Janković, Bojan

Link to this page

Authority KeyName Variants
98a2e16d-07cb-4d5a-8e20-9e091746612c
  • Janković, Bojan (3)
Projects
Dynamics of nonlinear physicochemical and biochemical systems with modeling and predicting of their behavior under nonequilibrium conditions Oxide-based environmentally-friendly porous materials for genotoxic substances removal
Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200017 (University of Belgrade, Institute of Nuclear Sciences 'Vinča', Belgrade-Vinča) Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200026 (University of Belgrade, Institute of Chemistry, Technology and Metallurgy - IChTM)
Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200105 (University of Belgrade, Faculty of Mechanical Engineering) Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200146 (University of Belgrade, Faculty of Physical Chemistry)
Nanostructured Functional and Composite Materials in Catalytic and Sorption Processes Functional, Functionalized and Advanced Nanomaterials
Synthesis, processing and characterization of nanostructured materials for application in the field of energy, mechanical engineering, environmental protection and biomedicine Predefined functional properties polymer composite materials processes and equipment development
HiSuperBat - High-Capacity Electrodes for Aqueous Rechargeable Multivalent-Ion Batteries and Supercapacitors: Next Step Towards a Hybrid Model

Author's Bibliography

Deep Eutectic Solvent (DES) for In Situ Templating Carbon Material: Carbon Characterization and Application in Supercapacitors Containing Multivalent Ions

Zdolšek, Nikola; Janković, Bojan; Milović, Miloš; Brković, Snežana; Krstić, Jugoslav; Perović, Ivana; Vujković, Milica

(2022)

TY  - JOUR
AU  - Zdolšek, Nikola
AU  - Janković, Bojan
AU  - Milović, Miloš
AU  - Brković, Snežana
AU  - Krstić, Jugoslav
AU  - Perović, Ivana
AU  - Vujković, Milica
PY  - 2022
UR  - https://dais.sanu.ac.rs/123456789/13511
AB  - The development of carbon materials with desirable textures and new aqueous electrolytes is the key strategy to improve the performance of supercapacitors. Herein, a deep eutectic solvent (DES) was used for in situ templating of a carbon material. A carbon material was characterized (XRD, N2-physisorption, FTIR, SEM and EDS) and used as an electrode material for the first time in multivalent-based supercapacitors. In situ templating of carbon was performed using a novel DES, which serves as a precursor for carbon and for in situ generation of MgO. The generation of MgO and its roles in templating of carbon were discussed. Templating of carbon with MgO lead to an increase in surface area and a microporous texture. The obtained carbon was tested in multivalent-ion (Al3+ and Mg2+) electrolytes and compared with H2SO4. The charge-storage mechanism was investigated and elaborated. The highest specific capacitance was obtained for the Al(NO3)3 electrolyte, while the operating voltage follows the order: Mg(NO3)2 > Al(NO3)3 > H2SO4. Electrical double-layer capacitance (versus pseudocapacitance) was dominant in all investigated electrolytes. The larger operating voltage in multivalent electrolytes is a consequence of the lower fraction of free water, which suppresses hydrogen evolution (when compared with H2SO4). The GCD was experimentally performed on the Al(NO3)3 electrolyte, which showed good cyclic stability, with an energy density of 22.3 Wh kg−1 at 65 W kg−1.
T2  - Batteries
T1  - Deep Eutectic Solvent (DES) for In Situ Templating Carbon Material: Carbon Characterization and Application in Supercapacitors Containing Multivalent Ions
SP  - 284
VL  - 8
IS  - 12
DO  - 10.3390/batteries8120284
UR  - https://hdl.handle.net/21.15107/rcub_dais_13511
ER  - 
@article{
author = "Zdolšek, Nikola and Janković, Bojan and Milović, Miloš and Brković, Snežana and Krstić, Jugoslav and Perović, Ivana and Vujković, Milica",
year = "2022",
abstract = "The development of carbon materials with desirable textures and new aqueous electrolytes is the key strategy to improve the performance of supercapacitors. Herein, a deep eutectic solvent (DES) was used for in situ templating of a carbon material. A carbon material was characterized (XRD, N2-physisorption, FTIR, SEM and EDS) and used as an electrode material for the first time in multivalent-based supercapacitors. In situ templating of carbon was performed using a novel DES, which serves as a precursor for carbon and for in situ generation of MgO. The generation of MgO and its roles in templating of carbon were discussed. Templating of carbon with MgO lead to an increase in surface area and a microporous texture. The obtained carbon was tested in multivalent-ion (Al3+ and Mg2+) electrolytes and compared with H2SO4. The charge-storage mechanism was investigated and elaborated. The highest specific capacitance was obtained for the Al(NO3)3 electrolyte, while the operating voltage follows the order: Mg(NO3)2 > Al(NO3)3 > H2SO4. Electrical double-layer capacitance (versus pseudocapacitance) was dominant in all investigated electrolytes. The larger operating voltage in multivalent electrolytes is a consequence of the lower fraction of free water, which suppresses hydrogen evolution (when compared with H2SO4). The GCD was experimentally performed on the Al(NO3)3 electrolyte, which showed good cyclic stability, with an energy density of 22.3 Wh kg−1 at 65 W kg−1.",
journal = "Batteries",
title = "Deep Eutectic Solvent (DES) for In Situ Templating Carbon Material: Carbon Characterization and Application in Supercapacitors Containing Multivalent Ions",
pages = "284",
volume = "8",
number = "12",
doi = "10.3390/batteries8120284",
url = "https://hdl.handle.net/21.15107/rcub_dais_13511"
}
Zdolšek, N., Janković, B., Milović, M., Brković, S., Krstić, J., Perović, I.,& Vujković, M.. (2022). Deep Eutectic Solvent (DES) for In Situ Templating Carbon Material: Carbon Characterization and Application in Supercapacitors Containing Multivalent Ions. in Batteries, 8(12), 284.
https://doi.org/10.3390/batteries8120284
https://hdl.handle.net/21.15107/rcub_dais_13511
Zdolšek N, Janković B, Milović M, Brković S, Krstić J, Perović I, Vujković M. Deep Eutectic Solvent (DES) for In Situ Templating Carbon Material: Carbon Characterization and Application in Supercapacitors Containing Multivalent Ions. in Batteries. 2022;8(12):284.
doi:10.3390/batteries8120284
https://hdl.handle.net/21.15107/rcub_dais_13511 .
Zdolšek, Nikola, Janković, Bojan, Milović, Miloš, Brković, Snežana, Krstić, Jugoslav, Perović, Ivana, Vujković, Milica, "Deep Eutectic Solvent (DES) for In Situ Templating Carbon Material: Carbon Characterization and Application in Supercapacitors Containing Multivalent Ions" in Batteries, 8, no. 12 (2022):284,
https://doi.org/10.3390/batteries8120284 .,
https://hdl.handle.net/21.15107/rcub_dais_13511 .

Characterization of silicon carbide ceramics obtained from porous carbon structure achieved by plant carbonization

Dodevski, Vladimir; Pagnacco, Maja C.; Radović, Ivana; Rosić, Milena; Janković, Bojan; Stojmenović, Marija; Mitić, Vojislav V.

(Elsevier, 2020)

TY  - JOUR
AU  - Dodevski, Vladimir
AU  - Pagnacco, Maja C.
AU  - Radović, Ivana
AU  - Rosić, Milena
AU  - Janković, Bojan
AU  - Stojmenović, Marija
AU  - Mitić, Vojislav V.
PY  - 2020
UR  - https://dais.sanu.ac.rs/123456789/8726
AB  - The aim of this research was to obtain a carbon solid residue by the carbonization process of biomass in an inert atmosphere which, through physical activation and chemical treatment (using TEOS - tetraethyl orthosilicate) would allow creation of highly porous and spatially distinct ordered bio-SiC ceramics. The results of carbonization experiments at several operating temperatures and activation of carbons with multiple-cycle treatments TEOS clearly showed the possibility of obtaining SiC nano-structures, after performing the carbothermal reduction at 1400 °C. The increase in the activation temperature and the duration time starts the development of the SiC particles inside the porous structure. The XRPD analysis showed that the major SiC polytype has cubic SiC (β-SiC) structure and remainder is hexagonal SiC polytypic (α-SiC) structure. It was established that the carbons obtained from carbonization of the Platanus orientalis L. plane tree fruit (PTF) precursor and activated at 850 °C with longer holding times (1 and 2 h) exhibit β-SiC (cubic) nano-wires. A possible nano-wires increment mechanism was suggested. The obtained results represent significant contribution in understanding the process as well as the main characteristics of SiC nano-materials and their possible applications.
PB  - Elsevier
T2  - Materials Chemistry and Physics
T1  - Characterization of silicon carbide ceramics obtained from porous carbon structure achieved by plant carbonization
SP  - 122768
VL  - 245
DO  - 10.1016/j.matchemphys.2020.122768
UR  - https://hdl.handle.net/21.15107/rcub_dais_8726
ER  - 
@article{
author = "Dodevski, Vladimir and Pagnacco, Maja C. and Radović, Ivana and Rosić, Milena and Janković, Bojan and Stojmenović, Marija and Mitić, Vojislav V.",
year = "2020",
abstract = "The aim of this research was to obtain a carbon solid residue by the carbonization process of biomass in an inert atmosphere which, through physical activation and chemical treatment (using TEOS - tetraethyl orthosilicate) would allow creation of highly porous and spatially distinct ordered bio-SiC ceramics. The results of carbonization experiments at several operating temperatures and activation of carbons with multiple-cycle treatments TEOS clearly showed the possibility of obtaining SiC nano-structures, after performing the carbothermal reduction at 1400 °C. The increase in the activation temperature and the duration time starts the development of the SiC particles inside the porous structure. The XRPD analysis showed that the major SiC polytype has cubic SiC (β-SiC) structure and remainder is hexagonal SiC polytypic (α-SiC) structure. It was established that the carbons obtained from carbonization of the Platanus orientalis L. plane tree fruit (PTF) precursor and activated at 850 °C with longer holding times (1 and 2 h) exhibit β-SiC (cubic) nano-wires. A possible nano-wires increment mechanism was suggested. The obtained results represent significant contribution in understanding the process as well as the main characteristics of SiC nano-materials and their possible applications.",
publisher = "Elsevier",
journal = "Materials Chemistry and Physics",
title = "Characterization of silicon carbide ceramics obtained from porous carbon structure achieved by plant carbonization",
pages = "122768",
volume = "245",
doi = "10.1016/j.matchemphys.2020.122768",
url = "https://hdl.handle.net/21.15107/rcub_dais_8726"
}
Dodevski, V., Pagnacco, M. C., Radović, I., Rosić, M., Janković, B., Stojmenović, M.,& Mitić, V. V.. (2020). Characterization of silicon carbide ceramics obtained from porous carbon structure achieved by plant carbonization. in Materials Chemistry and Physics
Elsevier., 245, 122768.
https://doi.org/10.1016/j.matchemphys.2020.122768
https://hdl.handle.net/21.15107/rcub_dais_8726
Dodevski V, Pagnacco MC, Radović I, Rosić M, Janković B, Stojmenović M, Mitić VV. Characterization of silicon carbide ceramics obtained from porous carbon structure achieved by plant carbonization. in Materials Chemistry and Physics. 2020;245:122768.
doi:10.1016/j.matchemphys.2020.122768
https://hdl.handle.net/21.15107/rcub_dais_8726 .
Dodevski, Vladimir, Pagnacco, Maja C., Radović, Ivana, Rosić, Milena, Janković, Bojan, Stojmenović, Marija, Mitić, Vojislav V., "Characterization of silicon carbide ceramics obtained from porous carbon structure achieved by plant carbonization" in Materials Chemistry and Physics, 245 (2020):122768,
https://doi.org/10.1016/j.matchemphys.2020.122768 .,
https://hdl.handle.net/21.15107/rcub_dais_8726 .
1
10
4
9

Comprehensive characterization of BiFeO3 powder synthesized by the hydrothermal procedure

Čebela, Maria; Janković, Bojan; Hercigonja, Radmila; Lukić, Miodrag J.; Dohčević-Mitrović, Zorana; Milivojević, Dušan; Matović, Branko

(Novi Sad Faculty of Technology, University of Novi Sad, 2016)

TY  - JOUR
AU  - Čebela, Maria
AU  - Janković, Bojan
AU  - Hercigonja, Radmila
AU  - Lukić, Miodrag J.
AU  - Dohčević-Mitrović, Zorana
AU  - Milivojević, Dušan
AU  - Matović, Branko
PY  - 2016
UR  - https://dais.sanu.ac.rs/123456789/15964
AB  - In this paper, bismuth ferrite (BFO) particles synthesized by controlled hydrothermal process, where the particles of small sizes and with high purity were obtained. Structural analysis showed that non-annealed powder can be perfectly fitted to rhombohedral space group R3c and contains a very small amount of secondary phase, whereas the final product (annealed at 800 °C) represents single-phase perovskite powder with high crystallinity. HRTEM analysis confirmed existence of twin stacking faults, which are responsible for enhanced magnetic properties. EPR measurements suggested existence of electrons trapped by vacancies or defects. It has been proposed that existence of Fe3+ −OV defect complex could be generated at elevated temperatures followed by formation of trivalent Fe ions, which intensely provide local 3d moments.
PB  - Novi Sad Faculty of Technology, University of Novi Sad
T2  - Processing and Application of Ceramics
T1  - Comprehensive characterization of BiFeO3 powder synthesized by the hydrothermal procedure
SP  - 201
EP  - 208
VL  - 10
IS  - 4
DO  - 10.2298/PAC1604201C
UR  - https://hdl.handle.net/21.15107/rcub_dais_15964
ER  - 
@article{
author = "Čebela, Maria and Janković, Bojan and Hercigonja, Radmila and Lukić, Miodrag J. and Dohčević-Mitrović, Zorana and Milivojević, Dušan and Matović, Branko",
year = "2016",
abstract = "In this paper, bismuth ferrite (BFO) particles synthesized by controlled hydrothermal process, where the particles of small sizes and with high purity were obtained. Structural analysis showed that non-annealed powder can be perfectly fitted to rhombohedral space group R3c and contains a very small amount of secondary phase, whereas the final product (annealed at 800 °C) represents single-phase perovskite powder with high crystallinity. HRTEM analysis confirmed existence of twin stacking faults, which are responsible for enhanced magnetic properties. EPR measurements suggested existence of electrons trapped by vacancies or defects. It has been proposed that existence of Fe3+ −OV defect complex could be generated at elevated temperatures followed by formation of trivalent Fe ions, which intensely provide local 3d moments.",
publisher = "Novi Sad Faculty of Technology, University of Novi Sad",
journal = "Processing and Application of Ceramics",
title = "Comprehensive characterization of BiFeO3 powder synthesized by the hydrothermal procedure",
pages = "201-208",
volume = "10",
number = "4",
doi = "10.2298/PAC1604201C",
url = "https://hdl.handle.net/21.15107/rcub_dais_15964"
}
Čebela, M., Janković, B., Hercigonja, R., Lukić, M. J., Dohčević-Mitrović, Z., Milivojević, D.,& Matović, B.. (2016). Comprehensive characterization of BiFeO3 powder synthesized by the hydrothermal procedure. in Processing and Application of Ceramics
Novi Sad Faculty of Technology, University of Novi Sad., 10(4), 201-208.
https://doi.org/10.2298/PAC1604201C
https://hdl.handle.net/21.15107/rcub_dais_15964
Čebela M, Janković B, Hercigonja R, Lukić MJ, Dohčević-Mitrović Z, Milivojević D, Matović B. Comprehensive characterization of BiFeO3 powder synthesized by the hydrothermal procedure. in Processing and Application of Ceramics. 2016;10(4):201-208.
doi:10.2298/PAC1604201C
https://hdl.handle.net/21.15107/rcub_dais_15964 .
Čebela, Maria, Janković, Bojan, Hercigonja, Radmila, Lukić, Miodrag J., Dohčević-Mitrović, Zorana, Milivojević, Dušan, Matović, Branko, "Comprehensive characterization of BiFeO3 powder synthesized by the hydrothermal procedure" in Processing and Application of Ceramics, 10, no. 4 (2016):201-208,
https://doi.org/10.2298/PAC1604201C .,
https://hdl.handle.net/21.15107/rcub_dais_15964 .
32
10
33