth Annual Conference YUCOMAT 2018, Herceg Novi, September 3-7, 2018
T1  - Rare earth dual-doped multifunctional hydroxyapatite particles for potential application in preventive medicine
SP  - 130
EP  - 130
UR  - https://hdl.handle.net/21.15107/rcub_dais_3663
ER  - 
@conference{
author = "Ignjatović, Nenad and Mančić, Lidija and Stojanović, Zoran S. and Nikolić, Marko G. and Škapin, Srečo Davor and Veselinović, Ljiljana and Uskoković, Dragan",
year = "2018",
abstract = "Composite biomaterials based on nano hydroxyapatite (HAp) are the subject of numerous studies in reconstructive medicine. Multifunctional and nanoparticulate systems based on HAp and biodegradable polymers are successfully designed as systems for controlled and systemic drug delivery suitable for use in reconstructive medicine. Thanks to the stability and flexibility of the apatite structure, Ca ions can be replaced with various elements (Zn, Sr, Mg, Co, etc.). Doping the apatite structure enables potential application of this material in preventive medicine, too. Multimodal imaging (MI) is a new and promising technique for improved diagnosis and it is patient-friendly because it saves time. MI has recently attracted much attention due to the advantageous combination of various imaging modalities, such as computer tomography (CT), photoluminescence (PL) and magnetic resonance imaging (MRI). For such a promising approach, we devised new multimodal contrast agents using the doping of a HAp matrix with rare earth (RE) ions. Pure HAp (Ca5(PO4)3(OH)), magnetic HAp:Gd (Ca4.85Gd0.15(PO4)3(OH)), down-converting HAp:Gd,Eu (Ca4.94Gd0.02Eu0.04(PO4)3(OH)) and up-converting HAp:Gd,Yb/Tm (Ca4.85 Gd0.03Yb0.1Tm0.02(PO4)3(OH)) were synthesized using a hydrothermal procedure. Morphological and structural characteristics of the particles were obtained using X-ray powder diffraction (XRPD), scanning and transmission electron microscopy (SEM/TEM), energy dispersive X-ray spectrometry (EDX), photoluminescence (PL), Fourier Transform Infrared (FTIR) and diffuse reflectance spectroscopy (DRS). The results show that needle-like nano- or microparticles were obtained in all systems. Their phase composition and uniform distribution of dopants were confirmed by the structural refinement of the XRPD data, change in the band gap, and luminescence spectra recorded using different excitation sources (λ= 370, 394 and 977 nm).",
publisher = "Belgrade : Materials Research Society of Serbia",
journal = "Programme and The Book of Abstracts / Twentieth Annual Conference YUCOMAT 2018, Herceg Novi, September 3-7, 2018",
title = "Rare earth dual-doped multifunctional hydroxyapatite particles for potential application in preventive medicine",
pages = "130-130",
url = "https://hdl.handle.net/21.15107/rcub_dais_3663"
}
Ignjatović, N., Mančić, L., Stojanović, Z. S., Nikolić, M. G., Škapin, S. D., Veselinović, L.,& Uskoković, D. (2018). Rare earth dual-doped multifunctional hydroxyapatite particles for potential application in preventive medicine.
Programme and The Book of Abstracts / Twentieth Annual Conference YUCOMAT 2018, Herceg Novi, September 3-7, 2018
Belgrade : Materials Research Society of Serbia., 130-130.
Ignjatović N, Mančić L, Stojanović ZS, Nikolić MG, Škapin SD, Veselinović L, Uskoković D. Rare earth dual-doped multifunctional hydroxyapatite particles for potential application in preventive medicine. Programme and The Book of Abstracts / Twentieth Annual Conference YUCOMAT 2018, Herceg Novi, September 3-7, 2018. 2018;:130-130.
Ignjatović Nenad, Mančić Lidija, Stojanović Zoran S., Nikolić Marko G., Škapin Srečo Davor, Veselinović Ljiljana, Uskoković Dragan, "Rare earth dual-doped multifunctional hydroxyapatite particles for potential application in preventive medicine" Programme and The Book of Abstracts / Twentieth Annual Conference YUCOMAT 2018, Herceg Novi, September 3-7, 2018 (2018):130-130

Polyacrilic Acid and Chitosan Assisted Solvothermal Synthesis of Up-converting NaYF4: Yb,Er Particles

Vuković, Marina; Dinić, Ivana; Mančić, Lidija; Nikolić, Marko G.; Rabasović, Mihailo D.; Milošević, Olivera

(Belgrade : Serbian Academy of Sciences and Arts, 2018)

TY  - CONF
AU  - Vuković, Marina
AU  - Dinić, Ivana
AU  - Mančić, Lidija
AU  - Nikolić, Marko G.
AU  - Rabasović, Mihailo D.
AU  - Milošević, Olivera
PY  - 2018
AB  - There is a growing interest for development of a facile and reproducible approach  for the synthesis of biocompatible lanthanide doped up-converting nanoparticles (UCNPs) for deep tissue imaging and targeted drug delivery. Synthesis of such particles is usually performed through the decomposition of organometallic compounds, followed either with a ligands exchange or with a biocompatible layer coating. In this work, biocompatible NaYF4:Yb,Er (17 mol% Yb; 3 mol% Er) nanoparticles were synthesized by one-pot hydrothermal processing with an assistance of chitosan (Ch) or polyacrylic acid (PAA). Obtained powders were analyzed by X-ray powder diffraction (XRPD, Bruker D8 Discovery), field emission scanning electron microscopy (FE-SEM, Zeiss, DSM 960), transmission electron microscopy (TEM, JEOL JEM 2010), Fourier transform infrared (FTIR, Thermo Scientific Nicolet 6700) and photoluminescence (PL, Spex Fluorolog with C31034 cooled photomultiplier) spectroscopy. The results showed that although both powders crystallize in the same crystal arrangement (cubic, Fm-3m), particles size, shape and optical properties are dependent on the polymer used.
PB  - Belgrade : Serbian Academy of Sciences and Arts
C3  - Program and Book of Abstracts / First International Conference on Electron Microscopy of Nanostructures ELMINA 2018, August 27-29, 2018, Belgrade, Serbia
T1  - Polyacrilic Acid and Chitosan Assisted Solvothermal Synthesis of Up-converting NaYF4: Yb,Er Particles
SP  - 195
EP  - 197
ER  - 
@conference{
author = "Vuković, Marina and Dinić, Ivana and Mančić, Lidija and Nikolić, Marko G. and Rabasović, Mihailo D. and Milošević, Olivera",
year = "2018",
abstract = "There is a growing interest for development of a facile and reproducible approach  for the synthesis of biocompatible lanthanide doped up-converting nanoparticles (UCNPs) for deep tissue imaging and targeted drug delivery. Synthesis of such particles is usually performed through the decomposition of organometallic compounds, followed either with a ligands exchange or with a biocompatible layer coating. In this work, biocompatible NaYF4:Yb,Er (17 mol% Yb; 3 mol% Er) nanoparticles were synthesized by one-pot hydrothermal processing with an assistance of chitosan (Ch) or polyacrylic acid (PAA). Obtained powders were analyzed by X-ray powder diffraction (XRPD, Bruker D8 Discovery), field emission scanning electron microscopy (FE-SEM, Zeiss, DSM 960), transmission electron microscopy (TEM, JEOL JEM 2010), Fourier transform infrared (FTIR, Thermo Scientific Nicolet 6700) and photoluminescence (PL, Spex Fluorolog with C31034 cooled photomultiplier) spectroscopy. The results showed that although both powders crystallize in the same crystal arrangement (cubic, Fm-3m), particles size, shape and optical properties are dependent on the polymer used.",
publisher = "Belgrade : Serbian Academy of Sciences and Arts",
journal = "Program and Book of Abstracts / First International Conference on Electron Microscopy of Nanostructures ELMINA 2018, August 27-29, 2018, Belgrade, Serbia",
title = "Polyacrilic Acid and Chitosan Assisted Solvothermal Synthesis of Up-converting NaYF4: Yb,Er Particles",
pages = "195-197"
}
Vuković, M., Dinić, I., Mančić, L., Nikolić, M. G., Rabasović, M. D.,& Milošević, O. (2018). Polyacrilic Acid and Chitosan Assisted Solvothermal Synthesis of Up-converting NaYF4: Yb,Er Particles.
Program and Book of Abstracts / First International Conference on Electron Microscopy of Nanostructures ELMINA 2018, August 27-29, 2018, Belgrade, Serbia
Belgrade : Serbian Academy of Sciences and Arts., 195-197.
Vuković M, Dinić I, Mančić L, Nikolić MG, Rabasović MD, Milošević O. Polyacrilic Acid and Chitosan Assisted Solvothermal Synthesis of Up-converting NaYF4: Yb,Er Particles. Program and Book of Abstracts / First International Conference on Electron Microscopy of Nanostructures ELMINA 2018, August 27-29, 2018, Belgrade, Serbia. 2018;:195-197.
Vuković Marina, Dinić Ivana, Mančić Lidija, Nikolić Marko G., Rabasović Mihailo D., Milošević Olivera, "Polyacrilic Acid and Chitosan Assisted Solvothermal Synthesis of Up-converting NaYF4: Yb,Er Particles" Program and Book of Abstracts / First International Conference on Electron Microscopy of Nanostructures ELMINA 2018, August 27-29, 2018, Belgrade, Serbia (2018):195-197

Supplement information for the article: Mancic, L., Djukic-Vukovic, A., Dinic, I., Nikolic, M.G., Rabasovic, M.D., Krmpot, A.J., Costa, A.M.L.M., Trisic, D., Lazarevic, M., Mojovic, L., Milosevic, O., 2018. NIR photo-driven upconversion in NaYF4:Yb,Er/PLGA particles for in vitro bioimaging of cancer cells. Materials Science and Engineering C 91, 597–605. https://doi.org/10.1016/j.msec.2018.05.081

Mančić, Lidija; Đukić Vuković, Aleksandra; Dinić, Ivana; Nikolić, Marko G.; Rabasović, Mihailo D.; Krmpot, Aleksandar; Costa, Antonio Mario Leal Martins; Trišić, Dijana; Lazarević, Miloš; Mojović, Ljiljana; Milošević, Olivera

(2018)

TY  - BOOK
AU  - Mančić, Lidija
AU  - Đukić Vuković, Aleksandra
AU  - Dinić, Ivana
AU  - Nikolić, Marko G.
AU  - Rabasović, Mihailo D.
AU  - Krmpot, Aleksandar
AU  - Costa, Antonio Mario Leal Martins
AU  - Trišić, Dijana
AU  - Lazarević, Miloš
AU  - Mojović, Ljiljana
AU  - Milošević, Olivera
PY  - 2018
T2  - Materials Science and Engineering C
T1  - Supplement information for the article: Mancic, L., Djukic-Vukovic, A., Dinic, I., Nikolic, M.G., Rabasovic, M.D., Krmpot, A.J., Costa, A.M.L.M., Trisic, D., Lazarevic, M., Mojovic, L., Milosevic, O., 2018. NIR photo-driven upconversion in NaYF4:Yb,Er/PLGA particles for in vitro bioimaging of cancer cells. Materials Science and Engineering C 91, 597–605. https://doi.org/10.1016/j.msec.2018.05.081
ER  - 
@book{
author = "Mančić, Lidija and Đukić Vuković, Aleksandra and Dinić, Ivana and Nikolić, Marko G. and Rabasović, Mihailo D. and Krmpot, Aleksandar and Costa, Antonio Mario Leal Martins and Trišić, Dijana and Lazarević, Miloš and Mojović, Ljiljana and Milošević, Olivera",
year = "2018",
journal = "Materials Science and Engineering C",
title = "Supplement information for the article: Mancic, L., Djukic-Vukovic, A., Dinic, I., Nikolic, M.G., Rabasovic, M.D., Krmpot, A.J., Costa, A.M.L.M., Trisic, D., Lazarevic, M., Mojovic, L., Milosevic, O., 2018. NIR photo-driven upconversion in NaYF4:Yb,Er/PLGA particles for in vitro bioimaging of cancer cells. Materials Science and Engineering C 91, 597–605. https://doi.org/10.1016/j.msec.2018.05.081"
}
Mančić, L., Đukić Vuković, A., Dinić, I., Nikolić, M. G., Rabasović, M. D., Krmpot, A., Costa, A. M. L. M., Trišić, D., Lazarević, M., Mojović, L.,& Milošević, O. (2018). Supplement information for the article: Mancic, L., Djukic-Vukovic, A., Dinic, I., Nikolic, M.G., Rabasovic, M.D., Krmpot, A.J., Costa, A.M.L.M., Trisic, D., Lazarevic, M., Mojovic, L., Milosevic, O., 2018. NIR photo-driven upconversion in NaYF4:Yb,Er/PLGA particles for in vitro bioimaging of cancer cells. Materials Science and Engineering C 91, 597–605. https://doi.org/10.1016/j.msec.2018.05.081.
Materials Science and Engineering C.
Mančić L, Đukić Vuković A, Dinić I, Nikolić MG, Rabasović MD, Krmpot A, Costa AMLM, Trišić D, Lazarević M, Mojović L, Milošević O. Supplement information for the article: Mancic, L., Djukic-Vukovic, A., Dinic, I., Nikolic, M.G., Rabasovic, M.D., Krmpot, A.J., Costa, A.M.L.M., Trisic, D., Lazarevic, M., Mojovic, L., Milosevic, O., 2018. NIR photo-driven upconversion in NaYF4:Yb,Er/PLGA particles for in vitro bioimaging of cancer cells. Materials Science and Engineering C 91, 597–605. https://doi.org/10.1016/j.msec.2018.05.081. Materials Science and Engineering C. 2018;.
Mančić Lidija, Đukić Vuković Aleksandra, Dinić Ivana, Nikolić Marko G., Rabasović Mihailo D., Krmpot Aleksandar, Costa Antonio Mario Leal Martins, Trišić Dijana, Lazarević Miloš, Mojović Ljiljana, Milošević Olivera, "Supplement information for the article: Mancic, L., Djukic-Vukovic, A., Dinic, I., Nikolic, M.G., Rabasovic, M.D., Krmpot, A.J., Costa, A.M.L.M., Trisic, D., Lazarevic, M., Mojovic, L., Milosevic, O., 2018. NIR photo-driven upconversion in NaYF4:Yb,Er/PLGA particles for in vitro bioimaging of cancer cells. Materials Science and Engineering C 91, 597–605. https://doi.org/10.1016/j.msec.2018.05.081" Materials Science and Engineering C (2018)

Photo-driven upconversion in NaYF4:Yb,Er@chitosane particles for cancer cells bioimaging

Dinić, Ivana; Đukić Vuković, Aleksandra; Nikolić, Marko G.; Milošević, Olivera; Mančić, Lidija

(Belgrade : Institute of Technical Sciences of SASA, 2017)

TY  - CONF
AU  - Dinić, Ivana
AU  - Đukić Vuković, Aleksandra
AU  - Nikolić, Marko G.
AU  - Milošević, Olivera
AU  - Mančić, Lidija
PY  - 2017
AB  - Lanthanide doped up-converting nanoparticles (UCNPs) have significant role in biomedical field, especially in cell imaging and target drug delivery, due to their convenient luminescent properties. For that purpose UCNPs should have the specific morphological and luminescent characteristics. In this study the biocompatible NaYF4:Yb,Er@Chitosane particles were synthesized through one-step hydrothermal synthesis. Obtained particles were characterized in detail using X-ray powder diffraction (XRPD), Fourier-transform infrared (FTIR) spectroscopy, field emission scanning and transmission electron microscopy (FESEM and TEM) and photoluminesce measurement (PL). Structural refinement data show the presence of cubic (Fm-3m) phase in spherical shaped nanoparticles size up to 200 nm, while the FTIR analysis revealed the presence of chitosan on the particle surface which have no influence on the luminescence efficiency of the UCNPs. Cytotoxicity as well as cell labeling capability of synthesized UCNPs were tested in vitro on the human gingival fibroblasts (HGF) and head and neck squamous carcinoma cells (HNSCC). The results show excellent biocompatibility against HGF, and successful in- vitro visualization of HNSCC cell cultures upon 980 nm laser irradiation.
PB  - Belgrade : Institute of Technical Sciences of SASA
C3  - Program and the Book of Abstracts / Sixteenth Young Researchers' Conference Materials Sciences and Engineering, December 6-8, 2017, Belgrade, Serbia
T1  - Photo-driven upconversion in NaYF4:Yb,Er@chitosane particles for cancer cells bioimaging
SP  - 2
EP  - 2
UR  - https://hdl.handle.net/21.15107/rcub_dais_15448
ER  - 
@conference{
author = "Dinić, Ivana and Đukić Vuković, Aleksandra and Nikolić, Marko G. and Milošević, Olivera and Mančić, Lidija",
year = "2017",
abstract = "Lanthanide doped up-converting nanoparticles (UCNPs) have significant role in biomedical field, especially in cell imaging and target drug delivery, due to their convenient luminescent properties. For that purpose UCNPs should have the specific morphological and luminescent characteristics. In this study the biocompatible NaYF4:Yb,Er@Chitosane particles were synthesized through one-step hydrothermal synthesis. Obtained particles were characterized in detail using X-ray powder diffraction (XRPD), Fourier-transform infrared (FTIR) spectroscopy, field emission scanning and transmission electron microscopy (FESEM and TEM) and photoluminesce measurement (PL). Structural refinement data show the presence of cubic (Fm-3m) phase in spherical shaped nanoparticles size up to 200 nm, while the FTIR analysis revealed the presence of chitosan on the particle surface which have no influence on the luminescence efficiency of the UCNPs. Cytotoxicity as well as cell labeling capability of synthesized UCNPs were tested in vitro on the human gingival fibroblasts (HGF) and head and neck squamous carcinoma cells (HNSCC). The results show excellent biocompatibility against HGF, and successful in- vitro visualization of HNSCC cell cultures upon 980 nm laser irradiation.",
publisher = "Belgrade : Institute of Technical Sciences of SASA",
journal = "Program and the Book of Abstracts / Sixteenth Young Researchers' Conference Materials Sciences and Engineering, December 6-8, 2017, Belgrade, Serbia",
title = "Photo-driven upconversion in NaYF4:Yb,Er@chitosane particles for cancer cells bioimaging",
pages = "2-2",
url = "https://hdl.handle.net/21.15107/rcub_dais_15448"
}
Dinić, I., Đukić Vuković, A., Nikolić, M. G., Milošević, O.,& Mančić, L. (2017). Photo-driven upconversion in NaYF4:Yb,Er@chitosane particles for cancer cells bioimaging.
Program and the Book of Abstracts / Sixteenth Young Researchers' Conference Materials Sciences and Engineering, December 6-8, 2017, Belgrade, Serbia
Belgrade : Institute of Technical Sciences of SASA., 2-2.
Dinić I, Đukić Vuković A, Nikolić MG, Milošević O, Mančić L. Photo-driven upconversion in NaYF4:Yb,Er@chitosane particles for cancer cells bioimaging. Program and the Book of Abstracts / Sixteenth Young Researchers' Conference Materials Sciences and Engineering, December 6-8, 2017, Belgrade, Serbia. 2017;:2-2.
Dinić Ivana, Đukić Vuković Aleksandra, Nikolić Marko G., Milošević Olivera, Mančić Lidija, "Photo-driven upconversion in NaYF4:Yb,Er@chitosane particles for cancer cells bioimaging" Program and the Book of Abstracts / Sixteenth Young Researchers' Conference Materials Sciences and Engineering, December 6-8, 2017, Belgrade, Serbia (2017):2-2

One-step synthesis of NIR-responsive NaYF4:Yb,Er@Chitosane nanoparticles for biomedical application

Dinić, Ivana; Đukić Vuković, Aleksandra; Mojović, L.; Nikolić, Marko G.; Rabasović, Mihailo D.; Krmpot, Aleksandar; Milošević, Olivera; Mančić, Lidija

(Belgrade : Institute of Physics Belgrade, 2017)

TY  - CONF
AU  - Dinić, Ivana
AU  - Đukić Vuković, Aleksandra
AU  - Mojović, L.
AU  - Nikolić, Marko G.
AU  - Rabasović, Mihailo D.
AU  - Krmpot, Aleksandar
AU  - Milošević, Olivera
AU  - Mančić, Lidija
PY  - 2017
AB  - There is a great technological interest in synthesis of lanthanide doped upconverting nanoparticles with specific morphological characteristics and efficient luminescence response suitable for biomedical use [1]. A conventional approach for generation of such particles comprises decomposition of organometallic compoundsin an oxygen-free environment and additional ligand exchange [2,3]. The biocompatible and water soluble NaYF4:Yb,Er@Chitosane particles used in this study were synthesized through facile one-pot hydrothermal synthesis and were characterized using X-ray powder diffraction (XRPD), Fourier-transform infrared (FTIR) spectroscopy, field emission scanning and transmission electron microscopy (FESEM and TEM) and photoluminesce measurement (PL). Due to the presence of the amino groups at their surface these particles exhibit excellent hydrophilic properties and low cytotoxicity against human gingival fibroblasts (HGF), which was proven by MTT assay. Furthermore, upon 980 nm laser irradiation the as-prepared particles were successfully used for in-vitro visualization of the primary cell cultures of head and neck squamous carcinoma cells (HNSCC). In a NaYF4:Yb,Er phase upconversion is enabled by the sequential absorption of two or more near-infrared photons by Yb3+ and subsequent energy transfer to the long-lived metastable electron states of Er3+ which produces luminescence emission at visible spectra after relaxation.
PB  - Belgrade : Institute of Physics Belgrade
C3  - Abstracts of Tutorial, Keynote, Invited Lectures, Progress Reports and Contributed Papers of the Sixth International School and Conference on Photonics PHOTONICA2017, 28 August – 1 September 2017, Belgrade Serbia
T1  - One-step synthesis of NIR-responsive NaYF4:Yb,Er@Chitosane nanoparticles for biomedical application
SP  - 81
EP  - 81
UR  - https://hdl.handle.net/21.15107/rcub_dais_15423
ER  - 
@conference{
author = "Dinić, Ivana and Đukić Vuković, Aleksandra and Mojović, L. and Nikolić, Marko G. and Rabasović, Mihailo D. and Krmpot, Aleksandar and Milošević, Olivera and Mančić, Lidija",
year = "2017",
abstract = "There is a great technological interest in synthesis of lanthanide doped upconverting nanoparticles with specific morphological characteristics and efficient luminescence response suitable for biomedical use [1]. A conventional approach for generation of such particles comprises decomposition of organometallic compoundsin an oxygen-free environment and additional ligand exchange [2,3]. The biocompatible and water soluble NaYF4:Yb,Er@Chitosane particles used in this study were synthesized through facile one-pot hydrothermal synthesis and were characterized using X-ray powder diffraction (XRPD), Fourier-transform infrared (FTIR) spectroscopy, field emission scanning and transmission electron microscopy (FESEM and TEM) and photoluminesce measurement (PL). Due to the presence of the amino groups at their surface these particles exhibit excellent hydrophilic properties and low cytotoxicity against human gingival fibroblasts (HGF), which was proven by MTT assay. Furthermore, upon 980 nm laser irradiation the as-prepared particles were successfully used for in-vitro visualization of the primary cell cultures of head and neck squamous carcinoma cells (HNSCC). In a NaYF4:Yb,Er phase upconversion is enabled by the sequential absorption of two or more near-infrared photons by Yb3+ and subsequent energy transfer to the long-lived metastable electron states of Er3+ which produces luminescence emission at visible spectra after relaxation.",
publisher = "Belgrade : Institute of Physics Belgrade",
journal = "Abstracts of Tutorial, Keynote, Invited Lectures, Progress Reports and Contributed Papers of the Sixth International School and Conference on Photonics PHOTONICA2017, 28 August – 1 September 2017, Belgrade Serbia",
title = "One-step synthesis of NIR-responsive NaYF4:Yb,Er@Chitosane nanoparticles for biomedical application",
pages = "81-81",
url = "https://hdl.handle.net/21.15107/rcub_dais_15423"
}
Dinić, I., Đukić Vuković, A., Mojović, L., Nikolić, M. G., Rabasović, M. D., Krmpot, A., Milošević, O.,& Mančić, L. (2017). One-step synthesis of NIR-responsive NaYF4:Yb,Er@Chitosane nanoparticles for biomedical application.
Abstracts of Tutorial, Keynote, Invited Lectures, Progress Reports and Contributed Papers of the Sixth International School and Conference on Photonics PHOTONICA2017, 28 August – 1 September 2017, Belgrade Serbia
Belgrade : Institute of Physics Belgrade., 81-81.
Dinić I, Đukić Vuković A, Mojović L, Nikolić MG, Rabasović MD, Krmpot A, Milošević O, Mančić L. One-step synthesis of NIR-responsive NaYF4:Yb,Er@Chitosane nanoparticles for biomedical application. Abstracts of Tutorial, Keynote, Invited Lectures, Progress Reports and Contributed Papers of the Sixth International School and Conference on Photonics PHOTONICA2017, 28 August – 1 September 2017, Belgrade Serbia. 2017;:81-81.
Dinić Ivana, Đukić Vuković Aleksandra, Mojović L., Nikolić Marko G., Rabasović Mihailo D., Krmpot Aleksandar, Milošević Olivera, Mančić Lidija, "One-step synthesis of NIR-responsive NaYF4:Yb,Er@Chitosane nanoparticles for biomedical application" Abstracts of Tutorial, Keynote, Invited Lectures, Progress Reports and Contributed Papers of the Sixth International School and Conference on Photonics PHOTONICA2017, 28 August – 1 September 2017, Belgrade Serbia (2017):81-81