Stojković Simatović, Ivana

Link to this page

Authority KeyName Variants
orcid::0000-0001-7836-4574
  • Stojković Simatović, Ivana (41)
  • Stojković, Ivana (2)
Projects
Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200175 (Institute of Technical Sciences of SASA, Belgrade) Molecular designing of nanoparticles with controlled morphological and physicochemical characteristics and functional materials based on them
Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200146 (University of Belgrade, Faculty of Physical Chemistry) Lithium-ion batteries and fuel cells - research and development
Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200017 (University of Belgrade, Institute of Nuclear Sciences 'Vinča', Belgrade-Vinča) Serbian Academy of Sciences and Arts, Project F-190
Bilateral cooperation program between the Republic of Serbia and the Republic of Slovenia “Nanostructured and mesoporous functional materials with enhanced solar light driven photocatalytic activity” for 2018–2019 http://dx.doi.org/10.13039/501100004564
Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200026 (University of Belgrade, Institute of Chemistry, Technology and Metallurgy - IChTM) Magnetic and radionuclide labeled nanostructured materials for medical applications
Bilateral cooperation program between the Republic of Serbia and the Republic of Slovenia, Project 651-03-1251/2012-09/05 Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200162 (University of Belgrade, Faculty of Physics)
Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200325 (Military Technical Institute - MTI, Belgrade) Zero- to Three-Dimensional Nanostructures for Application in Electronics and Renewable Energy Sources: Synthesis, Characterization and Processing
Nanostructured multifunctional materials and nanocomposites Struktura, termodinamičke i elektrohemijske osobine materijala za konverziju energije i nove tehnologije

Author's Bibliography

Investigation of hydrogen evolution reaction on ZnO/rGO

Kratovac, Marija; Aleksić, Katarina; Marković, Smilja; Stojković Simatović, Ivana

(Belgrade : Serbian Chemical Society, 2023)

TY  - CONF
AU  - Kratovac, Marija
AU  - Aleksić, Katarina
AU  - Marković, Smilja
AU  - Stojković Simatović, Ivana
PY  - 2023
UR  - https://dais.sanu.ac.rs/123456789/16166
UR  - https://www.shd.org.rs/wp-content/uploads/2023/11/9CYCS_Book-of-Abstracts.pdf
AB  - The hydrogen evolution reaction (HER) is one of the indispensable parts of the water splitting process and is increasingly being researched [1]. The main goal of this study was to enhance the electrochemical properties of nanostructured zinc oxide (ZnO) particles toward HER. In order to enhance their electrochemical properties, ZnO nanoparticles were precipitated onto graphene oxide (GO) to form a ZnO/GO composite which was in situ reduced before electrochemical measurements toward HER.
A composite of ZnO/GO (0.1 and 0.5 wt.%) was synthesized using a microwave processing of a precipitate. X-ray diffraction analysis (XRD), Raman spectroscopy, and field emission scanning electron microscopy (FESEM) were used to investigate the structural and morphological characteristics of composite materials. The diffractograms showed narrow reflections with relatively high intensities, which implies high crystallinity of composite materials. Raman spectra of ZnO/GO_0.5 shows a higher intensity D- and G-bands, attributed to GO, than ZnO/GO_0.1 confirming a larger amount of graphene oxide. FESEM images of composite samples show nanostructured particles. Before HER measurements, the electrode prepared by a mixture of ZnO/GO composite, nafion and ethanol/water solvent, was in situ reduced at potential -1.4 V in 0.1 M KCl to get ZnO/rGO. HER activity was investigated in NaOH by linear voltammetry. ZnO/rGO_0.5 showed increased electrochemical activity as a result of the evolution of hydrogen starting earlier and the higher current density.
PB  - Belgrade : Serbian Chemical Society
PB  - Belgrade : Serbian Young Chemists Club
C3  - Book of abstracts / 9th Conference of the Young Chemists of Serbia, 4th November 2023, Novi Sad
T1  - Investigation of hydrogen evolution reaction on ZnO/rGO
SP  - 114
EP  - 114
UR  - https://hdl.handle.net/21.15107/rcub_dais_16166
ER  - 
@conference{
author = "Kratovac, Marija and Aleksić, Katarina and Marković, Smilja and Stojković Simatović, Ivana",
year = "2023",
abstract = "The hydrogen evolution reaction (HER) is one of the indispensable parts of the water splitting process and is increasingly being researched [1]. The main goal of this study was to enhance the electrochemical properties of nanostructured zinc oxide (ZnO) particles toward HER. In order to enhance their electrochemical properties, ZnO nanoparticles were precipitated onto graphene oxide (GO) to form a ZnO/GO composite which was in situ reduced before electrochemical measurements toward HER.
A composite of ZnO/GO (0.1 and 0.5 wt.%) was synthesized using a microwave processing of a precipitate. X-ray diffraction analysis (XRD), Raman spectroscopy, and field emission scanning electron microscopy (FESEM) were used to investigate the structural and morphological characteristics of composite materials. The diffractograms showed narrow reflections with relatively high intensities, which implies high crystallinity of composite materials. Raman spectra of ZnO/GO_0.5 shows a higher intensity D- and G-bands, attributed to GO, than ZnO/GO_0.1 confirming a larger amount of graphene oxide. FESEM images of composite samples show nanostructured particles. Before HER measurements, the electrode prepared by a mixture of ZnO/GO composite, nafion and ethanol/water solvent, was in situ reduced at potential -1.4 V in 0.1 M KCl to get ZnO/rGO. HER activity was investigated in NaOH by linear voltammetry. ZnO/rGO_0.5 showed increased electrochemical activity as a result of the evolution of hydrogen starting earlier and the higher current density.",
publisher = "Belgrade : Serbian Chemical Society, Belgrade : Serbian Young Chemists Club",
journal = "Book of abstracts / 9th Conference of the Young Chemists of Serbia, 4th November 2023, Novi Sad",
title = "Investigation of hydrogen evolution reaction on ZnO/rGO",
pages = "114-114",
url = "https://hdl.handle.net/21.15107/rcub_dais_16166"
}
Kratovac, M., Aleksić, K., Marković, S.,& Stojković Simatović, I.. (2023). Investigation of hydrogen evolution reaction on ZnO/rGO. in Book of abstracts / 9th Conference of the Young Chemists of Serbia, 4th November 2023, Novi Sad
Belgrade : Serbian Chemical Society., 114-114.
https://hdl.handle.net/21.15107/rcub_dais_16166
Kratovac M, Aleksić K, Marković S, Stojković Simatović I. Investigation of hydrogen evolution reaction on ZnO/rGO. in Book of abstracts / 9th Conference of the Young Chemists of Serbia, 4th November 2023, Novi Sad. 2023;:114-114.
https://hdl.handle.net/21.15107/rcub_dais_16166 .
Kratovac, Marija, Aleksić, Katarina, Marković, Smilja, Stojković Simatović, Ivana, "Investigation of hydrogen evolution reaction on ZnO/rGO" in Book of abstracts / 9th Conference of the Young Chemists of Serbia, 4th November 2023, Novi Sad (2023):114-114,
https://hdl.handle.net/21.15107/rcub_dais_16166 .

Anti-corrosive composite coatings based on PVB/ZnO:Co and PVB/HAP:Co

Aleksić, Katarina; Bajić, Danica; Stojanović, Zoran; Latinović, Luka; Tomašević, Vladimir; Stojković Simatović, Ivana; Marković, Smilja

(European Federation of Corrosion, 2023)

TY  - CONF
AU  - Aleksić, Katarina
AU  - Bajić, Danica
AU  - Stojanović, Zoran
AU  - Latinović, Luka
AU  - Tomašević, Vladimir
AU  - Stojković Simatović, Ivana
AU  - Marković, Smilja
PY  - 2023
UR  - https://www.eurocorr2023.org/
UR  - https://dais.sanu.ac.rs/123456789/16171
AB  - Recently we have developed polymer/ceramic composite coatings based on poly(vinyl butyral), hydroxyapatite and zinc oxide-based nanostructured powders (PVB, HAP:Co and ZnO:Co, respectively). Prepared composite coatings showed good both adhesions to metal and glass surfaces and camouflage properties, thus can be used to improve combat capability of military equipment. An essential demand of new materials in the military industry is to be multifunctional.
Accordingly, the aim of this study was to examine corrosion activity of the PVB/ZnO:Co and PVB/HAP:Co coatings in saline solution as a function of immersion time. The ZnO:Co and HAP:Co nanostructured powders were synthesized by hydrothermal processing of a precipitate. To adjust optical properties, synthesized powders were annealed at 400, 800 and 1000 °C. Annealed powders were mixed with PVB: each powder was dispersed in ethanol with the aid of an ultrasonic probe, successively PVB powder was added in dispersion, in 10 wt.% regard to ethanol, and stirred on a mechanical stirrer to completely dissolve. Prepared solution was coated on stainless steel substrate and dried at room temperature for 72 hours to form solid coating. The corrosion activity of the coatings was measured by potentiodynamic polarization technique in the potential range from -0.8 to -0.2 V vs SCE, with the scan rate of 10mVs-1. The measurements were performed using a conventional three-electrode cell in 3% NaCl water solution as the electrolyte. Platinum foil, a standard calomel electrode (SCE) and coated stainless steel were used as the counter, reference and working electrode, respectively. We found that all examined coatings have lower corrosion activity than bare stainless steel or stainless steel coated with pure PVB. Differences in corrosion activity between the coatings are explained by different textural and optoelectronic properties of ceramic powders modified by the annealing procedure.
PB  - European Federation of Corrosion
C3  - EUROCORR2023 : The Annual Congress of the European Federation of Corrosion, August 27-31, 2023, Brussels, Belgium (EFC Event number 459)
T1  - Anti-corrosive composite coatings based on PVB/ZnO:Co and PVB/HAP:Co
UR  - https://hdl.handle.net/21.15107/rcub_dais_16171
ER  - 
@conference{
author = "Aleksić, Katarina and Bajić, Danica and Stojanović, Zoran and Latinović, Luka and Tomašević, Vladimir and Stojković Simatović, Ivana and Marković, Smilja",
year = "2023",
abstract = "Recently we have developed polymer/ceramic composite coatings based on poly(vinyl butyral), hydroxyapatite and zinc oxide-based nanostructured powders (PVB, HAP:Co and ZnO:Co, respectively). Prepared composite coatings showed good both adhesions to metal and glass surfaces and camouflage properties, thus can be used to improve combat capability of military equipment. An essential demand of new materials in the military industry is to be multifunctional.
Accordingly, the aim of this study was to examine corrosion activity of the PVB/ZnO:Co and PVB/HAP:Co coatings in saline solution as a function of immersion time. The ZnO:Co and HAP:Co nanostructured powders were synthesized by hydrothermal processing of a precipitate. To adjust optical properties, synthesized powders were annealed at 400, 800 and 1000 °C. Annealed powders were mixed with PVB: each powder was dispersed in ethanol with the aid of an ultrasonic probe, successively PVB powder was added in dispersion, in 10 wt.% regard to ethanol, and stirred on a mechanical stirrer to completely dissolve. Prepared solution was coated on stainless steel substrate and dried at room temperature for 72 hours to form solid coating. The corrosion activity of the coatings was measured by potentiodynamic polarization technique in the potential range from -0.8 to -0.2 V vs SCE, with the scan rate of 10mVs-1. The measurements were performed using a conventional three-electrode cell in 3% NaCl water solution as the electrolyte. Platinum foil, a standard calomel electrode (SCE) and coated stainless steel were used as the counter, reference and working electrode, respectively. We found that all examined coatings have lower corrosion activity than bare stainless steel or stainless steel coated with pure PVB. Differences in corrosion activity between the coatings are explained by different textural and optoelectronic properties of ceramic powders modified by the annealing procedure.",
publisher = "European Federation of Corrosion",
journal = "EUROCORR2023 : The Annual Congress of the European Federation of Corrosion, August 27-31, 2023, Brussels, Belgium (EFC Event number 459)",
title = "Anti-corrosive composite coatings based on PVB/ZnO:Co and PVB/HAP:Co",
url = "https://hdl.handle.net/21.15107/rcub_dais_16171"
}
Aleksić, K., Bajić, D., Stojanović, Z., Latinović, L., Tomašević, V., Stojković Simatović, I.,& Marković, S.. (2023). Anti-corrosive composite coatings based on PVB/ZnO:Co and PVB/HAP:Co. in EUROCORR2023 : The Annual Congress of the European Federation of Corrosion, August 27-31, 2023, Brussels, Belgium (EFC Event number 459)
European Federation of Corrosion..
https://hdl.handle.net/21.15107/rcub_dais_16171
Aleksić K, Bajić D, Stojanović Z, Latinović L, Tomašević V, Stojković Simatović I, Marković S. Anti-corrosive composite coatings based on PVB/ZnO:Co and PVB/HAP:Co. in EUROCORR2023 : The Annual Congress of the European Federation of Corrosion, August 27-31, 2023, Brussels, Belgium (EFC Event number 459). 2023;.
https://hdl.handle.net/21.15107/rcub_dais_16171 .
Aleksić, Katarina, Bajić, Danica, Stojanović, Zoran, Latinović, Luka, Tomašević, Vladimir, Stojković Simatović, Ivana, Marković, Smilja, "Anti-corrosive composite coatings based on PVB/ZnO:Co and PVB/HAP:Co" in EUROCORR2023 : The Annual Congress of the European Federation of Corrosion, August 27-31, 2023, Brussels, Belgium (EFC Event number 459) (2023),
https://hdl.handle.net/21.15107/rcub_dais_16171 .

Electrochemical characteristics of V2O5/rGO synthesized by sol-gel method in water electrolyte

Kuzmanović, Maja; Guberinić, Katarina; Kraljić Rokvić, Marijana; Stojković Simatović, Ivana

(Belgrade : Serbian Ceramic Society, 2023)

TY  - CONF
AU  - Kuzmanović, Maja
AU  - Guberinić, Katarina
AU  - Kraljić Rokvić, Marijana
AU  - Stojković Simatović, Ivana
PY  - 2023
UR  - https://dais.sanu.ac.rs/123456789/15153
AB  - Today, rechargeable Li- ion batteries have widespread use as power sources. However, the organic electrolytes used in these batteries are toxic, so the use of aqueous electrolytes is preferred. Vanadium pentoxide has been intensively studied as a cathode material for use in batteries with aqueous electrolytes. In this work, the V2O5 composite with reduced graphene oxide was synthesized by a simple sol-gel synthesis. Material was characterized by XRD, thermal analysis and optical microscope. The electrochemical properties of the composite material were examined by the method of cyclic voltammetry at different polarization speeds. Aqueous electrolytes LiNO3, NaNO3 and Mg (NO3)2 were used. These characteristics were correlated to determine for which type of batteries the tested composite can be used, as well as how reduced graphene oxide affects the stability and capacity value of V2O5.
PB  - Belgrade : Serbian Ceramic Society
C3  - Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application XI New Frontiers in Multifunctional Material Science and Processing, Serbian Academy of Sciences and Art Serbia, Belgrade,18-20.September 2023
T1  - Electrochemical characteristics of V2O5/rGO synthesized by sol-gel method in water electrolyte
SP  - 85
EP  - 86
UR  - https://hdl.handle.net/21.15107/rcub_dais_15153
ER  - 
@conference{
author = "Kuzmanović, Maja and Guberinić, Katarina and Kraljić Rokvić, Marijana and Stojković Simatović, Ivana",
year = "2023",
abstract = "Today, rechargeable Li- ion batteries have widespread use as power sources. However, the organic electrolytes used in these batteries are toxic, so the use of aqueous electrolytes is preferred. Vanadium pentoxide has been intensively studied as a cathode material for use in batteries with aqueous electrolytes. In this work, the V2O5 composite with reduced graphene oxide was synthesized by a simple sol-gel synthesis. Material was characterized by XRD, thermal analysis and optical microscope. The electrochemical properties of the composite material were examined by the method of cyclic voltammetry at different polarization speeds. Aqueous electrolytes LiNO3, NaNO3 and Mg (NO3)2 were used. These characteristics were correlated to determine for which type of batteries the tested composite can be used, as well as how reduced graphene oxide affects the stability and capacity value of V2O5.",
publisher = "Belgrade : Serbian Ceramic Society",
journal = "Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application XI New Frontiers in Multifunctional Material Science and Processing, Serbian Academy of Sciences and Art Serbia, Belgrade,18-20.September 2023",
title = "Electrochemical characteristics of V2O5/rGO synthesized by sol-gel method in water electrolyte",
pages = "85-86",
url = "https://hdl.handle.net/21.15107/rcub_dais_15153"
}
Kuzmanović, M., Guberinić, K., Kraljić Rokvić, M.,& Stojković Simatović, I.. (2023). Electrochemical characteristics of V2O5/rGO synthesized by sol-gel method in water electrolyte. in Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application XI New Frontiers in Multifunctional Material Science and Processing, Serbian Academy of Sciences and Art Serbia, Belgrade,18-20.September 2023
Belgrade : Serbian Ceramic Society., 85-86.
https://hdl.handle.net/21.15107/rcub_dais_15153
Kuzmanović M, Guberinić K, Kraljić Rokvić M, Stojković Simatović I. Electrochemical characteristics of V2O5/rGO synthesized by sol-gel method in water electrolyte. in Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application XI New Frontiers in Multifunctional Material Science and Processing, Serbian Academy of Sciences and Art Serbia, Belgrade,18-20.September 2023. 2023;:85-86.
https://hdl.handle.net/21.15107/rcub_dais_15153 .
Kuzmanović, Maja, Guberinić, Katarina, Kraljić Rokvić, Marijana, Stojković Simatović, Ivana, "Electrochemical characteristics of V2O5/rGO synthesized by sol-gel method in water electrolyte" in Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application XI New Frontiers in Multifunctional Material Science and Processing, Serbian Academy of Sciences and Art Serbia, Belgrade,18-20.September 2023 (2023):85-86,
https://hdl.handle.net/21.15107/rcub_dais_15153 .

Tailoring the ZnO/RuO2 ratio in composite electrocatalysts for efficient HER and OER

Aleksić, Katarina; Stanković, Ana; Veselinović, Ljiljana; Škapin, Srečo; Stojković Simatović, Ivana; Marković, Smilja

(Belgrade : Serbian Ceramic Society, 2023)

TY  - CONF
AU  - Aleksić, Katarina
AU  - Stanković, Ana
AU  - Veselinović, Ljiljana
AU  - Škapin, Srečo
AU  - Stojković Simatović, Ivana
AU  - Marković, Smilja
PY  - 2023
UR  - https://dais.sanu.ac.rs/123456789/15853
AB  - The increasing demand for efficient catalysts has raised concerns about the limited availability and high cost of platinum group metal (PGM) catalysts. Ruthenium dioxide (RuO2) has shown remarkable catalytic activity; however, its extensive use is hindered by its high cost. To tackle this challenge, we investigated the utilization of zinc oxide (ZnO) as a promising alternative to reduce reliance on expensive RuO2 catalysts while maintaining catalytic performance by synthesizing ZnO/RuO2 composites in various mass ratios (1:1, 2:1, 10:1) through microwave processing of a precipitate, followed by calcination at temperatures of 300 and 600 °C. The crystallinity and phase purity of the particles were analyzed using Xray powder diffraction (XRD) and Raman spectroscopy. Surface chemistry was examined by Fourier-transform infrared (FTIR) spectroscopy. Field emission scanning electron microscopy was employed to investigate the morphology and particle size. Photoluminescence and UVVis diffuse reflectance spectroscopy were utilized for analyzing the optical properties. The electrocatalytic activity of the materials were evaluated via linear sweep voltammetry in both acidic (0.1 M H2SO4) and alkaline (0.1 M NaOH) electrolytes. The ZnO/RuO2 composites exhibited outstanding catalytic performance for both the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) in both types of electrolytes.
PB  - Belgrade : Serbian Ceramic Society
C3  - Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application XI New Frontiers in Multifunctional Material Science and Processing, Serbian Academy of Sciences and Art Serbia, Belgrade,18-20.September 2023
T1  - Tailoring the ZnO/RuO2 ratio in composite electrocatalysts for efficient HER and OER
SP  - 62
EP  - 62
UR  - https://hdl.handle.net/21.15107/rcub_dais_15853
ER  - 
@conference{
author = "Aleksić, Katarina and Stanković, Ana and Veselinović, Ljiljana and Škapin, Srečo and Stojković Simatović, Ivana and Marković, Smilja",
year = "2023",
abstract = "The increasing demand for efficient catalysts has raised concerns about the limited availability and high cost of platinum group metal (PGM) catalysts. Ruthenium dioxide (RuO2) has shown remarkable catalytic activity; however, its extensive use is hindered by its high cost. To tackle this challenge, we investigated the utilization of zinc oxide (ZnO) as a promising alternative to reduce reliance on expensive RuO2 catalysts while maintaining catalytic performance by synthesizing ZnO/RuO2 composites in various mass ratios (1:1, 2:1, 10:1) through microwave processing of a precipitate, followed by calcination at temperatures of 300 and 600 °C. The crystallinity and phase purity of the particles were analyzed using Xray powder diffraction (XRD) and Raman spectroscopy. Surface chemistry was examined by Fourier-transform infrared (FTIR) spectroscopy. Field emission scanning electron microscopy was employed to investigate the morphology and particle size. Photoluminescence and UVVis diffuse reflectance spectroscopy were utilized for analyzing the optical properties. The electrocatalytic activity of the materials were evaluated via linear sweep voltammetry in both acidic (0.1 M H2SO4) and alkaline (0.1 M NaOH) electrolytes. The ZnO/RuO2 composites exhibited outstanding catalytic performance for both the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) in both types of electrolytes.",
publisher = "Belgrade : Serbian Ceramic Society",
journal = "Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application XI New Frontiers in Multifunctional Material Science and Processing, Serbian Academy of Sciences and Art Serbia, Belgrade,18-20.September 2023",
title = "Tailoring the ZnO/RuO2 ratio in composite electrocatalysts for efficient HER and OER",
pages = "62-62",
url = "https://hdl.handle.net/21.15107/rcub_dais_15853"
}
Aleksić, K., Stanković, A., Veselinović, L., Škapin, S., Stojković Simatović, I.,& Marković, S.. (2023). Tailoring the ZnO/RuO2 ratio in composite electrocatalysts for efficient HER and OER. in Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application XI New Frontiers in Multifunctional Material Science and Processing, Serbian Academy of Sciences and Art Serbia, Belgrade,18-20.September 2023
Belgrade : Serbian Ceramic Society., 62-62.
https://hdl.handle.net/21.15107/rcub_dais_15853
Aleksić K, Stanković A, Veselinović L, Škapin S, Stojković Simatović I, Marković S. Tailoring the ZnO/RuO2 ratio in composite electrocatalysts for efficient HER and OER. in Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application XI New Frontiers in Multifunctional Material Science and Processing, Serbian Academy of Sciences and Art Serbia, Belgrade,18-20.September 2023. 2023;:62-62.
https://hdl.handle.net/21.15107/rcub_dais_15853 .
Aleksić, Katarina, Stanković, Ana, Veselinović, Ljiljana, Škapin, Srečo, Stojković Simatović, Ivana, Marković, Smilja, "Tailoring the ZnO/RuO2 ratio in composite electrocatalysts for efficient HER and OER" in Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application XI New Frontiers in Multifunctional Material Science and Processing, Serbian Academy of Sciences and Art Serbia, Belgrade,18-20.September 2023 (2023):62-62,
https://hdl.handle.net/21.15107/rcub_dais_15853 .

ZnO@RuO2 composites: Cost-effective trifunctional electrocatalysts for enhanced OER, HER, and ORR activities in water electrolysis

Aleksić, Katarina; Stojković Simatović, Ivana; Marković, Smilja

(Belgrade : Institute of Technical Sciences of SASA, 2023)

TY  - CONF
AU  - Aleksić, Katarina
AU  - Stojković Simatović, Ivana
AU  - Marković, Smilja
PY  - 2023
UR  - https://dais.sanu.ac.rs/123456789/15636
AB  - Affordable catalysts for use in water electrolysis and fuel cells as clean energy sources pose a significant challenge. Currently, platinum group metal catalysts are both expensive and difficult to obtain. In this research, an attempt is made to address this issue by investigating methods to reduce costs. Specifically, the use of RuO2 instead of Ru and the incorporation of a substantial amount of easily available ZnO, which has various applications, are explored. A composite of ZnO@RuO2 in a 10:1 molar ratio was synthesized using microwave processing of a precipitate. To enhance its catalytic properties, the composite was subsequently annealed at 300 and 600 °C. A detailed analysis of the crystal structure, morphology, optical and (photo)electrocatalytic properties of the processed 10ZnO@RuO2 catalyst particles was conducted. The catalytic activity of the prepared composites toward the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in 0.1 M NaOH and 0.1 M H2SO4 was investigated using linear sweep voltammetry (LSV). The measurements were taken both in the dark and under illumination after 60 minutes of exposure. To determine the intrinsic HER and OER activity of the studied catalyst, the LSV data were normalized by the electrochemical surface area (ECSA). Finally, the oxygen reduction reaction (ORR) activity of the catalysts was tested in both alkaline and acidic electrolytes.
PB  - Belgrade : Institute of Technical Sciences of SASA
C3  - Program and the Book of abstracts / Twenty-first Young Researchers' Conference Materials Science and Engineering, November 29 – December 1, 2023, Belgrade, Serbia
T1  - ZnO@RuO2 composites: Cost-effective trifunctional electrocatalysts for enhanced OER, HER, and ORR activities in water electrolysis
SP  - 42
EP  - 42
UR  - https://hdl.handle.net/21.15107/rcub_dais_15636
ER  - 
@conference{
author = "Aleksić, Katarina and Stojković Simatović, Ivana and Marković, Smilja",
year = "2023",
abstract = "Affordable catalysts for use in water electrolysis and fuel cells as clean energy sources pose a significant challenge. Currently, platinum group metal catalysts are both expensive and difficult to obtain. In this research, an attempt is made to address this issue by investigating methods to reduce costs. Specifically, the use of RuO2 instead of Ru and the incorporation of a substantial amount of easily available ZnO, which has various applications, are explored. A composite of ZnO@RuO2 in a 10:1 molar ratio was synthesized using microwave processing of a precipitate. To enhance its catalytic properties, the composite was subsequently annealed at 300 and 600 °C. A detailed analysis of the crystal structure, morphology, optical and (photo)electrocatalytic properties of the processed 10ZnO@RuO2 catalyst particles was conducted. The catalytic activity of the prepared composites toward the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in 0.1 M NaOH and 0.1 M H2SO4 was investigated using linear sweep voltammetry (LSV). The measurements were taken both in the dark and under illumination after 60 minutes of exposure. To determine the intrinsic HER and OER activity of the studied catalyst, the LSV data were normalized by the electrochemical surface area (ECSA). Finally, the oxygen reduction reaction (ORR) activity of the catalysts was tested in both alkaline and acidic electrolytes.",
publisher = "Belgrade : Institute of Technical Sciences of SASA",
journal = "Program and the Book of abstracts / Twenty-first Young Researchers' Conference Materials Science and Engineering, November 29 – December 1, 2023, Belgrade, Serbia",
title = "ZnO@RuO2 composites: Cost-effective trifunctional electrocatalysts for enhanced OER, HER, and ORR activities in water electrolysis",
pages = "42-42",
url = "https://hdl.handle.net/21.15107/rcub_dais_15636"
}
Aleksić, K., Stojković Simatović, I.,& Marković, S.. (2023). ZnO@RuO2 composites: Cost-effective trifunctional electrocatalysts for enhanced OER, HER, and ORR activities in water electrolysis. in Program and the Book of abstracts / Twenty-first Young Researchers' Conference Materials Science and Engineering, November 29 – December 1, 2023, Belgrade, Serbia
Belgrade : Institute of Technical Sciences of SASA., 42-42.
https://hdl.handle.net/21.15107/rcub_dais_15636
Aleksić K, Stojković Simatović I, Marković S. ZnO@RuO2 composites: Cost-effective trifunctional electrocatalysts for enhanced OER, HER, and ORR activities in water electrolysis. in Program and the Book of abstracts / Twenty-first Young Researchers' Conference Materials Science and Engineering, November 29 – December 1, 2023, Belgrade, Serbia. 2023;:42-42.
https://hdl.handle.net/21.15107/rcub_dais_15636 .
Aleksić, Katarina, Stojković Simatović, Ivana, Marković, Smilja, "ZnO@RuO2 composites: Cost-effective trifunctional electrocatalysts for enhanced OER, HER, and ORR activities in water electrolysis" in Program and the Book of abstracts / Twenty-first Young Researchers' Conference Materials Science and Engineering, November 29 – December 1, 2023, Belgrade, Serbia (2023):42-42,
https://hdl.handle.net/21.15107/rcub_dais_15636 .

Crystal structure, optical properties and photo/electrocatalytic activity of nanostructured Zn1-xFeyO(1-x+1.5y)

Rajić, Vladimir; Marković, Smilja; Popović, M.; Novaković, M.; Veselinović, Ljiljana; Stojković Simatović, Ivana; Škapin, Srečo Davor; Stojadinović, S.; Rac, Vladislav

(Belgrade : Vinča Institute of Nuclear Sciences – National Institute of the Republic of Serbia, University of Belgrade, 2023)

TY  - CONF
AU  - Rajić, Vladimir
AU  - Marković, Smilja
AU  - Popović, M.
AU  - Novaković, M.
AU  - Veselinović, Ljiljana
AU  - Stojković Simatović, Ivana
AU  - Škapin, Srečo Davor
AU  - Stojadinović, S.
AU  - Rac, Vladislav
PY  - 2023
UR  - https://dais.sanu.ac.rs/123456789/14868
AB  - Zink oxide-based materials have a great potential to be applied in photo and electro catalysts, opto-electronic (indoor illumination, LED), etc. Attractiveness of ZnO is attributed to wide bandgap energy at room temperature (3.37 eV), high electron mobility and transfer efficiency (115-155 cm2·V-1·s-1), large exciton binding energy (60 meV), intrinsic stability, nontoxicity, environmental compatibility and also, simple and not expensive synthesis procedure. A lot of different approaches can be used to modify the bandgap (i.e. optical absorption) of ZnO materials: metal and nonmetal ion doping, hydrogenation, the incorporation of crystalline defects in the form of V and I, modification of particles morphology and surface topology, etc.
In this study, eco-friendly and rapid microwave processing of a precipitate was used to produce Fe-doped ZnO nanoparticles with 5, 10, 15 and 20 at.% of Fe (Zn1-xFeyO(1-x+1.5y)). The influence of different amount of Fe substituted Zn in ZnO on the crystal structure, morphological, textural, and optical properties as well as on functionality of ZnO particles was investigated. The crystal structure and phase purity of the Zn1-xFeyO(1-x+1.5y) particles were determined by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). Effects of the Fe3+ amount on particles morphology and texture properties were observed with field emission scanning electron microscopy (FE–SEM), transmission electron microscopy (TEM) and nitrogen adsorption–desorption isotherm, respectively. Optical properties were studied using UV-Vis diffuse reflectance and photoluminescence spectroscopy. Functionality of ZnO particles was studied due to their photocatalytic and electrochemical activities. Photocatalytic activity was examined via decolorization of methylene blue under direct sunlight irradiation. Electrochemical behavior of the ZnO samples as anode material was evaluated by linear sweep voltammetry in 0.5 M Na2SO4 electrolyte.
PB  - Belgrade : Vinča Institute of Nuclear Sciences – National Institute of the Republic of Serbia, University of Belgrade
C3  - Book of abstracts / IX International School and Conference on Photonics PHOTONICA2023 with joint events: Understanding interaction light - biological surfaces possibility for new electronic materials and devices & Biological and bioinspired structures for multispectral surveillance & Quantum sensing integration within microfluidic Lab-on-a Chips for biomedical applications, August 28 - September 01, 2023, Belgrade, Serbia
T1  - Crystal structure, optical properties and photo/electrocatalytic activity of nanostructured Zn1-xFeyO(1-x+1.5y)
SP  - 34
EP  - 34
UR  - https://hdl.handle.net/21.15107/rcub_dais_14868
ER  - 
@conference{
author = "Rajić, Vladimir and Marković, Smilja and Popović, M. and Novaković, M. and Veselinović, Ljiljana and Stojković Simatović, Ivana and Škapin, Srečo Davor and Stojadinović, S. and Rac, Vladislav",
year = "2023",
abstract = "Zink oxide-based materials have a great potential to be applied in photo and electro catalysts, opto-electronic (indoor illumination, LED), etc. Attractiveness of ZnO is attributed to wide bandgap energy at room temperature (3.37 eV), high electron mobility and transfer efficiency (115-155 cm2·V-1·s-1), large exciton binding energy (60 meV), intrinsic stability, nontoxicity, environmental compatibility and also, simple and not expensive synthesis procedure. A lot of different approaches can be used to modify the bandgap (i.e. optical absorption) of ZnO materials: metal and nonmetal ion doping, hydrogenation, the incorporation of crystalline defects in the form of V and I, modification of particles morphology and surface topology, etc.
In this study, eco-friendly and rapid microwave processing of a precipitate was used to produce Fe-doped ZnO nanoparticles with 5, 10, 15 and 20 at.% of Fe (Zn1-xFeyO(1-x+1.5y)). The influence of different amount of Fe substituted Zn in ZnO on the crystal structure, morphological, textural, and optical properties as well as on functionality of ZnO particles was investigated. The crystal structure and phase purity of the Zn1-xFeyO(1-x+1.5y) particles were determined by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). Effects of the Fe3+ amount on particles morphology and texture properties were observed with field emission scanning electron microscopy (FE–SEM), transmission electron microscopy (TEM) and nitrogen adsorption–desorption isotherm, respectively. Optical properties were studied using UV-Vis diffuse reflectance and photoluminescence spectroscopy. Functionality of ZnO particles was studied due to their photocatalytic and electrochemical activities. Photocatalytic activity was examined via decolorization of methylene blue under direct sunlight irradiation. Electrochemical behavior of the ZnO samples as anode material was evaluated by linear sweep voltammetry in 0.5 M Na2SO4 electrolyte.",
publisher = "Belgrade : Vinča Institute of Nuclear Sciences – National Institute of the Republic of Serbia, University of Belgrade",
journal = "Book of abstracts / IX International School and Conference on Photonics PHOTONICA2023 with joint events: Understanding interaction light - biological surfaces possibility for new electronic materials and devices & Biological and bioinspired structures for multispectral surveillance & Quantum sensing integration within microfluidic Lab-on-a Chips for biomedical applications, August 28 - September 01, 2023, Belgrade, Serbia",
title = "Crystal structure, optical properties and photo/electrocatalytic activity of nanostructured Zn1-xFeyO(1-x+1.5y)",
pages = "34-34",
url = "https://hdl.handle.net/21.15107/rcub_dais_14868"
}
Rajić, V., Marković, S., Popović, M., Novaković, M., Veselinović, L., Stojković Simatović, I., Škapin, S. D., Stojadinović, S.,& Rac, V.. (2023). Crystal structure, optical properties and photo/electrocatalytic activity of nanostructured Zn1-xFeyO(1-x+1.5y). in Book of abstracts / IX International School and Conference on Photonics PHOTONICA2023 with joint events: Understanding interaction light - biological surfaces possibility for new electronic materials and devices & Biological and bioinspired structures for multispectral surveillance & Quantum sensing integration within microfluidic Lab-on-a Chips for biomedical applications, August 28 - September 01, 2023, Belgrade, Serbia
Belgrade : Vinča Institute of Nuclear Sciences – National Institute of the Republic of Serbia, University of Belgrade., 34-34.
https://hdl.handle.net/21.15107/rcub_dais_14868
Rajić V, Marković S, Popović M, Novaković M, Veselinović L, Stojković Simatović I, Škapin SD, Stojadinović S, Rac V. Crystal structure, optical properties and photo/electrocatalytic activity of nanostructured Zn1-xFeyO(1-x+1.5y). in Book of abstracts / IX International School and Conference on Photonics PHOTONICA2023 with joint events: Understanding interaction light - biological surfaces possibility for new electronic materials and devices & Biological and bioinspired structures for multispectral surveillance & Quantum sensing integration within microfluidic Lab-on-a Chips for biomedical applications, August 28 - September 01, 2023, Belgrade, Serbia. 2023;:34-34.
https://hdl.handle.net/21.15107/rcub_dais_14868 .
Rajić, Vladimir, Marković, Smilja, Popović, M., Novaković, M., Veselinović, Ljiljana, Stojković Simatović, Ivana, Škapin, Srečo Davor, Stojadinović, S., Rac, Vladislav, "Crystal structure, optical properties and photo/electrocatalytic activity of nanostructured Zn1-xFeyO(1-x+1.5y)" in Book of abstracts / IX International School and Conference on Photonics PHOTONICA2023 with joint events: Understanding interaction light - biological surfaces possibility for new electronic materials and devices & Biological and bioinspired structures for multispectral surveillance & Quantum sensing integration within microfluidic Lab-on-a Chips for biomedical applications, August 28 - September 01, 2023, Belgrade, Serbia (2023):34-34,
https://hdl.handle.net/21.15107/rcub_dais_14868 .

Electrochemical detection of chloramphenicol drug based on ZnO and ZnO/graphene oxide composite nanoparticles

Stanković, Ana; Aleksić, Katarina; Kratovac, Marija; Stojković Simatović, Ivana; Kraljić Rokvić, Marijana; Marković, Smilja

(Belgrade : Materials Research Society of Serbia, 2023)

TY  - CONF
AU  - Stanković, Ana
AU  - Aleksić, Katarina
AU  - Kratovac, Marija
AU  - Stojković Simatović, Ivana
AU  - Kraljić Rokvić, Marijana
AU  - Marković, Smilja
PY  - 2023
UR  - https://dais.sanu.ac.rs/123456789/14870
AB  - The release of pharmaceuticals in the environment represents a significant ecological problem due to their complex structure making them challenge to be decomposed and removed by standard waste-water treatment processes. Zinc oxide (ZnO) represents a semiconductor compound with exceptional optical and electrochemical properties, chemical and photochemical stability, nontoxicity, biocompatibility, etc. Due to their adjustable multifunctional properties, ZnO based materials have concerned general scientific and technological attention. Nowadays these materials are used for a range of applications in electronics, opto-electronics, biosensing, bioimaging, drug delivery, antimicrobial and anticancer agents, implants as well as sensing in environmental applications. The main object of this study was to improve efficiency of ZnO particles toward electrochemical sensing of water pollutants and electrocatalysis. In order to modify electrochemical properties, zinc oxide/graphene oxide (ZnO/GO) composites with different ZnO:GO weights ratio were prepared using a microwave (MW) assisted synthesis of precipitate. Two different amounts of GO (0.1 and 0.5 wt.%) were dispersed in 100 mL of distilled water. After stirring for 5 min an appropriate amount of ZnCl2 was added to the GO water dispersion. Subsequently, 20 mL of 1.75 M NaOH was added dropwise to the mixture with constant stirring. After being stirred at 50 C for 90 min in total, the as-prepared precipitate was microwave processed in a MW oven (2.45 GHz, 130 W) for 5 min. After cooling to room temperature, the precipitate was centrifuged and rinsed to remove the surface residues of the starting chemical solutions. The synthesized powder was dried in an oven at 80 C for 24 h. The particles crystal structure and phase composition were investigated by X-ray diffraction and Raman spectroscopy. The particles morphology was determined with FE–SEM. The optical properties were studied using UV–Vis DRS and PL spectroscopy. The electrochemical sensing activity of ZnO and ZnO/GO electrodes was tested for detection of chloramphenicol water solution whereas electrocatalytic activity was tested for water splitting when samples were used as anode materials and evaluated by linear sweep voltammetry in 0.1M NaOH and 0.1 M H2SO4 electrolytes. ZnO/GO electrodes were tested as-prepared and after in situ reduction of GO at -1.4 V vs. SCE in 0.1 M KCl. Electrochemical activity of prepared composites was correlated with the presence of GO and reduced GO particles.
PB  - Belgrade : Materials Research Society of Serbia
C3  - Programme and The Book of Abstracts / Twenty-fourth Annual Conference YUCOMAT 2023, Herceg Novi, Montenegro, September 4 - 8, 2023
T1  - Electrochemical detection of chloramphenicol drug based on ZnO and ZnO/graphene oxide composite nanoparticles
SP  - 155
EP  - 155
UR  - https://hdl.handle.net/21.15107/rcub_dais_14870
ER  - 
@conference{
author = "Stanković, Ana and Aleksić, Katarina and Kratovac, Marija and Stojković Simatović, Ivana and Kraljić Rokvić, Marijana and Marković, Smilja",
year = "2023",
abstract = "The release of pharmaceuticals in the environment represents a significant ecological problem due to their complex structure making them challenge to be decomposed and removed by standard waste-water treatment processes. Zinc oxide (ZnO) represents a semiconductor compound with exceptional optical and electrochemical properties, chemical and photochemical stability, nontoxicity, biocompatibility, etc. Due to their adjustable multifunctional properties, ZnO based materials have concerned general scientific and technological attention. Nowadays these materials are used for a range of applications in electronics, opto-electronics, biosensing, bioimaging, drug delivery, antimicrobial and anticancer agents, implants as well as sensing in environmental applications. The main object of this study was to improve efficiency of ZnO particles toward electrochemical sensing of water pollutants and electrocatalysis. In order to modify electrochemical properties, zinc oxide/graphene oxide (ZnO/GO) composites with different ZnO:GO weights ratio were prepared using a microwave (MW) assisted synthesis of precipitate. Two different amounts of GO (0.1 and 0.5 wt.%) were dispersed in 100 mL of distilled water. After stirring for 5 min an appropriate amount of ZnCl2 was added to the GO water dispersion. Subsequently, 20 mL of 1.75 M NaOH was added dropwise to the mixture with constant stirring. After being stirred at 50 C for 90 min in total, the as-prepared precipitate was microwave processed in a MW oven (2.45 GHz, 130 W) for 5 min. After cooling to room temperature, the precipitate was centrifuged and rinsed to remove the surface residues of the starting chemical solutions. The synthesized powder was dried in an oven at 80 C for 24 h. The particles crystal structure and phase composition were investigated by X-ray diffraction and Raman spectroscopy. The particles morphology was determined with FE–SEM. The optical properties were studied using UV–Vis DRS and PL spectroscopy. The electrochemical sensing activity of ZnO and ZnO/GO electrodes was tested for detection of chloramphenicol water solution whereas electrocatalytic activity was tested for water splitting when samples were used as anode materials and evaluated by linear sweep voltammetry in 0.1M NaOH and 0.1 M H2SO4 electrolytes. ZnO/GO electrodes were tested as-prepared and after in situ reduction of GO at -1.4 V vs. SCE in 0.1 M KCl. Electrochemical activity of prepared composites was correlated with the presence of GO and reduced GO particles.",
publisher = "Belgrade : Materials Research Society of Serbia",
journal = "Programme and The Book of Abstracts / Twenty-fourth Annual Conference YUCOMAT 2023, Herceg Novi, Montenegro, September 4 - 8, 2023",
title = "Electrochemical detection of chloramphenicol drug based on ZnO and ZnO/graphene oxide composite nanoparticles",
pages = "155-155",
url = "https://hdl.handle.net/21.15107/rcub_dais_14870"
}
Stanković, A., Aleksić, K., Kratovac, M., Stojković Simatović, I., Kraljić Rokvić, M.,& Marković, S.. (2023). Electrochemical detection of chloramphenicol drug based on ZnO and ZnO/graphene oxide composite nanoparticles. in Programme and The Book of Abstracts / Twenty-fourth Annual Conference YUCOMAT 2023, Herceg Novi, Montenegro, September 4 - 8, 2023
Belgrade : Materials Research Society of Serbia., 155-155.
https://hdl.handle.net/21.15107/rcub_dais_14870
Stanković A, Aleksić K, Kratovac M, Stojković Simatović I, Kraljić Rokvić M, Marković S. Electrochemical detection of chloramphenicol drug based on ZnO and ZnO/graphene oxide composite nanoparticles. in Programme and The Book of Abstracts / Twenty-fourth Annual Conference YUCOMAT 2023, Herceg Novi, Montenegro, September 4 - 8, 2023. 2023;:155-155.
https://hdl.handle.net/21.15107/rcub_dais_14870 .
Stanković, Ana, Aleksić, Katarina, Kratovac, Marija, Stojković Simatović, Ivana, Kraljić Rokvić, Marijana, Marković, Smilja, "Electrochemical detection of chloramphenicol drug based on ZnO and ZnO/graphene oxide composite nanoparticles" in Programme and The Book of Abstracts / Twenty-fourth Annual Conference YUCOMAT 2023, Herceg Novi, Montenegro, September 4 - 8, 2023 (2023):155-155,
https://hdl.handle.net/21.15107/rcub_dais_14870 .

ZnO/RuO2 nanostructured composites with enhanced bifunctional photo-electro catalytic activity toward water splitting

Aleksić, Katarina; Stojković Simatović, Ivana; Marković, Smilja

(Belgrade : Materials Research Society of Serbia, 2023)

TY  - CONF
AU  - Aleksić, Katarina
AU  - Stojković Simatović, Ivana
AU  - Marković, Smilja
PY  - 2023
UR  - https://dais.sanu.ac.rs/123456789/14872
AB  - The demand for affordable and accessible catalysts to replace the expensive and scarce resourced platinum group metals (PGMs) has become increasingly vital. Since they combine different properties such as electrochemical activities, chemical and photochemical stability, non-toxicity, etc. ZnO-based materials have been examined for potential applications in electronics, optoelectronics, sensing in environmental applications as well as catalysis. This study focused on cost reduction of PGM materials by introducing RuO2 as a substitute for Ru and decreasing the amount of RuO2 through the incorporation of abundant and versatile ZnO. A composite of ZnO/RuO2 in a 10:1 molar ratio was synthesized using a microwave processing of a prepcipitate. To enhance its catalytic properties, the composite was subsequently annealed at 300 and 600 C. The physicochemical characteristics of the ZnO/RuO2 composites were analyzed using X-ray powder diffraction (XRD), Raman and Fourier transform infrared (FTIR) spectroscopy, field emission scanning electron microscopy (FESEM), UV-Vis diffuse reflectance spectroscopy (DRS), and photoluminescence (PL) spectroscopy. Furthermore, the electrochemical activity of the samples was assessed through linear sweep voltammetry in both acidic (0.1 M H2SO4) and alkaline (0.1 M NaOH) electrolytes. Remarkably, the ZnO/RuO2 composites exhibited excellent bifunctional catalytic activity for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in both types of electrolytes.
PB  - Belgrade : Materials Research Society of Serbia
C3  - Programme and The Book of Abstracts / Twenty-fourth Annual Conference YUCOMAT 2023, Herceg Novi, Montenegro, September 4 - 8, 2023
T1  - ZnO/RuO2 nanostructured composites with enhanced bifunctional photo-electro catalytic activity toward water splitting
SP  - 82
EP  - 82
UR  - https://hdl.handle.net/21.15107/rcub_dais_14872
ER  - 
@conference{
author = "Aleksić, Katarina and Stojković Simatović, Ivana and Marković, Smilja",
year = "2023",
abstract = "The demand for affordable and accessible catalysts to replace the expensive and scarce resourced platinum group metals (PGMs) has become increasingly vital. Since they combine different properties such as electrochemical activities, chemical and photochemical stability, non-toxicity, etc. ZnO-based materials have been examined for potential applications in electronics, optoelectronics, sensing in environmental applications as well as catalysis. This study focused on cost reduction of PGM materials by introducing RuO2 as a substitute for Ru and decreasing the amount of RuO2 through the incorporation of abundant and versatile ZnO. A composite of ZnO/RuO2 in a 10:1 molar ratio was synthesized using a microwave processing of a prepcipitate. To enhance its catalytic properties, the composite was subsequently annealed at 300 and 600 C. The physicochemical characteristics of the ZnO/RuO2 composites were analyzed using X-ray powder diffraction (XRD), Raman and Fourier transform infrared (FTIR) spectroscopy, field emission scanning electron microscopy (FESEM), UV-Vis diffuse reflectance spectroscopy (DRS), and photoluminescence (PL) spectroscopy. Furthermore, the electrochemical activity of the samples was assessed through linear sweep voltammetry in both acidic (0.1 M H2SO4) and alkaline (0.1 M NaOH) electrolytes. Remarkably, the ZnO/RuO2 composites exhibited excellent bifunctional catalytic activity for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in both types of electrolytes.",
publisher = "Belgrade : Materials Research Society of Serbia",
journal = "Programme and The Book of Abstracts / Twenty-fourth Annual Conference YUCOMAT 2023, Herceg Novi, Montenegro, September 4 - 8, 2023",
title = "ZnO/RuO2 nanostructured composites with enhanced bifunctional photo-electro catalytic activity toward water splitting",
pages = "82-82",
url = "https://hdl.handle.net/21.15107/rcub_dais_14872"
}
Aleksić, K., Stojković Simatović, I.,& Marković, S.. (2023). ZnO/RuO2 nanostructured composites with enhanced bifunctional photo-electro catalytic activity toward water splitting. in Programme and The Book of Abstracts / Twenty-fourth Annual Conference YUCOMAT 2023, Herceg Novi, Montenegro, September 4 - 8, 2023
Belgrade : Materials Research Society of Serbia., 82-82.
https://hdl.handle.net/21.15107/rcub_dais_14872
Aleksić K, Stojković Simatović I, Marković S. ZnO/RuO2 nanostructured composites with enhanced bifunctional photo-electro catalytic activity toward water splitting. in Programme and The Book of Abstracts / Twenty-fourth Annual Conference YUCOMAT 2023, Herceg Novi, Montenegro, September 4 - 8, 2023. 2023;:82-82.
https://hdl.handle.net/21.15107/rcub_dais_14872 .
Aleksić, Katarina, Stojković Simatović, Ivana, Marković, Smilja, "ZnO/RuO2 nanostructured composites with enhanced bifunctional photo-electro catalytic activity toward water splitting" in Programme and The Book of Abstracts / Twenty-fourth Annual Conference YUCOMAT 2023, Herceg Novi, Montenegro, September 4 - 8, 2023 (2023):82-82,
https://hdl.handle.net/21.15107/rcub_dais_14872 .

Approaches to improve photo(electro)catalytic properties of ZnO-based materials

Marković, Smilja; Stanković, Ana; Aleksić, Katarina; Veselinović, Ljiljana; Stojković Simatović, Ivana

(Belgrade : Serbian Ceramic Society, 2023)

TY  - CONF
AU  - Marković, Smilja
AU  - Stanković, Ana
AU  - Aleksić, Katarina
AU  - Veselinović, Ljiljana
AU  - Stojković Simatović, Ivana
PY  - 2023
UR  - https://dais.sanu.ac.rs/123456789/15154
AB  - Due to their tunable multifunctional properties zinc oxide (ZnO) based materials have attracted extensive scientific and technological attention. Since they combine different properties such as electrochemical activities, chemical and photochemical stability, nontoxicity, biocompatibility, etc. ZnO-based materials have been used in electronics, optoelectronics, biosensing, bioimaging, drug and gene delivery, implants, antimicrobial and anticancer agents. Successful application of ZnO as photoelectrocatalysts arises from its wide band gap (3.37 eV) which can be easily adjusted by different approaches such as: metal and non-metal ion doping, hydrogenation, introducing of crystalline defects, modifying particle morphology and surface chemistry. During the years, to synthesize zinc oxide (ZnO) nanoparticles with improved visible light absorption we have used a fast and environmentally-friendly microwave processing of a precipitate which enable formation of crystalline defects. To further enhance photo(electro)catalytic properties we have employed approaches such as: (1) the incorporation of iron ions into the crystal structure (Zn1-xFexO), (2) sensitization of the particles’ surface with cetyltrimethylammonium bromide, Pluronic F127 and polyethylene oxide, and (3) composites with ruthenium oxide (ZnO/RuO2) and graphene oxide (ZnO/GO and ZnO/rGO). To correlate structural and functional properties, prepared materials were characterized using XRD, FTIR, Raman, UV-Vis DRS, and PL spectroscopy, also FESEM; photocatalytic activity of the samples were tested toward decolorization of methylene blue, while their photoelectrochemical activity for water splitting were tested through linear sweep voltammetry in different electrolytes.
PB  - Belgrade : Serbian Ceramic Society
C3  - Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application XI New Frontiers in Multifunctional Material Science and Processing, Serbian Academy of Sciences and Art Serbia, Belgrade,18-20.September 2023.
T1  - Approaches to improve photo(electro)catalytic properties of ZnO-based materials
SP  - 68
EP  - 69
UR  - https://hdl.handle.net/21.15107/rcub_dais_15154
ER  - 
@conference{
author = "Marković, Smilja and Stanković, Ana and Aleksić, Katarina and Veselinović, Ljiljana and Stojković Simatović, Ivana",
year = "2023",
abstract = "Due to their tunable multifunctional properties zinc oxide (ZnO) based materials have attracted extensive scientific and technological attention. Since they combine different properties such as electrochemical activities, chemical and photochemical stability, nontoxicity, biocompatibility, etc. ZnO-based materials have been used in electronics, optoelectronics, biosensing, bioimaging, drug and gene delivery, implants, antimicrobial and anticancer agents. Successful application of ZnO as photoelectrocatalysts arises from its wide band gap (3.37 eV) which can be easily adjusted by different approaches such as: metal and non-metal ion doping, hydrogenation, introducing of crystalline defects, modifying particle morphology and surface chemistry. During the years, to synthesize zinc oxide (ZnO) nanoparticles with improved visible light absorption we have used a fast and environmentally-friendly microwave processing of a precipitate which enable formation of crystalline defects. To further enhance photo(electro)catalytic properties we have employed approaches such as: (1) the incorporation of iron ions into the crystal structure (Zn1-xFexO), (2) sensitization of the particles’ surface with cetyltrimethylammonium bromide, Pluronic F127 and polyethylene oxide, and (3) composites with ruthenium oxide (ZnO/RuO2) and graphene oxide (ZnO/GO and ZnO/rGO). To correlate structural and functional properties, prepared materials were characterized using XRD, FTIR, Raman, UV-Vis DRS, and PL spectroscopy, also FESEM; photocatalytic activity of the samples were tested toward decolorization of methylene blue, while their photoelectrochemical activity for water splitting were tested through linear sweep voltammetry in different electrolytes.",
publisher = "Belgrade : Serbian Ceramic Society",
journal = "Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application XI New Frontiers in Multifunctional Material Science and Processing, Serbian Academy of Sciences and Art Serbia, Belgrade,18-20.September 2023.",
title = "Approaches to improve photo(electro)catalytic properties of ZnO-based materials",
pages = "68-69",
url = "https://hdl.handle.net/21.15107/rcub_dais_15154"
}
Marković, S., Stanković, A., Aleksić, K., Veselinović, L.,& Stojković Simatović, I.. (2023). Approaches to improve photo(electro)catalytic properties of ZnO-based materials. in Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application XI New Frontiers in Multifunctional Material Science and Processing, Serbian Academy of Sciences and Art Serbia, Belgrade,18-20.September 2023.
Belgrade : Serbian Ceramic Society., 68-69.
https://hdl.handle.net/21.15107/rcub_dais_15154
Marković S, Stanković A, Aleksić K, Veselinović L, Stojković Simatović I. Approaches to improve photo(electro)catalytic properties of ZnO-based materials. in Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application XI New Frontiers in Multifunctional Material Science and Processing, Serbian Academy of Sciences and Art Serbia, Belgrade,18-20.September 2023.. 2023;:68-69.
https://hdl.handle.net/21.15107/rcub_dais_15154 .
Marković, Smilja, Stanković, Ana, Aleksić, Katarina, Veselinović, Ljiljana, Stojković Simatović, Ivana, "Approaches to improve photo(electro)catalytic properties of ZnO-based materials" in Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application XI New Frontiers in Multifunctional Material Science and Processing, Serbian Academy of Sciences and Art Serbia, Belgrade,18-20.September 2023. (2023):68-69,
https://hdl.handle.net/21.15107/rcub_dais_15154 .

Enhancement of ZnO@RuO2 bifunctional photo-electro catalytic activity toward water splitting

Aleksić, Katarina; Stojković Simatović, Ivana; Stanković, Ana; Veselinović, Ljiljana; Stojadinović, Stevan; Rac, Vladislav; Radmilović, Nadežda; Rajić, Vladimir; Škapin, Srečo Davor; Mančić, Lidija; Marković, Smilja

(Frontiers Media SA, 2023)

TY  - JOUR
AU  - Aleksić, Katarina
AU  - Stojković Simatović, Ivana
AU  - Stanković, Ana
AU  - Veselinović, Ljiljana
AU  - Stojadinović, Stevan
AU  - Rac, Vladislav
AU  - Radmilović, Nadežda
AU  - Rajić, Vladimir
AU  - Škapin, Srečo Davor
AU  - Mančić, Lidija
AU  - Marković, Smilja
PY  - 2023
UR  - https://dais.sanu.ac.rs/123456789/14554
AB  - Catalytic materials are the greatest challenge for the commercial application of water electrolysis (WEs) and fuel cells (FCs) as clean energy technologies. There is a need to find an alternative to expensive and unavailable platinum group metal (PGM) catalysts. This study aimed to reduce the cost of PGM materials by replacing Ru with RuO2 and lowering the amount of RuO2 by adding abundant and multifunctional ZnO. A ZnO@RuO2 composite in a 10:1 molar ratio was synthesized by microwave processing of a precipitate as a green, low-cost, and fast method, and then annealed at 300°C and 600°C to improve the catalytic properties. The physicochemical properties of the ZnO@RuO2 composites were investigated by X-ray powder diffraction (XRD), Raman and Fourier transform infrared (FTIR) spectroscopy, field emission scanning electron microscopy (FESEM), UV-Vis diffuse reflectance spectroscopy (DRS), and photoluminescence (PL) spectroscopy. The electrochemical activity of the samples was investigated by linear sweep voltammetry in acidic and alkaline electrolytes. We observed good bifunctional catalytic activity of the ZnO@RuO2 composites toward HER and OER in both electrolytes. The improved bifunctional catalytic activity of the ZnO@RuO2 composite by annealing was discussed and attributed to the reduced number of bulk oxygen vacancies and the increased number of established heterojunctions.
PB  - Frontiers Media SA
T2  - Frontiers in Chemistry
T1  - Enhancement of ZnO@RuO2 bifunctional photo-electro catalytic activity toward water splitting
VL  - 11
DO  - 10.3389/fchem.2023.1173910
UR  - https://hdl.handle.net/21.15107/rcub_dais_14554
ER  - 
@article{
author = "Aleksić, Katarina and Stojković Simatović, Ivana and Stanković, Ana and Veselinović, Ljiljana and Stojadinović, Stevan and Rac, Vladislav and Radmilović, Nadežda and Rajić, Vladimir and Škapin, Srečo Davor and Mančić, Lidija and Marković, Smilja",
year = "2023",
abstract = "Catalytic materials are the greatest challenge for the commercial application of water electrolysis (WEs) and fuel cells (FCs) as clean energy technologies. There is a need to find an alternative to expensive and unavailable platinum group metal (PGM) catalysts. This study aimed to reduce the cost of PGM materials by replacing Ru with RuO2 and lowering the amount of RuO2 by adding abundant and multifunctional ZnO. A ZnO@RuO2 composite in a 10:1 molar ratio was synthesized by microwave processing of a precipitate as a green, low-cost, and fast method, and then annealed at 300°C and 600°C to improve the catalytic properties. The physicochemical properties of the ZnO@RuO2 composites were investigated by X-ray powder diffraction (XRD), Raman and Fourier transform infrared (FTIR) spectroscopy, field emission scanning electron microscopy (FESEM), UV-Vis diffuse reflectance spectroscopy (DRS), and photoluminescence (PL) spectroscopy. The electrochemical activity of the samples was investigated by linear sweep voltammetry in acidic and alkaline electrolytes. We observed good bifunctional catalytic activity of the ZnO@RuO2 composites toward HER and OER in both electrolytes. The improved bifunctional catalytic activity of the ZnO@RuO2 composite by annealing was discussed and attributed to the reduced number of bulk oxygen vacancies and the increased number of established heterojunctions.",
publisher = "Frontiers Media SA",
journal = "Frontiers in Chemistry",
title = "Enhancement of ZnO@RuO2 bifunctional photo-electro catalytic activity toward water splitting",
volume = "11",
doi = "10.3389/fchem.2023.1173910",
url = "https://hdl.handle.net/21.15107/rcub_dais_14554"
}
Aleksić, K., Stojković Simatović, I., Stanković, A., Veselinović, L., Stojadinović, S., Rac, V., Radmilović, N., Rajić, V., Škapin, S. D., Mančić, L.,& Marković, S.. (2023). Enhancement of ZnO@RuO2 bifunctional photo-electro catalytic activity toward water splitting. in Frontiers in Chemistry
Frontiers Media SA., 11.
https://doi.org/10.3389/fchem.2023.1173910
https://hdl.handle.net/21.15107/rcub_dais_14554
Aleksić K, Stojković Simatović I, Stanković A, Veselinović L, Stojadinović S, Rac V, Radmilović N, Rajić V, Škapin SD, Mančić L, Marković S. Enhancement of ZnO@RuO2 bifunctional photo-electro catalytic activity toward water splitting. in Frontiers in Chemistry. 2023;11.
doi:10.3389/fchem.2023.1173910
https://hdl.handle.net/21.15107/rcub_dais_14554 .
Aleksić, Katarina, Stojković Simatović, Ivana, Stanković, Ana, Veselinović, Ljiljana, Stojadinović, Stevan, Rac, Vladislav, Radmilović, Nadežda, Rajić, Vladimir, Škapin, Srečo Davor, Mančić, Lidija, Marković, Smilja, "Enhancement of ZnO@RuO2 bifunctional photo-electro catalytic activity toward water splitting" in Frontiers in Chemistry, 11 (2023),
https://doi.org/10.3389/fchem.2023.1173910 .,
https://hdl.handle.net/21.15107/rcub_dais_14554 .
1
2
2

The biocorrosion activity of ZnO-based materials as biosensors

Aleksić, Katarina; Stanković, Ana; Veselinović, Ljiljana; Stojković Simatović, Ivana; Marković, Smilja

(Belgrade : Institute of Technical Sciences of SASA, 2022)

TY  - CONF
AU  - Aleksić, Katarina
AU  - Stanković, Ana
AU  - Veselinović, Ljiljana
AU  - Stojković Simatović, Ivana
AU  - Marković, Smilja
PY  - 2022
UR  - https://dais.sanu.ac.rs/123456789/13504
AB  - Due to their biocompatibility, chemical stability, high isoelectric point, electrochemical activity, high electron mobility and ease of synthesis by diverse methods, ZnO-based materials have attracted much interest as materials for biosensors. Its unique properties allow it to be used for single-molecule detection and determining various biomolecules, so it can be potentially utilized as biosensor for medical diagnosis. The materials being used as biosensors require special characteristics including high corrosion resistance. The aim of this research was to investigate biocorrosion properties of ZnO materials in Ringer’s physiological solution as a function of immersion time. ZnO powders were prepared by microwave (MW) processing of a precipitate in the presence of a different amount (5, 10 and 20 wt.%) of two different surfactants, CA and CTAB. The particles crystallinity and phase purity were investigated by X-ray powder diffraction (XRD) and Raman spectroscopy. Fourier-transform infrared (FTIR) spectroscopy was used to analyze surface chemistry. The particles morphology and textural properties were observed with field emission scanning electron microscopy (FE-SEM) and BET. The biocorrosion activity of the materials was measured by potentiodynamic polarization technique. Prepared samples were immersed in Ringer solution for different immersion times ranging from 30 min to 7 days. We found that all examined ZnO samples hаve low biocorrosion activity. Slight differences in biocorrosion activity between the samples are determined by particles morphology, textural properties and surface chemistry influenced by used surfactants.
PB  - Belgrade : Institute of Technical Sciences of SASA
C3  - Programme and the Book of Abstracts / Twentieth Young Researchers' Conference Materials Science and Engineering, November 30 - December 2, 2022, Belgrade, Serbia
T1  - The biocorrosion activity of ZnO-based materials as biosensors
SP  - 39
EP  - 39
UR  - https://hdl.handle.net/21.15107/rcub_dais_13504
ER  - 
@conference{
author = "Aleksić, Katarina and Stanković, Ana and Veselinović, Ljiljana and Stojković Simatović, Ivana and Marković, Smilja",
year = "2022",
abstract = "Due to their biocompatibility, chemical stability, high isoelectric point, electrochemical activity, high electron mobility and ease of synthesis by diverse methods, ZnO-based materials have attracted much interest as materials for biosensors. Its unique properties allow it to be used for single-molecule detection and determining various biomolecules, so it can be potentially utilized as biosensor for medical diagnosis. The materials being used as biosensors require special characteristics including high corrosion resistance. The aim of this research was to investigate biocorrosion properties of ZnO materials in Ringer’s physiological solution as a function of immersion time. ZnO powders were prepared by microwave (MW) processing of a precipitate in the presence of a different amount (5, 10 and 20 wt.%) of two different surfactants, CA and CTAB. The particles crystallinity and phase purity were investigated by X-ray powder diffraction (XRD) and Raman spectroscopy. Fourier-transform infrared (FTIR) spectroscopy was used to analyze surface chemistry. The particles morphology and textural properties were observed with field emission scanning electron microscopy (FE-SEM) and BET. The biocorrosion activity of the materials was measured by potentiodynamic polarization technique. Prepared samples were immersed in Ringer solution for different immersion times ranging from 30 min to 7 days. We found that all examined ZnO samples hаve low biocorrosion activity. Slight differences in biocorrosion activity between the samples are determined by particles morphology, textural properties and surface chemistry influenced by used surfactants.",
publisher = "Belgrade : Institute of Technical Sciences of SASA",
journal = "Programme and the Book of Abstracts / Twentieth Young Researchers' Conference Materials Science and Engineering, November 30 - December 2, 2022, Belgrade, Serbia",
title = "The biocorrosion activity of ZnO-based materials as biosensors",
pages = "39-39",
url = "https://hdl.handle.net/21.15107/rcub_dais_13504"
}
Aleksić, K., Stanković, A., Veselinović, L., Stojković Simatović, I.,& Marković, S.. (2022). The biocorrosion activity of ZnO-based materials as biosensors. in Programme and the Book of Abstracts / Twentieth Young Researchers' Conference Materials Science and Engineering, November 30 - December 2, 2022, Belgrade, Serbia
Belgrade : Institute of Technical Sciences of SASA., 39-39.
https://hdl.handle.net/21.15107/rcub_dais_13504
Aleksić K, Stanković A, Veselinović L, Stojković Simatović I, Marković S. The biocorrosion activity of ZnO-based materials as biosensors. in Programme and the Book of Abstracts / Twentieth Young Researchers' Conference Materials Science and Engineering, November 30 - December 2, 2022, Belgrade, Serbia. 2022;:39-39.
https://hdl.handle.net/21.15107/rcub_dais_13504 .
Aleksić, Katarina, Stanković, Ana, Veselinović, Ljiljana, Stojković Simatović, Ivana, Marković, Smilja, "The biocorrosion activity of ZnO-based materials as biosensors" in Programme and the Book of Abstracts / Twentieth Young Researchers' Conference Materials Science and Engineering, November 30 - December 2, 2022, Belgrade, Serbia (2022):39-39,
https://hdl.handle.net/21.15107/rcub_dais_13504 .

Improvement of electrochemical properties of ZnO nanoparticles via composites with graphene oxide

Marković, Smilja; Stanković, Ana; Stojković Simatović, Ivana

(Belgrade : Materials Research Society of Serbia, 2022)

TY  - CONF
AU  - Marković, Smilja
AU  - Stanković, Ana
AU  - Stojković Simatović, Ivana
PY  - 2022
UR  - https://dais.sanu.ac.rs/123456789/13593
AB  - Due to their tunable multifunctional properties zinc oxide (ZnO) based materials have attracted extensive scientific and technological attention. Since they combines different properties such as electrochemical activities, chemical and photochemical stability, non-toxicity, biocompatibility, etc. ZnO-based materials have been used for variety of applications in electronics, opto-electronics, biosensing, bioimaging, drug and gene delivery, implants, antimicrobial and anticancer agents, as well as sensing in environmental applications.
The main aim of this study was to improve efficiency of ZnO particles toward both electrochemical sensing for environmental application and electrocatalysis. To vary electrochemical properties, series of zinc oxide/graphene oxide (ZnO/GO) composites were synthesized by microwave processing of precipitate in the presence of a different amount (0.1 and 0.5 wt.%) of previously prepared GO as well as reduced GO (rGO). The particles crystal structure and phase composition were investigated by X-ray diffraction and Raman spectroscopy. The particles morphology was observed with FE–SEM while the textural properties (BET surface area and pore volume) were determined by low-temperature adsorption-desorption of nitrogen. The optical properties were studied using UV–Vis DRS and PL spectroscopy. The electrochemical sensing activity of ZnO, ZnO/GO and ZnO/rGO electrodes was tested for detection of bisphenol A in water solution while electrocatalytic activity was tested for water splitting when samples were used as anode materials and evaluated by linear sweep voltammetry in several different electrolytes. Differences in electrochemical activity between the composites were correlated with presence of GO, particles morphology and textural properties.
PB  - Belgrade : Materials Research Society of Serbia
C3  - Program and The Book of abstracts / Twenty-third Annual Conference YUCOMAT 2022 & Twelfth World Round Table Conference on Sintering XII WRTCS 2022, Herceg Novi, Montenegro, August 29 - September 2, 2022
T1  - Improvement of electrochemical properties of ZnO nanoparticles via composites with graphene oxide
SP  - 60
EP  - 60
UR  - https://hdl.handle.net/21.15107/rcub_dais_13593
ER  - 
@conference{
author = "Marković, Smilja and Stanković, Ana and Stojković Simatović, Ivana",
year = "2022",
abstract = "Due to their tunable multifunctional properties zinc oxide (ZnO) based materials have attracted extensive scientific and technological attention. Since they combines different properties such as electrochemical activities, chemical and photochemical stability, non-toxicity, biocompatibility, etc. ZnO-based materials have been used for variety of applications in electronics, opto-electronics, biosensing, bioimaging, drug and gene delivery, implants, antimicrobial and anticancer agents, as well as sensing in environmental applications.
The main aim of this study was to improve efficiency of ZnO particles toward both electrochemical sensing for environmental application and electrocatalysis. To vary electrochemical properties, series of zinc oxide/graphene oxide (ZnO/GO) composites were synthesized by microwave processing of precipitate in the presence of a different amount (0.1 and 0.5 wt.%) of previously prepared GO as well as reduced GO (rGO). The particles crystal structure and phase composition were investigated by X-ray diffraction and Raman spectroscopy. The particles morphology was observed with FE–SEM while the textural properties (BET surface area and pore volume) were determined by low-temperature adsorption-desorption of nitrogen. The optical properties were studied using UV–Vis DRS and PL spectroscopy. The electrochemical sensing activity of ZnO, ZnO/GO and ZnO/rGO electrodes was tested for detection of bisphenol A in water solution while electrocatalytic activity was tested for water splitting when samples were used as anode materials and evaluated by linear sweep voltammetry in several different electrolytes. Differences in electrochemical activity between the composites were correlated with presence of GO, particles morphology and textural properties.",
publisher = "Belgrade : Materials Research Society of Serbia",
journal = "Program and The Book of abstracts / Twenty-third Annual Conference YUCOMAT 2022 & Twelfth World Round Table Conference on Sintering XII WRTCS 2022, Herceg Novi, Montenegro, August 29 - September 2, 2022",
title = "Improvement of electrochemical properties of ZnO nanoparticles via composites with graphene oxide",
pages = "60-60",
url = "https://hdl.handle.net/21.15107/rcub_dais_13593"
}
Marković, S., Stanković, A.,& Stojković Simatović, I.. (2022). Improvement of electrochemical properties of ZnO nanoparticles via composites with graphene oxide. in Program and The Book of abstracts / Twenty-third Annual Conference YUCOMAT 2022 & Twelfth World Round Table Conference on Sintering XII WRTCS 2022, Herceg Novi, Montenegro, August 29 - September 2, 2022
Belgrade : Materials Research Society of Serbia., 60-60.
https://hdl.handle.net/21.15107/rcub_dais_13593
Marković S, Stanković A, Stojković Simatović I. Improvement of electrochemical properties of ZnO nanoparticles via composites with graphene oxide. in Program and The Book of abstracts / Twenty-third Annual Conference YUCOMAT 2022 & Twelfth World Round Table Conference on Sintering XII WRTCS 2022, Herceg Novi, Montenegro, August 29 - September 2, 2022. 2022;:60-60.
https://hdl.handle.net/21.15107/rcub_dais_13593 .
Marković, Smilja, Stanković, Ana, Stojković Simatović, Ivana, "Improvement of electrochemical properties of ZnO nanoparticles via composites with graphene oxide" in Program and The Book of abstracts / Twenty-third Annual Conference YUCOMAT 2022 & Twelfth World Round Table Conference on Sintering XII WRTCS 2022, Herceg Novi, Montenegro, August 29 - September 2, 2022 (2022):60-60,
https://hdl.handle.net/21.15107/rcub_dais_13593 .

ZnO-based composite materials with improved photo(electro) catalytic properties

Stanković, Ana; Filipović, Suzana; Veselinović, Ljiljana; Aleksić, Katarina; Stojković Simatović, Ivana; Škapin, Srečo Davor; Marković, Smilja

(Belgrade : Serbian Ceramic Society, 2022)

TY  - CONF
AU  - Stanković, Ana
AU  - Filipović, Suzana
AU  - Veselinović, Ljiljana
AU  - Aleksić, Katarina
AU  - Stojković Simatović, Ivana
AU  - Škapin, Srečo Davor
AU  - Marković, Smilja
PY  - 2022
UR  - https://dais.sanu.ac.rs/123456789/13628
AB  - Conversion of solar energy into hydrogen energy via the water-splitting process, assisted by photo-semiconductor catalysts, is one of the most promising technologies for the future because large quantities of hydrogen can be generated in a clean and sustainable manner. Zinc oxide (ZnO) represents one of the most investigated photocatalyst. Its ability to overcome the limitations of pristine ZnO through enhanced visible light absorption and reduced recombination of photogenerated charge carriers have gathered the attention of the many research groups. Numerous studies enabled understanding its greater activities and most studies reveal that reactive oxygen species (ROS), oxygen vacancies (Ov) and zinc interstitials (Zni) are responsible for the enhanced photoactivity. In fact, different factors like defect concentration, defect location, valence and conduction band levels play a key role in the working mechanisms of ZnO material. Materials with the perovskite crystal structure such as BaTiO3 (BT) and BaTi1–XSnXO3 (BTS) found application in the construction of the active layer of the solar cell, in which the photogenerative electrons are generated. The environmental instability of perovskite solar cells caused by the ultraviolet photocatalytic effect of metal oxide layers is a critical issue that must be solved. Possible solution with improved environmental stability can be synthesis of ZnO composite heterojunction perovskite solar cells. In this study photo(electro) catalytic properties of: BT and BTS were compared with those of ZnO@BT and ZnO@BTS, respectively. In both cases the ZnO@BT and ZnO@BTS composite materials revealed enhanced photo(electro) catalytic activity as compared to the pristine BT and BTS materials. In order to investigate the origin of the enhancement, the pristine metal oxides and composites were characterized using a variety of techniques, including X-ray diffraction (XRD), Raman, Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FE SEM), UV-Vis diffuse reflectance spectroscopy and linear voltammetry process.
PB  - Belgrade : Serbian Ceramic Society
C3  - Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application X New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 26-27. September 2022.
T1  - ZnO-based composite materials with improved photo(electro) catalytic properties
SP  - 85
EP  - 86
UR  - https://hdl.handle.net/21.15107/rcub_dais_13628
ER  - 
@conference{
author = "Stanković, Ana and Filipović, Suzana and Veselinović, Ljiljana and Aleksić, Katarina and Stojković Simatović, Ivana and Škapin, Srečo Davor and Marković, Smilja",
year = "2022",
abstract = "Conversion of solar energy into hydrogen energy via the water-splitting process, assisted by photo-semiconductor catalysts, is one of the most promising technologies for the future because large quantities of hydrogen can be generated in a clean and sustainable manner. Zinc oxide (ZnO) represents one of the most investigated photocatalyst. Its ability to overcome the limitations of pristine ZnO through enhanced visible light absorption and reduced recombination of photogenerated charge carriers have gathered the attention of the many research groups. Numerous studies enabled understanding its greater activities and most studies reveal that reactive oxygen species (ROS), oxygen vacancies (Ov) and zinc interstitials (Zni) are responsible for the enhanced photoactivity. In fact, different factors like defect concentration, defect location, valence and conduction band levels play a key role in the working mechanisms of ZnO material. Materials with the perovskite crystal structure such as BaTiO3 (BT) and BaTi1–XSnXO3 (BTS) found application in the construction of the active layer of the solar cell, in which the photogenerative electrons are generated. The environmental instability of perovskite solar cells caused by the ultraviolet photocatalytic effect of metal oxide layers is a critical issue that must be solved. Possible solution with improved environmental stability can be synthesis of ZnO composite heterojunction perovskite solar cells. In this study photo(electro) catalytic properties of: BT and BTS were compared with those of ZnO@BT and ZnO@BTS, respectively. In both cases the ZnO@BT and ZnO@BTS composite materials revealed enhanced photo(electro) catalytic activity as compared to the pristine BT and BTS materials. In order to investigate the origin of the enhancement, the pristine metal oxides and composites were characterized using a variety of techniques, including X-ray diffraction (XRD), Raman, Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FE SEM), UV-Vis diffuse reflectance spectroscopy and linear voltammetry process.",
publisher = "Belgrade : Serbian Ceramic Society",
journal = "Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application X New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 26-27. September 2022.",
title = "ZnO-based composite materials with improved photo(electro) catalytic properties",
pages = "85-86",
url = "https://hdl.handle.net/21.15107/rcub_dais_13628"
}
Stanković, A., Filipović, S., Veselinović, L., Aleksić, K., Stojković Simatović, I., Škapin, S. D.,& Marković, S.. (2022). ZnO-based composite materials with improved photo(electro) catalytic properties. in Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application X New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 26-27. September 2022.
Belgrade : Serbian Ceramic Society., 85-86.
https://hdl.handle.net/21.15107/rcub_dais_13628
Stanković A, Filipović S, Veselinović L, Aleksić K, Stojković Simatović I, Škapin SD, Marković S. ZnO-based composite materials with improved photo(electro) catalytic properties. in Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application X New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 26-27. September 2022.. 2022;:85-86.
https://hdl.handle.net/21.15107/rcub_dais_13628 .
Stanković, Ana, Filipović, Suzana, Veselinović, Ljiljana, Aleksić, Katarina, Stojković Simatović, Ivana, Škapin, Srečo Davor, Marković, Smilja, "ZnO-based composite materials with improved photo(electro) catalytic properties" in Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application X New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 26-27. September 2022. (2022):85-86,
https://hdl.handle.net/21.15107/rcub_dais_13628 .

ZnO-based nanostructured electrodes for biosensors: Corrosion behavior in Ringer’s physiological solution

Aleksić, Katarina; Stanković, Ana; Stojković Simatović, Ivana; Marković, Smilja

(DECHEMA, Gesellschaft für Chemische Technik und Biotechnologie e.V., 2022)

TY  - CONF
AU  - Aleksić, Katarina
AU  - Stanković, Ana
AU  - Stojković Simatović, Ivana
AU  - Marković, Smilja
PY  - 2022
UR  - https://dais.sanu.ac.rs/123456789/13682
AB  - Over the last decade, due to its numerous unique features that can achieve single biomolecule detection, zinc oxide have been examined as potential electrochemical biosensor for medical diagnosis. Previous studies proved success of ZnO-based materials in determining various biomolecules such as glucose, cholesterol, uric acid, etc. The materials being used as biosensors require special characteristics including high corrosion resistance. The main goal of this study was to examine biocorrosion characteristics of ZnO materials in Ringer’s physiological solution as a function of immersion time. Six different ZnO nanostructured powders were synthesized by microwave processing with an aid of citric acid and CTAB in different weight amount (5, 10, and 20 wt.%). To comprehend the influence of physicochemical characteristics of ZnO samples on biocorrosion, decisive features such as the crystal structure, morphology, textural properties, and surface chemistry were systematically investigated and correlated with biocorrosion activity. The biocorrosion activity of the samples was measured by potentiodynamic polarization technique. The measurements were performed on a potentiostat using a conventional three-electrode cell and a Ringer’s solution as the electrolyte. Platinum foil and a standard calomel electrode (SCE) were used as the counter and the reference electrode, respectively, while FTO glass was used as the working electrode. The working electrode was coated with a thin film of ZnO ink prepared by mixing of a ZnO powder as an active material and Nafion solution as a binder. Prepared specimens were immersed in 100 ml of Ringer’s solution for different immersion times ranging from 30 min to 7 days. The immersed specimens were then characterized by potentiodynamic polarization techniques in the potential range from -0.2 to +0.3 V vs SCE, at the scan rate of 0.1 mVs-1. We found that all examined ZnO samples has low biocorrosion activity. Slight differences in biocorrosion activity between the samples are determined by particles morphology, textural properties and surface chemistry influenced by used surfactants.
PB  - DECHEMA, Gesellschaft für Chemische Technik und Biotechnologie e.V.
C3  - EUROCORR 2022 - European Corrosion Congress: Corrosion in a Changing World - Energy, Mobility, Digitalization, 28 August - 1 September 2022, Berlin, Germany: Abstracts / Extended papers for posters /
T1  - ZnO-based nanostructured electrodes for biosensors: Corrosion behavior in Ringer’s physiological solution
UR  - https://hdl.handle.net/21.15107/rcub_dais_13682
ER  - 
@conference{
author = "Aleksić, Katarina and Stanković, Ana and Stojković Simatović, Ivana and Marković, Smilja",
year = "2022",
abstract = "Over the last decade, due to its numerous unique features that can achieve single biomolecule detection, zinc oxide have been examined as potential electrochemical biosensor for medical diagnosis. Previous studies proved success of ZnO-based materials in determining various biomolecules such as glucose, cholesterol, uric acid, etc. The materials being used as biosensors require special characteristics including high corrosion resistance. The main goal of this study was to examine biocorrosion characteristics of ZnO materials in Ringer’s physiological solution as a function of immersion time. Six different ZnO nanostructured powders were synthesized by microwave processing with an aid of citric acid and CTAB in different weight amount (5, 10, and 20 wt.%). To comprehend the influence of physicochemical characteristics of ZnO samples on biocorrosion, decisive features such as the crystal structure, morphology, textural properties, and surface chemistry were systematically investigated and correlated with biocorrosion activity. The biocorrosion activity of the samples was measured by potentiodynamic polarization technique. The measurements were performed on a potentiostat using a conventional three-electrode cell and a Ringer’s solution as the electrolyte. Platinum foil and a standard calomel electrode (SCE) were used as the counter and the reference electrode, respectively, while FTO glass was used as the working electrode. The working electrode was coated with a thin film of ZnO ink prepared by mixing of a ZnO powder as an active material and Nafion solution as a binder. Prepared specimens were immersed in 100 ml of Ringer’s solution for different immersion times ranging from 30 min to 7 days. The immersed specimens were then characterized by potentiodynamic polarization techniques in the potential range from -0.2 to +0.3 V vs SCE, at the scan rate of 0.1 mVs-1. We found that all examined ZnO samples has low biocorrosion activity. Slight differences in biocorrosion activity between the samples are determined by particles morphology, textural properties and surface chemistry influenced by used surfactants.",
publisher = "DECHEMA, Gesellschaft für Chemische Technik und Biotechnologie e.V.",
journal = "EUROCORR 2022 - European Corrosion Congress: Corrosion in a Changing World - Energy, Mobility, Digitalization, 28 August - 1 September 2022, Berlin, Germany: Abstracts / Extended papers for posters /",
title = "ZnO-based nanostructured electrodes for biosensors: Corrosion behavior in Ringer’s physiological solution",
url = "https://hdl.handle.net/21.15107/rcub_dais_13682"
}
Aleksić, K., Stanković, A., Stojković Simatović, I.,& Marković, S.. (2022). ZnO-based nanostructured electrodes for biosensors: Corrosion behavior in Ringer’s physiological solution. in EUROCORR 2022 - European Corrosion Congress: Corrosion in a Changing World - Energy, Mobility, Digitalization, 28 August - 1 September 2022, Berlin, Germany: Abstracts / Extended papers for posters /
DECHEMA, Gesellschaft für Chemische Technik und Biotechnologie e.V...
https://hdl.handle.net/21.15107/rcub_dais_13682
Aleksić K, Stanković A, Stojković Simatović I, Marković S. ZnO-based nanostructured electrodes for biosensors: Corrosion behavior in Ringer’s physiological solution. in EUROCORR 2022 - European Corrosion Congress: Corrosion in a Changing World - Energy, Mobility, Digitalization, 28 August - 1 September 2022, Berlin, Germany: Abstracts / Extended papers for posters /. 2022;.
https://hdl.handle.net/21.15107/rcub_dais_13682 .
Aleksić, Katarina, Stanković, Ana, Stojković Simatović, Ivana, Marković, Smilja, "ZnO-based nanostructured electrodes for biosensors: Corrosion behavior in Ringer’s physiological solution" in EUROCORR 2022 - European Corrosion Congress: Corrosion in a Changing World - Energy, Mobility, Digitalization, 28 August - 1 September 2022, Berlin, Germany: Abstracts / Extended papers for posters / (2022),
https://hdl.handle.net/21.15107/rcub_dais_13682 .

Sol-gel Synthesis of MgMn2O4 and MgCr0.15Mn1.85O4

Jokić, Nikolina; Jugović, Dragana; Škapin, Srečo Davor; Stojković Simatović, Ivana

(Belgrade : Serbian Academy of Sciences and Arts, 2022)

TY  - CONF
AU  - Jokić, Nikolina
AU  - Jugović, Dragana
AU  - Škapin, Srečo Davor
AU  - Stojković Simatović, Ivana
PY  - 2022
UR  - https://dais.sanu.ac.rs/123456789/13635
AB  - Electrochemical energy storage systems, primarily lithium-ion batteries, have experienced a huge expansion in the last couple of decades, but as they are very expensive to manufacture a lot of effort is being put into finding a more affordable replacement. For this purpose, multivalent cation compounds whose crystal structure is similar to the crystal structures of lithium compounds used in lithium-ion batteries are often studied. Magnesium cation is particularly interesting due to its high availability, significantly lower cost and high theoretical capacity. [1] In this work, the glycine-nitrate method (GNM) was applied for the synthesis of cathode material MgMn2O4 after which its electrochemical properties were studied. As it is known that the addition of chromium ions to the lithium form of this compound increases the stability of capacity during cycling [2,3], the glycine-nitrate method was also used to synthesize MgCr0.15Mn1.85O4. One part of the synthesized MgCr0.15Mn1.85O4 was annealed at 700 oC, and the other part at 800 oC, and all three of the obtained materials were tested in parallel. Structural analysis of the materials was performed by X-ray diffraction and morphology was determined by scanning electron microscopy (FESEM). To study the electrochemical behavior of the materials the following methods were used: cyclic voltammetry and galvanostatic cycling.
PB  - Belgrade : Serbian Academy of Sciences and Arts
C3  - Program & Book of Abstracts / Second International Conference ELMINA 2022, Belgrade, Serbia, August 22nd-26th, 2022
T1  - Sol-gel Synthesis of MgMn2O4 and MgCr0.15Mn1.85O4
SP  - 175
EP  - 174
UR  - https://hdl.handle.net/21.15107/rcub_dais_13635
ER  - 
@conference{
author = "Jokić, Nikolina and Jugović, Dragana and Škapin, Srečo Davor and Stojković Simatović, Ivana",
year = "2022",
abstract = "Electrochemical energy storage systems, primarily lithium-ion batteries, have experienced a huge expansion in the last couple of decades, but as they are very expensive to manufacture a lot of effort is being put into finding a more affordable replacement. For this purpose, multivalent cation compounds whose crystal structure is similar to the crystal structures of lithium compounds used in lithium-ion batteries are often studied. Magnesium cation is particularly interesting due to its high availability, significantly lower cost and high theoretical capacity. [1] In this work, the glycine-nitrate method (GNM) was applied for the synthesis of cathode material MgMn2O4 after which its electrochemical properties were studied. As it is known that the addition of chromium ions to the lithium form of this compound increases the stability of capacity during cycling [2,3], the glycine-nitrate method was also used to synthesize MgCr0.15Mn1.85O4. One part of the synthesized MgCr0.15Mn1.85O4 was annealed at 700 oC, and the other part at 800 oC, and all three of the obtained materials were tested in parallel. Structural analysis of the materials was performed by X-ray diffraction and morphology was determined by scanning electron microscopy (FESEM). To study the electrochemical behavior of the materials the following methods were used: cyclic voltammetry and galvanostatic cycling.",
publisher = "Belgrade : Serbian Academy of Sciences and Arts",
journal = "Program & Book of Abstracts / Second International Conference ELMINA 2022, Belgrade, Serbia, August 22nd-26th, 2022",
title = "Sol-gel Synthesis of MgMn2O4 and MgCr0.15Mn1.85O4",
pages = "175-174",
url = "https://hdl.handle.net/21.15107/rcub_dais_13635"
}
Jokić, N., Jugović, D., Škapin, S. D.,& Stojković Simatović, I.. (2022). Sol-gel Synthesis of MgMn2O4 and MgCr0.15Mn1.85O4. in Program & Book of Abstracts / Second International Conference ELMINA 2022, Belgrade, Serbia, August 22nd-26th, 2022
Belgrade : Serbian Academy of Sciences and Arts., 175-174.
https://hdl.handle.net/21.15107/rcub_dais_13635
Jokić N, Jugović D, Škapin SD, Stojković Simatović I. Sol-gel Synthesis of MgMn2O4 and MgCr0.15Mn1.85O4. in Program & Book of Abstracts / Second International Conference ELMINA 2022, Belgrade, Serbia, August 22nd-26th, 2022. 2022;:175-174.
https://hdl.handle.net/21.15107/rcub_dais_13635 .
Jokić, Nikolina, Jugović, Dragana, Škapin, Srečo Davor, Stojković Simatović, Ivana, "Sol-gel Synthesis of MgMn2O4 and MgCr0.15Mn1.85O4" in Program & Book of Abstracts / Second International Conference ELMINA 2022, Belgrade, Serbia, August 22nd-26th, 2022 (2022):175-174,
https://hdl.handle.net/21.15107/rcub_dais_13635 .

Investigation of photo(electro)catalytic efficiency of BaTi1-xSnx, ZnO and ZnO@BaTi1-xSnx (x = 0, 0.05, 0.10) powders

Aleksić, Katarina; Supić, Ivan; Stojković Simatović, Ivana; Stanković, Ana; Marković, Smilja

(Belgrade : Institute of Technical Sciences of SASA, 2021)

TY  - CONF
AU  - Aleksić, Katarina
AU  - Supić, Ivan
AU  - Stojković Simatović, Ivana
AU  - Stanković, Ana
AU  - Marković, Smilja
PY  - 2021
UR  - https://dais.sanu.ac.rs/123456789/12274
AB  - The aim of this research was to improve photo(electro)catalytic properties of BaTi1-xSnx (BTS, x = 0, 0.05, 0.10) powders. For that purpose we employed ZnO to prepare ZnO@BTS composite. In situ microwave processing of a ZnO precipitate on previously synthesized BTS particles was used to produce ZnO@BTS composites. The phase composition and crystal structure of BTS, ZnO and ZnO@BTS were examined by X-ray powder diffraction (XRD) and Fourier-transform infrared spectroscopy (FTIR). The powders particles morphology was investigated by field emission scanning electron microscopy (FESEM). The optical properties were studied using UV-Vis diffuse reflectance (DRS) and photoluminescence spectroscopy (PL). Linear voltammetry was used to examine the photoelectrochemical properties of the materials. Photocatalytic properties were tested based on the decolorization of methylene blue (MB) dye in the presence of powder particles, under the influence of simulated sunlight radiation. BTS powders have good electron transfer properties, which has been shown in their function as electrocatalysts, where they have shown better properties than ZnO and ZnO@BTS composites. In contrast, they showed poor photocatalytic efficacy. The precipitation of ZnO particles on BTS, by the method of microwave processing,
significantly improves the photocatalytic efficiency of the formed composites, concerning the starting BTS powders. Among the composites, ZnO@BT composite proved to be the most effective photocatalyst.
PB  - Belgrade : Institute of Technical Sciences of SASA
C3  - Program and the Book of abstracts / Nineteenth Young Researchers' Conference Materials Science and Engineering, December 1-3, 2021, Belgrade, Serbia
T1  - Investigation of photo(electro)catalytic efficiency of BaTi1-xSnx, ZnO and ZnO@BaTi1-xSnx (x = 0, 0.05, 0.10) powders
SP  - 72
EP  - 72
UR  - https://hdl.handle.net/21.15107/rcub_dais_12274
ER  - 
@conference{
author = "Aleksić, Katarina and Supić, Ivan and Stojković Simatović, Ivana and Stanković, Ana and Marković, Smilja",
year = "2021",
abstract = "The aim of this research was to improve photo(electro)catalytic properties of BaTi1-xSnx (BTS, x = 0, 0.05, 0.10) powders. For that purpose we employed ZnO to prepare ZnO@BTS composite. In situ microwave processing of a ZnO precipitate on previously synthesized BTS particles was used to produce ZnO@BTS composites. The phase composition and crystal structure of BTS, ZnO and ZnO@BTS were examined by X-ray powder diffraction (XRD) and Fourier-transform infrared spectroscopy (FTIR). The powders particles morphology was investigated by field emission scanning electron microscopy (FESEM). The optical properties were studied using UV-Vis diffuse reflectance (DRS) and photoluminescence spectroscopy (PL). Linear voltammetry was used to examine the photoelectrochemical properties of the materials. Photocatalytic properties were tested based on the decolorization of methylene blue (MB) dye in the presence of powder particles, under the influence of simulated sunlight radiation. BTS powders have good electron transfer properties, which has been shown in their function as electrocatalysts, where they have shown better properties than ZnO and ZnO@BTS composites. In contrast, they showed poor photocatalytic efficacy. The precipitation of ZnO particles on BTS, by the method of microwave processing,
significantly improves the photocatalytic efficiency of the formed composites, concerning the starting BTS powders. Among the composites, ZnO@BT composite proved to be the most effective photocatalyst.",
publisher = "Belgrade : Institute of Technical Sciences of SASA",
journal = "Program and the Book of abstracts / Nineteenth Young Researchers' Conference Materials Science and Engineering, December 1-3, 2021, Belgrade, Serbia",
title = "Investigation of photo(electro)catalytic efficiency of BaTi1-xSnx, ZnO and ZnO@BaTi1-xSnx (x = 0, 0.05, 0.10) powders",
pages = "72-72",
url = "https://hdl.handle.net/21.15107/rcub_dais_12274"
}
Aleksić, K., Supić, I., Stojković Simatović, I., Stanković, A.,& Marković, S.. (2021). Investigation of photo(electro)catalytic efficiency of BaTi1-xSnx, ZnO and ZnO@BaTi1-xSnx (x = 0, 0.05, 0.10) powders. in Program and the Book of abstracts / Nineteenth Young Researchers' Conference Materials Science and Engineering, December 1-3, 2021, Belgrade, Serbia
Belgrade : Institute of Technical Sciences of SASA., 72-72.
https://hdl.handle.net/21.15107/rcub_dais_12274
Aleksić K, Supić I, Stojković Simatović I, Stanković A, Marković S. Investigation of photo(electro)catalytic efficiency of BaTi1-xSnx, ZnO and ZnO@BaTi1-xSnx (x = 0, 0.05, 0.10) powders. in Program and the Book of abstracts / Nineteenth Young Researchers' Conference Materials Science and Engineering, December 1-3, 2021, Belgrade, Serbia. 2021;:72-72.
https://hdl.handle.net/21.15107/rcub_dais_12274 .
Aleksić, Katarina, Supić, Ivan, Stojković Simatović, Ivana, Stanković, Ana, Marković, Smilja, "Investigation of photo(electro)catalytic efficiency of BaTi1-xSnx, ZnO and ZnO@BaTi1-xSnx (x = 0, 0.05, 0.10) powders" in Program and the Book of abstracts / Nineteenth Young Researchers' Conference Materials Science and Engineering, December 1-3, 2021, Belgrade, Serbia (2021):72-72,
https://hdl.handle.net/21.15107/rcub_dais_12274 .

BT/ZnO composite materials with improved functional properties

Stanković, Ana; Filipović, Suzana; Stojković Simatović, Ivana; Škapin, Srečo Davor; Mančić, Lidija; Marković, Smilja

(Belgrade : Innovation Center of Faculty of Mechanical Engineering, 2021)

TY  - CONF
AU  - Stanković, Ana
AU  - Filipović, Suzana
AU  - Stojković Simatović, Ivana
AU  - Škapin, Srečo Davor
AU  - Mančić, Lidija
AU  - Marković, Smilja
PY  - 2021
UR  - https://dais.sanu.ac.rs/123456789/12350
AB  - Due to a high-power conversion efficiency (PCE), perovskite solar cells (PSCs) are the most developing area of research in the past decade. Although lead−based inorganic−organic PSCs has achieved the highest PCE of 25.2%, the toxic nature of lead and poor stability of organic components strongly limits its commercialization. This problem can be overcome by developing of inorganic perovskites with a high PCE. Barium titanate (BaTiO3, BT) belongs to the perovskite crystal structure materials with remarkable dielectric, ferroelectric and ferromagnetic properties. In this research, to enhance functional properties of BT we employed functionalization with MEMO silane followed by in-situ alloying with ZnO in different BT to ZnO wt.%. Synthesized ZnO@MEMO@BT composites were tested as photo- and photo-electro catalysts under simulated sunlight irradiation. An enhanced catalytic activity of ZnO@MEMO@BT composites, compared to pure BT is probably due to the modified binding energy and an optimized band structure. In order to investigate the origin of improved catalytic efficiency, pristine BT and composites were characterized using a variety of techniques, including X-ray powder diffraction (XRD), Raman and Fourier transform infrared (FTIR) spectroscopy, field emission scanning electron microscopy (FESEM), UV-Vis diffuse reflectance and photoluminescence spectroscopy. The enhanced photo(electro)catalytic activity of the composite materials can be attributed to the synergetic effect of the surface defects and the ZnO/BT heterojunction particles, which enabled charge separation, thereby hindering the recombination of photogenerated carriers.
PB  - Belgrade : Innovation Center of Faculty of Mechanical Engineering
C3  - Programme and The Book of Abstracts / International Conference of Experimental and Numerical Investigations and New Technologies - CNN TECH 2021,29 June - 02 July 2021, Zlatibor, Serbia
T1  - BT/ZnO composite materials with improved functional properties
SP  - 81
EP  - 81
UR  - https://hdl.handle.net/21.15107/rcub_dais_12350
ER  - 
@conference{
author = "Stanković, Ana and Filipović, Suzana and Stojković Simatović, Ivana and Škapin, Srečo Davor and Mančić, Lidija and Marković, Smilja",
year = "2021",
abstract = "Due to a high-power conversion efficiency (PCE), perovskite solar cells (PSCs) are the most developing area of research in the past decade. Although lead−based inorganic−organic PSCs has achieved the highest PCE of 25.2%, the toxic nature of lead and poor stability of organic components strongly limits its commercialization. This problem can be overcome by developing of inorganic perovskites with a high PCE. Barium titanate (BaTiO3, BT) belongs to the perovskite crystal structure materials with remarkable dielectric, ferroelectric and ferromagnetic properties. In this research, to enhance functional properties of BT we employed functionalization with MEMO silane followed by in-situ alloying with ZnO in different BT to ZnO wt.%. Synthesized ZnO@MEMO@BT composites were tested as photo- and photo-electro catalysts under simulated sunlight irradiation. An enhanced catalytic activity of ZnO@MEMO@BT composites, compared to pure BT is probably due to the modified binding energy and an optimized band structure. In order to investigate the origin of improved catalytic efficiency, pristine BT and composites were characterized using a variety of techniques, including X-ray powder diffraction (XRD), Raman and Fourier transform infrared (FTIR) spectroscopy, field emission scanning electron microscopy (FESEM), UV-Vis diffuse reflectance and photoluminescence spectroscopy. The enhanced photo(electro)catalytic activity of the composite materials can be attributed to the synergetic effect of the surface defects and the ZnO/BT heterojunction particles, which enabled charge separation, thereby hindering the recombination of photogenerated carriers.",
publisher = "Belgrade : Innovation Center of Faculty of Mechanical Engineering",
journal = "Programme and The Book of Abstracts / International Conference of Experimental and Numerical Investigations and New Technologies - CNN TECH 2021,29 June - 02 July 2021, Zlatibor, Serbia",
title = "BT/ZnO composite materials with improved functional properties",
pages = "81-81",
url = "https://hdl.handle.net/21.15107/rcub_dais_12350"
}
Stanković, A., Filipović, S., Stojković Simatović, I., Škapin, S. D., Mančić, L.,& Marković, S.. (2021). BT/ZnO composite materials with improved functional properties. in Programme and The Book of Abstracts / International Conference of Experimental and Numerical Investigations and New Technologies - CNN TECH 2021,29 June - 02 July 2021, Zlatibor, Serbia
Belgrade : Innovation Center of Faculty of Mechanical Engineering., 81-81.
https://hdl.handle.net/21.15107/rcub_dais_12350
Stanković A, Filipović S, Stojković Simatović I, Škapin SD, Mančić L, Marković S. BT/ZnO composite materials with improved functional properties. in Programme and The Book of Abstracts / International Conference of Experimental and Numerical Investigations and New Technologies - CNN TECH 2021,29 June - 02 July 2021, Zlatibor, Serbia. 2021;:81-81.
https://hdl.handle.net/21.15107/rcub_dais_12350 .
Stanković, Ana, Filipović, Suzana, Stojković Simatović, Ivana, Škapin, Srečo Davor, Mančić, Lidija, Marković, Smilja, "BT/ZnO composite materials with improved functional properties" in Programme and The Book of Abstracts / International Conference of Experimental and Numerical Investigations and New Technologies - CNN TECH 2021,29 June - 02 July 2021, Zlatibor, Serbia (2021):81-81,
https://hdl.handle.net/21.15107/rcub_dais_12350 .

The NaxMnO2 materials prepared by a glycine-nitrate method as advanced cathode materials for aqueous sodium-ion rechargeable batteries

Rakočević, Lazar; Štrbac, Svetlana; Potočnik, Jelena; Popović, Maja; Jugović, Dragana; Stojković Simatović, Ivana

(Elsevier BV, 2021)

TY  - JOUR
AU  - Rakočević, Lazar
AU  - Štrbac, Svetlana
AU  - Potočnik, Jelena
AU  - Popović, Maja
AU  - Jugović, Dragana
AU  - Stojković Simatović, Ivana
PY  - 2021
UR  - https://dais.sanu.ac.rs/123456789/10035
AB  - Cathodic material for sodium-ion rechargeable batteries based on NaxMnO2 were synthesized by glycine nitrate method and subsequent annealing at high temperatures. Different crystal structures with different morphologies were obtained depending on the annealing temperature: hexagonal layeredα-Na0.7MnO2.05 nanoplates were obtained at 850 °C, while 3-D tunnel structured Na0·4MnO2 and Na0·44MnO2, both with rod-like morphology, were obtained at 800 °C and 900 °C, respectively. The investigations of the electrochemical behavior of obtained cathodic materials in aqueous NaNO3 solution have shown that Na0·44MnO2 obtained at 900 °C has shown the best battery performance. Its initial discharge capacities are 123.5 mA h/g, 113.2 mA h/g, and 102.0 mA h/g at the high current densities of 1000, 2000 and 5000 mA/g, respectively.
PB  - Elsevier BV
T2  - Ceramics International
T1  - The NaxMnO2 materials prepared by a glycine-nitrate method as advanced cathode materials for aqueous sodium-ion rechargeable batteries
SP  - 4595
EP  - 4603
VL  - 47
IS  - 4
DO  - 10.1016/j.ceramint.2020.10.025
UR  - https://hdl.handle.net/21.15107/rcub_dais_10035
ER  - 
@article{
author = "Rakočević, Lazar and Štrbac, Svetlana and Potočnik, Jelena and Popović, Maja and Jugović, Dragana and Stojković Simatović, Ivana",
year = "2021",
abstract = "Cathodic material for sodium-ion rechargeable batteries based on NaxMnO2 were synthesized by glycine nitrate method and subsequent annealing at high temperatures. Different crystal structures with different morphologies were obtained depending on the annealing temperature: hexagonal layeredα-Na0.7MnO2.05 nanoplates were obtained at 850 °C, while 3-D tunnel structured Na0·4MnO2 and Na0·44MnO2, both with rod-like morphology, were obtained at 800 °C and 900 °C, respectively. The investigations of the electrochemical behavior of obtained cathodic materials in aqueous NaNO3 solution have shown that Na0·44MnO2 obtained at 900 °C has shown the best battery performance. Its initial discharge capacities are 123.5 mA h/g, 113.2 mA h/g, and 102.0 mA h/g at the high current densities of 1000, 2000 and 5000 mA/g, respectively.",
publisher = "Elsevier BV",
journal = "Ceramics International",
title = "The NaxMnO2 materials prepared by a glycine-nitrate method as advanced cathode materials for aqueous sodium-ion rechargeable batteries",
pages = "4595-4603",
volume = "47",
number = "4",
doi = "10.1016/j.ceramint.2020.10.025",
url = "https://hdl.handle.net/21.15107/rcub_dais_10035"
}
Rakočević, L., Štrbac, S., Potočnik, J., Popović, M., Jugović, D.,& Stojković Simatović, I.. (2021). The NaxMnO2 materials prepared by a glycine-nitrate method as advanced cathode materials for aqueous sodium-ion rechargeable batteries. in Ceramics International
Elsevier BV., 47(4), 4595-4603.
https://doi.org/10.1016/j.ceramint.2020.10.025
https://hdl.handle.net/21.15107/rcub_dais_10035
Rakočević L, Štrbac S, Potočnik J, Popović M, Jugović D, Stojković Simatović I. The NaxMnO2 materials prepared by a glycine-nitrate method as advanced cathode materials for aqueous sodium-ion rechargeable batteries. in Ceramics International. 2021;47(4):4595-4603.
doi:10.1016/j.ceramint.2020.10.025
https://hdl.handle.net/21.15107/rcub_dais_10035 .
Rakočević, Lazar, Štrbac, Svetlana, Potočnik, Jelena, Popović, Maja, Jugović, Dragana, Stojković Simatović, Ivana, "The NaxMnO2 materials prepared by a glycine-nitrate method as advanced cathode materials for aqueous sodium-ion rechargeable batteries" in Ceramics International, 47, no. 4 (2021):4595-4603,
https://doi.org/10.1016/j.ceramint.2020.10.025 .,
https://hdl.handle.net/21.15107/rcub_dais_10035 .
15
14

The NaxMnO2 materials prepared by a glycine-nitrate method as advanced cathode materials for aqueous sodium-ion rechargeable batteries

Rakočević, Lazar; Štrbac, Svetlana; Potočnik, Jelena; Popović, Maja; Jugović, Dragana; Stojković Simatović, Ivana

(Elsevier, 2021)

TY  - JOUR
AU  - Rakočević, Lazar
AU  - Štrbac, Svetlana
AU  - Potočnik, Jelena
AU  - Popović, Maja
AU  - Jugović, Dragana
AU  - Stojković Simatović, Ivana
PY  - 2021
UR  - https://dais.sanu.ac.rs/123456789/11229
AB  - Cathodic material for sodium-ion rechargeable batteries based on NaxMnO2 were synthesized by glycine nitrate method and subsequent annealing at high temperatures. Different crystal structures with different morphologies were obtained depending on the annealing temperature: hexagonal layeredα-Na0.7MnO2.05 nanoplates were obtained at 850 ◦C, while 3-D tunnel structured Na0⋅4MnO2 and Na0⋅44MnO2, both with rod-like morphology, were obtained at 800 ◦C and 900 ◦C, respectively. The investigations of the electrochemical behavior of obtained cathodic materials in aqueous NaNO3 solution have shown that Na0⋅44MnO2 obtained at 900 ◦C has shown the best battery performance. Its initial discharge capacities are 123.5 mA h/g, 113.2 mA h/g, and 102.0 mA h/g at the high current densities of 1000, 2000 and 5000 mA/g, respectively.
PB  - Elsevier
T2  - Ceramics International
T1  - The NaxMnO2 materials prepared by a glycine-nitrate method as advanced cathode materials for aqueous sodium-ion rechargeable batteries
SP  - 4595
EP  - 4603
VL  - 47
IS  - 4
DO  - 10.1016/j.ceramint.2020.10.025
UR  - https://hdl.handle.net/21.15107/rcub_dais_11229
ER  - 
@article{
author = "Rakočević, Lazar and Štrbac, Svetlana and Potočnik, Jelena and Popović, Maja and Jugović, Dragana and Stojković Simatović, Ivana",
year = "2021",
abstract = "Cathodic material for sodium-ion rechargeable batteries based on NaxMnO2 were synthesized by glycine nitrate method and subsequent annealing at high temperatures. Different crystal structures with different morphologies were obtained depending on the annealing temperature: hexagonal layeredα-Na0.7MnO2.05 nanoplates were obtained at 850 ◦C, while 3-D tunnel structured Na0⋅4MnO2 and Na0⋅44MnO2, both with rod-like morphology, were obtained at 800 ◦C and 900 ◦C, respectively. The investigations of the electrochemical behavior of obtained cathodic materials in aqueous NaNO3 solution have shown that Na0⋅44MnO2 obtained at 900 ◦C has shown the best battery performance. Its initial discharge capacities are 123.5 mA h/g, 113.2 mA h/g, and 102.0 mA h/g at the high current densities of 1000, 2000 and 5000 mA/g, respectively.",
publisher = "Elsevier",
journal = "Ceramics International",
title = "The NaxMnO2 materials prepared by a glycine-nitrate method as advanced cathode materials for aqueous sodium-ion rechargeable batteries",
pages = "4595-4603",
volume = "47",
number = "4",
doi = "10.1016/j.ceramint.2020.10.025",
url = "https://hdl.handle.net/21.15107/rcub_dais_11229"
}
Rakočević, L., Štrbac, S., Potočnik, J., Popović, M., Jugović, D.,& Stojković Simatović, I.. (2021). The NaxMnO2 materials prepared by a glycine-nitrate method as advanced cathode materials for aqueous sodium-ion rechargeable batteries. in Ceramics International
Elsevier., 47(4), 4595-4603.
https://doi.org/10.1016/j.ceramint.2020.10.025
https://hdl.handle.net/21.15107/rcub_dais_11229
Rakočević L, Štrbac S, Potočnik J, Popović M, Jugović D, Stojković Simatović I. The NaxMnO2 materials prepared by a glycine-nitrate method as advanced cathode materials for aqueous sodium-ion rechargeable batteries. in Ceramics International. 2021;47(4):4595-4603.
doi:10.1016/j.ceramint.2020.10.025
https://hdl.handle.net/21.15107/rcub_dais_11229 .
Rakočević, Lazar, Štrbac, Svetlana, Potočnik, Jelena, Popović, Maja, Jugović, Dragana, Stojković Simatović, Ivana, "The NaxMnO2 materials prepared by a glycine-nitrate method as advanced cathode materials for aqueous sodium-ion rechargeable batteries" in Ceramics International, 47, no. 4 (2021):4595-4603,
https://doi.org/10.1016/j.ceramint.2020.10.025 .,
https://hdl.handle.net/21.15107/rcub_dais_11229 .
15
14

HAp:Co as tunable VIS-NIR reflective pigment

Marković, Smilja; Stojanović, Zoran S.; Veselinović, Ljiljana; Simić, Danica; Samolov, Aleksandra; Stojković Simatović, Ivana

(Belgrade : Military Technical Institute, 2020)

TY  - CONF
AU  - Marković, Smilja
AU  - Stojanović, Zoran S.
AU  - Veselinović, Ljiljana
AU  - Simić, Danica
AU  - Samolov, Aleksandra
AU  - Stojković Simatović, Ivana
PY  - 2020
UR  - https://dais.sanu.ac.rs/123456789/10038
AB  - Radar-absorbent materials, used in stealth technology for defense aircrafts, vehicles, satellites, etc. from radar detection, are commonly based on graphite or semiconductive particles embedded in a polymer matrix. In this study, we employed Co2+ ion-substitution to improve Vis-NIR reflectivity of hydroxyapatite (Ca10(PO4)6(OH)2, HAP) powder. HAP:Co with nominally 5 at.% of Co was prepared with hydrothermal processing of a precipitate. Synthesized powder was characterized by XRD, Raman and ATR-FTIR spectroscopy, FE-SEM and TEM. Thermal stability of HAP:Co powder was examined by simultaneous TG-DTA analyzer. To modify its optical properties and obtain powders with a varietty of color tone, the HAP:Co powder was calcined at 800, 1000, and 1100 °C, in an air atmosphere, for 1 hour. Afterward, the calcined particles were used to prepare composites with poly(vinyl butyral), (PVB); the concentration range was 1 wt.% of the HAP:Co in PVB. The composite coatings, in the form of thin films on glass, were prepared by the solvent-casting technique, using ethanol as a fast evaporating solvent. Firstly, the HAP:Co particles were dispersed in ethanol, then PVB was added (Mowital B30H) and dissolved. To evaporate the solvent before spectrophotometric measurements, the coatings on glass were dried at room temperature for 72 hours. To comprehend optical properties of the coatings, diffuse reflection, transmission, and color coordinates were determined. We found that calcined HAP:Co particles have potential to be used in the formulation of coatings for camouflage protection.
PB  - Belgrade : Military Technical Institute
C3  - 9th International Scientific Conference on Defensive Technologies : OTEH2020, Belgrade, Serbia, 15-16 October 2020
T1  - HAp:Co as tunable VIS-NIR reflective pigment
SP  - 475
EP  - 480
UR  - https://hdl.handle.net/21.15107/rcub_dais_10038
ER  - 
@conference{
author = "Marković, Smilja and Stojanović, Zoran S. and Veselinović, Ljiljana and Simić, Danica and Samolov, Aleksandra and Stojković Simatović, Ivana",
year = "2020",
abstract = "Radar-absorbent materials, used in stealth technology for defense aircrafts, vehicles, satellites, etc. from radar detection, are commonly based on graphite or semiconductive particles embedded in a polymer matrix. In this study, we employed Co2+ ion-substitution to improve Vis-NIR reflectivity of hydroxyapatite (Ca10(PO4)6(OH)2, HAP) powder. HAP:Co with nominally 5 at.% of Co was prepared with hydrothermal processing of a precipitate. Synthesized powder was characterized by XRD, Raman and ATR-FTIR spectroscopy, FE-SEM and TEM. Thermal stability of HAP:Co powder was examined by simultaneous TG-DTA analyzer. To modify its optical properties and obtain powders with a varietty of color tone, the HAP:Co powder was calcined at 800, 1000, and 1100 °C, in an air atmosphere, for 1 hour. Afterward, the calcined particles were used to prepare composites with poly(vinyl butyral), (PVB); the concentration range was 1 wt.% of the HAP:Co in PVB. The composite coatings, in the form of thin films on glass, were prepared by the solvent-casting technique, using ethanol as a fast evaporating solvent. Firstly, the HAP:Co particles were dispersed in ethanol, then PVB was added (Mowital B30H) and dissolved. To evaporate the solvent before spectrophotometric measurements, the coatings on glass were dried at room temperature for 72 hours. To comprehend optical properties of the coatings, diffuse reflection, transmission, and color coordinates were determined. We found that calcined HAP:Co particles have potential to be used in the formulation of coatings for camouflage protection.",
publisher = "Belgrade : Military Technical Institute",
journal = "9th International Scientific Conference on Defensive Technologies : OTEH2020, Belgrade, Serbia, 15-16 October 2020",
title = "HAp:Co as tunable VIS-NIR reflective pigment",
pages = "475-480",
url = "https://hdl.handle.net/21.15107/rcub_dais_10038"
}
Marković, S., Stojanović, Z. S., Veselinović, L., Simić, D., Samolov, A.,& Stojković Simatović, I.. (2020). HAp:Co as tunable VIS-NIR reflective pigment. in 9th International Scientific Conference on Defensive Technologies : OTEH2020, Belgrade, Serbia, 15-16 October 2020
Belgrade : Military Technical Institute., 475-480.
https://hdl.handle.net/21.15107/rcub_dais_10038
Marković S, Stojanović ZS, Veselinović L, Simić D, Samolov A, Stojković Simatović I. HAp:Co as tunable VIS-NIR reflective pigment. in 9th International Scientific Conference on Defensive Technologies : OTEH2020, Belgrade, Serbia, 15-16 October 2020. 2020;:475-480.
https://hdl.handle.net/21.15107/rcub_dais_10038 .
Marković, Smilja, Stojanović, Zoran S., Veselinović, Ljiljana, Simić, Danica, Samolov, Aleksandra, Stojković Simatović, Ivana, "HAp:Co as tunable VIS-NIR reflective pigment" in 9th International Scientific Conference on Defensive Technologies : OTEH2020, Belgrade, Serbia, 15-16 October 2020 (2020):475-480,
https://hdl.handle.net/21.15107/rcub_dais_10038 .

Bifunctional catalytic activity of Zn1−xFexO toward the OER/ORR: seeking an optimal stoichiometry

Rajić, Vladimir; Stojković Simatović, Ivana; Veselinović, Ljiljana; Belošević Čavor, Jelena; Novaković, Mirjana; Popović, Maja; Škapin, Srečo Davor; Mojović, Miloš; Stojadinović, Stevan; Rac, Vladislav; Janković Častvan, Ivona; Marković, Smilja

(Royal Society of Chemistry, 2020)

TY  - JOUR
AU  - Rajić, Vladimir
AU  - Stojković Simatović, Ivana
AU  - Veselinović, Ljiljana
AU  - Belošević Čavor, Jelena
AU  - Novaković, Mirjana
AU  - Popović, Maja
AU  - Škapin, Srečo Davor
AU  - Mojović, Miloš
AU  - Stojadinović, Stevan
AU  - Rac, Vladislav
AU  - Janković Častvan, Ivona
AU  - Marković, Smilja
PY  - 2020
UR  - https://pubs.rsc.org/en/content/articlelanding/2020/cp/d0cp03377d
UR  - https://dais.sanu.ac.rs/123456789/9543
AB  - Eco-friendly and rapid microwave processing of a precipitate was used to produce Fe-doped zinc oxide (Zn1−xFexO, x = 0, 0.05, 0.1, 0.15 and 0.20; ZnO:Fe) nanoparticles, which were tested as catalysts toward the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) in a moderately alkaline solution. The phase composition, crystal structure, morphology, textural properties, surface chemistry, optical properties and band structure were examined to comprehend the influence of Zn2+ partial substitution with Fe3+ on the catalytic activity of ZnO:Fe. Linear sweep voltammetry showed an improved catalytic activity of ZnO:5Fe toward the ORR, compared to pure ZnO, while with increased amounts of the Fe-dopant the activity decreased. The improvement was suggested by a more positive onset potential (0.394 V vs. RHE), current density (0.231 mA cm−2 at 0.150 V vs. RHE), and faster kinetics (Tafel slope, b = 248 mV dec−1), and it may be due to the synergistic effect of (1) a sufficient amount of surface oxygen vacancies, and (2) a certain amount of plate-like particles composed of crystallites with well developed (0001) and (000) facets. Quite the contrary, the OER study showed that the introduction of Fe3+ ions into the ZnO crystal structure resulted in enhanced catalytic activity of all ZnO:Fe samples, compared to pure ZnO, probably due to the modified binding energy and an optimized band structure. With the maximal current density of 1.066 mA cm−2 at 2.216 V vs. RHE, an onset potential of 1.856 V vs. RHE, and the smallest potential difference between the OER and ORR (ΔE = 1.58 V), ZnO:10Fe may be considered a promising bifunctional catalyst toward the OER/ORR in moderately alkaline solution. This study demonstrates that the electrocatalytic activity of ZnO:Fe strongly depends on the defect chemistry and consequently the band structure. Along with providing fundamental insight into the electrocatalytic activity of ZnO:Fe, the study also indicates an optimal stoichiometry for enhanced bifunctional activity toward the OER/ORR, compared to pure ZnO.
PB  - Royal Society of Chemistry
T2  - Physical Chemistry Chemical Physics
T1  - Bifunctional catalytic activity of Zn1−xFexO toward the OER/ORR: seeking an optimal stoichiometry
SP  - 22078
EP  - 22095
VL  - 22
IS  - 38
DO  - 10.1039/D0CP03377D
UR  - https://hdl.handle.net/21.15107/rcub_dais_9543
ER  - 
@article{
author = "Rajić, Vladimir and Stojković Simatović, Ivana and Veselinović, Ljiljana and Belošević Čavor, Jelena and Novaković, Mirjana and Popović, Maja and Škapin, Srečo Davor and Mojović, Miloš and Stojadinović, Stevan and Rac, Vladislav and Janković Častvan, Ivona and Marković, Smilja",
year = "2020",
abstract = "Eco-friendly and rapid microwave processing of a precipitate was used to produce Fe-doped zinc oxide (Zn1−xFexO, x = 0, 0.05, 0.1, 0.15 and 0.20; ZnO:Fe) nanoparticles, which were tested as catalysts toward the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) in a moderately alkaline solution. The phase composition, crystal structure, morphology, textural properties, surface chemistry, optical properties and band structure were examined to comprehend the influence of Zn2+ partial substitution with Fe3+ on the catalytic activity of ZnO:Fe. Linear sweep voltammetry showed an improved catalytic activity of ZnO:5Fe toward the ORR, compared to pure ZnO, while with increased amounts of the Fe-dopant the activity decreased. The improvement was suggested by a more positive onset potential (0.394 V vs. RHE), current density (0.231 mA cm−2 at 0.150 V vs. RHE), and faster kinetics (Tafel slope, b = 248 mV dec−1), and it may be due to the synergistic effect of (1) a sufficient amount of surface oxygen vacancies, and (2) a certain amount of plate-like particles composed of crystallites with well developed (0001) and (000) facets. Quite the contrary, the OER study showed that the introduction of Fe3+ ions into the ZnO crystal structure resulted in enhanced catalytic activity of all ZnO:Fe samples, compared to pure ZnO, probably due to the modified binding energy and an optimized band structure. With the maximal current density of 1.066 mA cm−2 at 2.216 V vs. RHE, an onset potential of 1.856 V vs. RHE, and the smallest potential difference between the OER and ORR (ΔE = 1.58 V), ZnO:10Fe may be considered a promising bifunctional catalyst toward the OER/ORR in moderately alkaline solution. This study demonstrates that the electrocatalytic activity of ZnO:Fe strongly depends on the defect chemistry and consequently the band structure. Along with providing fundamental insight into the electrocatalytic activity of ZnO:Fe, the study also indicates an optimal stoichiometry for enhanced bifunctional activity toward the OER/ORR, compared to pure ZnO.",
publisher = "Royal Society of Chemistry",
journal = "Physical Chemistry Chemical Physics",
title = "Bifunctional catalytic activity of Zn1−xFexO toward the OER/ORR: seeking an optimal stoichiometry",
pages = "22078-22095",
volume = "22",
number = "38",
doi = "10.1039/D0CP03377D",
url = "https://hdl.handle.net/21.15107/rcub_dais_9543"
}
Rajić, V., Stojković Simatović, I., Veselinović, L., Belošević Čavor, J., Novaković, M., Popović, M., Škapin, S. D., Mojović, M., Stojadinović, S., Rac, V., Janković Častvan, I.,& Marković, S.. (2020). Bifunctional catalytic activity of Zn1−xFexO toward the OER/ORR: seeking an optimal stoichiometry. in Physical Chemistry Chemical Physics
Royal Society of Chemistry., 22(38), 22078-22095.
https://doi.org/10.1039/D0CP03377D
https://hdl.handle.net/21.15107/rcub_dais_9543
Rajić V, Stojković Simatović I, Veselinović L, Belošević Čavor J, Novaković M, Popović M, Škapin SD, Mojović M, Stojadinović S, Rac V, Janković Častvan I, Marković S. Bifunctional catalytic activity of Zn1−xFexO toward the OER/ORR: seeking an optimal stoichiometry. in Physical Chemistry Chemical Physics. 2020;22(38):22078-22095.
doi:10.1039/D0CP03377D
https://hdl.handle.net/21.15107/rcub_dais_9543 .
Rajić, Vladimir, Stojković Simatović, Ivana, Veselinović, Ljiljana, Belošević Čavor, Jelena, Novaković, Mirjana, Popović, Maja, Škapin, Srečo Davor, Mojović, Miloš, Stojadinović, Stevan, Rac, Vladislav, Janković Častvan, Ivona, Marković, Smilja, "Bifunctional catalytic activity of Zn1−xFexO toward the OER/ORR: seeking an optimal stoichiometry" in Physical Chemistry Chemical Physics, 22, no. 38 (2020):22078-22095,
https://doi.org/10.1039/D0CP03377D .,
https://hdl.handle.net/21.15107/rcub_dais_9543 .
11
3
10

Bifunctional catalytic activity of Zn1−xFexO toward the OER/ORR: seeking an optimal stoichiometry

Rajić, Vladimir; Stojković Simatović, Ivana; Veselinović, Ljiljana; Belošević Čavor, Jelena; Novaković, Mirjana; Popović, Maja; Škapin, Srečo Davor; Mojović, Miloš; Stojadinović, Stevan; Rac, Vladislav; Janković Častvan, Ivona; Marković, Smilja

(Royal Society of Chemistry, 2020)

TY  - JOUR
AU  - Rajić, Vladimir
AU  - Stojković Simatović, Ivana
AU  - Veselinović, Ljiljana
AU  - Belošević Čavor, Jelena
AU  - Novaković, Mirjana
AU  - Popović, Maja
AU  - Škapin, Srečo Davor
AU  - Mojović, Miloš
AU  - Stojadinović, Stevan
AU  - Rac, Vladislav
AU  - Janković Častvan, Ivona
AU  - Marković, Smilja
PY  - 2020
UR  - https://pubs.rsc.org/en/content/articlelanding/2020/cp/d0cp03377d
UR  - https://dais.sanu.ac.rs/123456789/9544
AB  - Eco-friendly and rapid microwave processing of a precipitate was used to produce Fe-doped zinc oxide (Zn1−xFexO, x = 0, 0.05, 0.1, 0.15 and 0.20; ZnO:Fe) nanoparticles, which were tested as catalysts toward the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) in a moderately alkaline solution. The phase composition, crystal structure, morphology, textural properties, surface chemistry, optical properties and band structure were examined to comprehend the influence of Zn2+ partial substitution with Fe3+ on the catalytic activity of ZnO:Fe. Linear sweep voltammetry showed an improved catalytic activity of ZnO:5Fe toward the ORR, compared to pure ZnO, while with increased amounts of the Fe-dopant the activity decreased. The improvement was suggested by a more positive onset potential (0.394 V vs. RHE), current density (0.231 mA cm−2 at 0.150 V vs. RHE), and faster kinetics (Tafel slope, b = 248 mV dec−1), and it may be due to the synergistic effect of (1) a sufficient amount of surface oxygen vacancies, and (2) a certain amount of plate-like particles composed of crystallites with well developed (0001) and (000) facets. Quite the contrary, the OER study showed that the introduction of Fe3+ ions into the ZnO crystal structure resulted in enhanced catalytic activity of all ZnO:Fe samples, compared to pure ZnO, probably due to the modified binding energy and an optimized band structure. With the maximal current density of 1.066 mA cm−2 at 2.216 V vs. RHE, an onset potential of 1.856 V vs. RHE, and the smallest potential difference between the OER and ORR (ΔE = 1.58 V), ZnO:10Fe may be considered a promising bifunctional catalyst toward the OER/ORR in moderately alkaline solution. This study demonstrates that the electrocatalytic activity of ZnO:Fe strongly depends on the defect chemistry and consequently the band structure. Along with providing fundamental insight into the electrocatalytic activity of ZnO:Fe, the study also indicates an optimal stoichiometry for enhanced bifunctional activity toward the OER/ORR, compared to pure ZnO.
PB  - Royal Society of Chemistry
T2  - Physical Chemistry Chemical Physics
T1  - Bifunctional catalytic activity of Zn1−xFexO toward the OER/ORR: seeking an optimal stoichiometry
SP  - 22078
EP  - 22095
VL  - 22
IS  - 38
DO  - 10.1039/D0CP03377D
UR  - https://hdl.handle.net/21.15107/rcub_dais_9544
ER  - 
@article{
author = "Rajić, Vladimir and Stojković Simatović, Ivana and Veselinović, Ljiljana and Belošević Čavor, Jelena and Novaković, Mirjana and Popović, Maja and Škapin, Srečo Davor and Mojović, Miloš and Stojadinović, Stevan and Rac, Vladislav and Janković Častvan, Ivona and Marković, Smilja",
year = "2020",
abstract = "Eco-friendly and rapid microwave processing of a precipitate was used to produce Fe-doped zinc oxide (Zn1−xFexO, x = 0, 0.05, 0.1, 0.15 and 0.20; ZnO:Fe) nanoparticles, which were tested as catalysts toward the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) in a moderately alkaline solution. The phase composition, crystal structure, morphology, textural properties, surface chemistry, optical properties and band structure were examined to comprehend the influence of Zn2+ partial substitution with Fe3+ on the catalytic activity of ZnO:Fe. Linear sweep voltammetry showed an improved catalytic activity of ZnO:5Fe toward the ORR, compared to pure ZnO, while with increased amounts of the Fe-dopant the activity decreased. The improvement was suggested by a more positive onset potential (0.394 V vs. RHE), current density (0.231 mA cm−2 at 0.150 V vs. RHE), and faster kinetics (Tafel slope, b = 248 mV dec−1), and it may be due to the synergistic effect of (1) a sufficient amount of surface oxygen vacancies, and (2) a certain amount of plate-like particles composed of crystallites with well developed (0001) and (000) facets. Quite the contrary, the OER study showed that the introduction of Fe3+ ions into the ZnO crystal structure resulted in enhanced catalytic activity of all ZnO:Fe samples, compared to pure ZnO, probably due to the modified binding energy and an optimized band structure. With the maximal current density of 1.066 mA cm−2 at 2.216 V vs. RHE, an onset potential of 1.856 V vs. RHE, and the smallest potential difference between the OER and ORR (ΔE = 1.58 V), ZnO:10Fe may be considered a promising bifunctional catalyst toward the OER/ORR in moderately alkaline solution. This study demonstrates that the electrocatalytic activity of ZnO:Fe strongly depends on the defect chemistry and consequently the band structure. Along with providing fundamental insight into the electrocatalytic activity of ZnO:Fe, the study also indicates an optimal stoichiometry for enhanced bifunctional activity toward the OER/ORR, compared to pure ZnO.",
publisher = "Royal Society of Chemistry",
journal = "Physical Chemistry Chemical Physics",
title = "Bifunctional catalytic activity of Zn1−xFexO toward the OER/ORR: seeking an optimal stoichiometry",
pages = "22078-22095",
volume = "22",
number = "38",
doi = "10.1039/D0CP03377D",
url = "https://hdl.handle.net/21.15107/rcub_dais_9544"
}
Rajić, V., Stojković Simatović, I., Veselinović, L., Belošević Čavor, J., Novaković, M., Popović, M., Škapin, S. D., Mojović, M., Stojadinović, S., Rac, V., Janković Častvan, I.,& Marković, S.. (2020). Bifunctional catalytic activity of Zn1−xFexO toward the OER/ORR: seeking an optimal stoichiometry. in Physical Chemistry Chemical Physics
Royal Society of Chemistry., 22(38), 22078-22095.
https://doi.org/10.1039/D0CP03377D
https://hdl.handle.net/21.15107/rcub_dais_9544
Rajić V, Stojković Simatović I, Veselinović L, Belošević Čavor J, Novaković M, Popović M, Škapin SD, Mojović M, Stojadinović S, Rac V, Janković Častvan I, Marković S. Bifunctional catalytic activity of Zn1−xFexO toward the OER/ORR: seeking an optimal stoichiometry. in Physical Chemistry Chemical Physics. 2020;22(38):22078-22095.
doi:10.1039/D0CP03377D
https://hdl.handle.net/21.15107/rcub_dais_9544 .
Rajić, Vladimir, Stojković Simatović, Ivana, Veselinović, Ljiljana, Belošević Čavor, Jelena, Novaković, Mirjana, Popović, Maja, Škapin, Srečo Davor, Mojović, Miloš, Stojadinović, Stevan, Rac, Vladislav, Janković Častvan, Ivona, Marković, Smilja, "Bifunctional catalytic activity of Zn1−xFexO toward the OER/ORR: seeking an optimal stoichiometry" in Physical Chemistry Chemical Physics, 22, no. 38 (2020):22078-22095,
https://doi.org/10.1039/D0CP03377D .,
https://hdl.handle.net/21.15107/rcub_dais_9544 .
11
3
10

Synthesis temperature influence on the structure, morphology and electrochemical performance of NaxMnO2 as cathode materials for sodium-ion rechearchable batteries

Rakočević, Lazar; Potočnik, Jelena; Novaković, Mirjana; Jugović, Dragana; Stojković Simatović, Ivana

(Belgrade : Institute of Technical Sciences of SASA, 2019)

TY  - CONF
AU  - Rakočević, Lazar
AU  - Potočnik, Jelena
AU  - Novaković, Mirjana
AU  - Jugović, Dragana
AU  - Stojković Simatović, Ivana
PY  - 2019
UR  - https://dais.sanu.ac.rs/123456789/6972
AB  - The lithium-ion batteries are the most commonly used for energy storage in portable devices. Since lithium is relatively rare on earth but rapidly consumed, it is necessary to find an adequate replacement. Owing to the similar chemical properties of sodium and lithium, but much higher availability, sodium ion batteries are one of the best candidates to replace lithium-ion batteries. A variety of materials such as manganese oxide, vanadium oxide or phosphate can be used as an electrode material (anode and cathode) in sodium ion batteries due to the high ability of intercalation of sodium. In this work, NaxMnO2 powder was synthesized by glycine nitrate method. The precursor powder was annealed for four hours at different temperatures: 800, 850, 900 and 950 °C. The characterization of the obtained materials was carried out using following methods: X-ray diffraction (XRD), scanning electron spectroscopy with energy dispersive X-ray spectroscopy (SEM/EDS) and transmission electron spectroscopy with energy dispersive Xray spectroscopy (TEM/EDS). Electrochemical properties were studied using cyclic voltammetry and chronopotentiometry in an aqueous solution of NaNO3. The layer structured Na0.7MnO2.05 with sheet-like morphology and Na0.4MnO2 with 3-D tunnel structure and rod-like morphology was obtained at 800 oC and 900 oC respectively. Na0.44MnO2 with rod-like morphology was annealed at 900 and 950 oC. 3D-tunnel structure Na0.44MnO2 obtained at 900 oC showed the best electrochemical behaviour in aqueous NaNO3 solution.
PB  - Belgrade : Institute of Technical Sciences of SASA
C3  - Program and the Book of abstracts / Eighteenth Young Researchers' Conference Materials Sciences and Engineering, December 4-6, 2019, Belgrade, Serbia
T1  - Synthesis temperature influence on the structure, morphology and electrochemical performance of NaxMnO2 as cathode materials for sodium-ion rechearchable batteries
SP  - 59
EP  - 59
UR  - https://hdl.handle.net/21.15107/rcub_dais_6972
ER  - 
@conference{
author = "Rakočević, Lazar and Potočnik, Jelena and Novaković, Mirjana and Jugović, Dragana and Stojković Simatović, Ivana",
year = "2019",
abstract = "The lithium-ion batteries are the most commonly used for energy storage in portable devices. Since lithium is relatively rare on earth but rapidly consumed, it is necessary to find an adequate replacement. Owing to the similar chemical properties of sodium and lithium, but much higher availability, sodium ion batteries are one of the best candidates to replace lithium-ion batteries. A variety of materials such as manganese oxide, vanadium oxide or phosphate can be used as an electrode material (anode and cathode) in sodium ion batteries due to the high ability of intercalation of sodium. In this work, NaxMnO2 powder was synthesized by glycine nitrate method. The precursor powder was annealed for four hours at different temperatures: 800, 850, 900 and 950 °C. The characterization of the obtained materials was carried out using following methods: X-ray diffraction (XRD), scanning electron spectroscopy with energy dispersive X-ray spectroscopy (SEM/EDS) and transmission electron spectroscopy with energy dispersive Xray spectroscopy (TEM/EDS). Electrochemical properties were studied using cyclic voltammetry and chronopotentiometry in an aqueous solution of NaNO3. The layer structured Na0.7MnO2.05 with sheet-like morphology and Na0.4MnO2 with 3-D tunnel structure and rod-like morphology was obtained at 800 oC and 900 oC respectively. Na0.44MnO2 with rod-like morphology was annealed at 900 and 950 oC. 3D-tunnel structure Na0.44MnO2 obtained at 900 oC showed the best electrochemical behaviour in aqueous NaNO3 solution.",
publisher = "Belgrade : Institute of Technical Sciences of SASA",
journal = "Program and the Book of abstracts / Eighteenth Young Researchers' Conference Materials Sciences and Engineering, December 4-6, 2019, Belgrade, Serbia",
title = "Synthesis temperature influence on the structure, morphology and electrochemical performance of NaxMnO2 as cathode materials for sodium-ion rechearchable batteries",
pages = "59-59",
url = "https://hdl.handle.net/21.15107/rcub_dais_6972"
}
Rakočević, L., Potočnik, J., Novaković, M., Jugović, D.,& Stojković Simatović, I.. (2019). Synthesis temperature influence on the structure, morphology and electrochemical performance of NaxMnO2 as cathode materials for sodium-ion rechearchable batteries. in Program and the Book of abstracts / Eighteenth Young Researchers' Conference Materials Sciences and Engineering, December 4-6, 2019, Belgrade, Serbia
Belgrade : Institute of Technical Sciences of SASA., 59-59.
https://hdl.handle.net/21.15107/rcub_dais_6972
Rakočević L, Potočnik J, Novaković M, Jugović D, Stojković Simatović I. Synthesis temperature influence on the structure, morphology and electrochemical performance of NaxMnO2 as cathode materials for sodium-ion rechearchable batteries. in Program and the Book of abstracts / Eighteenth Young Researchers' Conference Materials Sciences and Engineering, December 4-6, 2019, Belgrade, Serbia. 2019;:59-59.
https://hdl.handle.net/21.15107/rcub_dais_6972 .
Rakočević, Lazar, Potočnik, Jelena, Novaković, Mirjana, Jugović, Dragana, Stojković Simatović, Ivana, "Synthesis temperature influence on the structure, morphology and electrochemical performance of NaxMnO2 as cathode materials for sodium-ion rechearchable batteries" in Program and the Book of abstracts / Eighteenth Young Researchers' Conference Materials Sciences and Engineering, December 4-6, 2019, Belgrade, Serbia (2019):59-59,
https://hdl.handle.net/21.15107/rcub_dais_6972 .

Surfactant-assisted microwave processing of ZnO particles: a simple way for designing the surface-to-bulk defect ratio and improving photo(electro)catalytic properties

Marković, Smilja; Stojković Simatović, Ivana; Ahmetović, Sanita; Veselinović, Ljiljana; Stojadinović, Stevan; Rac, Vladislav; Škapin, Srečo Davor; Bajuk Bogdanović, Danica; Janković Častvan, Ivona; Uskoković, Dragan

(Royal Society of Chemistry, 2019)

TY  - JOUR
AU  - Marković, Smilja
AU  - Stojković Simatović, Ivana
AU  - Ahmetović, Sanita
AU  - Veselinović, Ljiljana
AU  - Stojadinović, Stevan
AU  - Rac, Vladislav
AU  - Škapin, Srečo Davor
AU  - Bajuk Bogdanović, Danica
AU  - Janković Častvan, Ivona
AU  - Uskoković, Dragan
PY  - 2019
UR  - https://pubs.rsc.org/en/content/articlelanding/2019/ra/c9ra02553g
UR  - https://dais.sanu.ac.rs/123456789/6272
AB  - ZnO nanopowders were produced using microwave processing of a precipitate and applied as a photoanode for photoelectrochemical water splitting. Two different surfactants, cetyltrimethylammonium bromide (CTAB) as the cationic and Pluronic F127 as the non-ionic one, were employed to in situ adjust the surface-to-bulk defect ratio in the ZnO crystal structure and further to modify the photo(electro)catalytic activity of the ZnO photoanode. The crystal structure, morphological, textural, optical and photo(electro)catalytic properties of ZnO particles were studied in detail to explain the profound effects of the surfactants on the photoanode activity. The ZnO/CTAB photoanode displayed the highest photocurrent density of 27 mA g−1, compared to ZnO (10.4 mA g−1) and ZnO/F127 photoanodes (20 mA g−1) at 1.5 V vs. SCE in 0.1 M Na2SO4 under visible illumination of 90 mW cm−2. A significant shift of the overpotential toward lower values was also observed when photoanodes were illuminated. The highest shift of the overpotential, from 1.296 to 0.248 V vs. SCE, was recorded when the ZnO/CTAB photanode was illuminated. The ZnO/CTAB photoanode provides efficient charge transfer across the electrode/electrolyte interface, with a longer lifetime of photogenerated electron–hole pairs and reduced possibility of charge recombination. The photoconversion efficiency was improved from 1.4% for ZnO and 0.9% for ZnO/F127 to 4.2% for ZnO/CTAB at 0.510 mV. A simple procedure for the synthesis of ZnO particles with improved photo(electro)catalytic properties was established and it was found that even a small amount of CTAB used during processing of ZnO increases the surface-to-bulk defect ratio. Optimization of the surface-to-bulk defect ratio in ZnO materials enables increase of the absorption capacity for visible light, rendering of the recombination rate of the photogenerated pair, as well as increase of both the photocurrent density and photoconversion efficiency.
PB  - Royal Society of Chemistry
T2  - RSC Advances
T1  - Surfactant-assisted microwave processing of ZnO particles: a simple way for designing the surface-to-bulk defect ratio and improving photo(electro)catalytic properties
SP  - 17165
EP  - 17178
VL  - 9
IS  - 30
DO  - 10.1039/C9RA02553G
UR  - https://hdl.handle.net/21.15107/rcub_dais_6272
ER  - 
@article{
author = "Marković, Smilja and Stojković Simatović, Ivana and Ahmetović, Sanita and Veselinović, Ljiljana and Stojadinović, Stevan and Rac, Vladislav and Škapin, Srečo Davor and Bajuk Bogdanović, Danica and Janković Častvan, Ivona and Uskoković, Dragan",
year = "2019",
abstract = "ZnO nanopowders were produced using microwave processing of a precipitate and applied as a photoanode for photoelectrochemical water splitting. Two different surfactants, cetyltrimethylammonium bromide (CTAB) as the cationic and Pluronic F127 as the non-ionic one, were employed to in situ adjust the surface-to-bulk defect ratio in the ZnO crystal structure and further to modify the photo(electro)catalytic activity of the ZnO photoanode. The crystal structure, morphological, textural, optical and photo(electro)catalytic properties of ZnO particles were studied in detail to explain the profound effects of the surfactants on the photoanode activity. The ZnO/CTAB photoanode displayed the highest photocurrent density of 27 mA g−1, compared to ZnO (10.4 mA g−1) and ZnO/F127 photoanodes (20 mA g−1) at 1.5 V vs. SCE in 0.1 M Na2SO4 under visible illumination of 90 mW cm−2. A significant shift of the overpotential toward lower values was also observed when photoanodes were illuminated. The highest shift of the overpotential, from 1.296 to 0.248 V vs. SCE, was recorded when the ZnO/CTAB photanode was illuminated. The ZnO/CTAB photoanode provides efficient charge transfer across the electrode/electrolyte interface, with a longer lifetime of photogenerated electron–hole pairs and reduced possibility of charge recombination. The photoconversion efficiency was improved from 1.4% for ZnO and 0.9% for ZnO/F127 to 4.2% for ZnO/CTAB at 0.510 mV. A simple procedure for the synthesis of ZnO particles with improved photo(electro)catalytic properties was established and it was found that even a small amount of CTAB used during processing of ZnO increases the surface-to-bulk defect ratio. Optimization of the surface-to-bulk defect ratio in ZnO materials enables increase of the absorption capacity for visible light, rendering of the recombination rate of the photogenerated pair, as well as increase of both the photocurrent density and photoconversion efficiency.",
publisher = "Royal Society of Chemistry",
journal = "RSC Advances",
title = "Surfactant-assisted microwave processing of ZnO particles: a simple way for designing the surface-to-bulk defect ratio and improving photo(electro)catalytic properties",
pages = "17165-17178",
volume = "9",
number = "30",
doi = "10.1039/C9RA02553G",
url = "https://hdl.handle.net/21.15107/rcub_dais_6272"
}
Marković, S., Stojković Simatović, I., Ahmetović, S., Veselinović, L., Stojadinović, S., Rac, V., Škapin, S. D., Bajuk Bogdanović, D., Janković Častvan, I.,& Uskoković, D.. (2019). Surfactant-assisted microwave processing of ZnO particles: a simple way for designing the surface-to-bulk defect ratio and improving photo(electro)catalytic properties. in RSC Advances
Royal Society of Chemistry., 9(30), 17165-17178.
https://doi.org/10.1039/C9RA02553G
https://hdl.handle.net/21.15107/rcub_dais_6272
Marković S, Stojković Simatović I, Ahmetović S, Veselinović L, Stojadinović S, Rac V, Škapin SD, Bajuk Bogdanović D, Janković Častvan I, Uskoković D. Surfactant-assisted microwave processing of ZnO particles: a simple way for designing the surface-to-bulk defect ratio and improving photo(electro)catalytic properties. in RSC Advances. 2019;9(30):17165-17178.
doi:10.1039/C9RA02553G
https://hdl.handle.net/21.15107/rcub_dais_6272 .
Marković, Smilja, Stojković Simatović, Ivana, Ahmetović, Sanita, Veselinović, Ljiljana, Stojadinović, Stevan, Rac, Vladislav, Škapin, Srečo Davor, Bajuk Bogdanović, Danica, Janković Častvan, Ivona, Uskoković, Dragan, "Surfactant-assisted microwave processing of ZnO particles: a simple way for designing the surface-to-bulk defect ratio and improving photo(electro)catalytic properties" in RSC Advances, 9, no. 30 (2019):17165-17178,
https://doi.org/10.1039/C9RA02553G .,
https://hdl.handle.net/21.15107/rcub_dais_6272 .
1
22
11
22

Point defect-enhanced optical and photoelectrochemical water splitting activity of nanostructured Zn1-xFeyO(1-x+1.5y)

Marković, Smilja; Rajić, Vladimir B.; Stojković Simatović, Ivana; Veselinović, Ljiljana; Belošević Čavor, Jelena; Ivanovski, Valentin N.; Novaković, Mirjana; Škapin, Srečo Davor; Stojadinović, Stevan; Rac, Vladislav; Uskoković, Dragan

(Belgrade : Materials Research Society of Serbia, 2019)

TY  - CONF
AU  - Marković, Smilja
AU  - Rajić, Vladimir B.
AU  - Stojković Simatović, Ivana
AU  - Veselinović, Ljiljana
AU  - Belošević Čavor, Jelena
AU  - Ivanovski, Valentin N.
AU  - Novaković, Mirjana
AU  - Škapin, Srečo Davor
AU  - Stojadinović, Stevan
AU  - Rac, Vladislav
AU  - Uskoković, Dragan
PY  - 2019
UR  - https://dais.sanu.ac.rs/123456789/6677
AB  - Even has been under study since 1935, zinc oxide (ZnO) based materials still attract a huge scientific attention. Owing to a wide band gap energy (3.37 eV at room temperature) and a large exciton binding energy (60 meV) ZnO has a variety of application, e.g. in electronics, optoelectronics, spintronics and photocatalysis. Besides, it has been shown that zinc oxide-based materials have a great potential as photoelectrocatalysts in the processes of water splitting, yielding an increased both photocurrent density and photoconversion efficiency. However, with a band gap energy of 3.37 eV, ZnO is restricted to absorb UV light only. This restriction can be overcome by modifying optical properties of zinc oxide particles. During the years different approaches have been applied to modify the visible light photocatalytic activity of ZnO materials, for example: (1) metal and nonmetal ion doping, (2) hydrogenation, (3) the incorporation of crystalline defects in the form of vacancies and interstitials, (4) the modification of particles morphology and surface topology, etc.
In this study we employed 3d metal ion substitution to improve visible light-driven photoactivity of zinc oxide particles. We investigated the influence of Fe concentration in Zn1-xFeyO(1-x+1.5y) nanoparticles on crystal structure, textural, optical and photoelectrocatalytic properties. Zn1-xFeyO(1-x+1.5y) nanoparticles with nominally 5, 10, 15 and 20 at.% of Fe ions were synthesized by microwave processing of a precipitate. The crystal structure and phase purity of the samples were investigated by X-ray diffraction, Raman and ATR-FTIR spectroscopy. Mössbauer spectroscopy was carried out to clarify the valence state of the iron ions in the ZnO crystal structure. Effects of the iron ions concentration on particles morphology and texture properties were observed with field emission scanning electron microscopy (FE–SEM), transmission electron microscopy (TEM) with elemental mapping, and nitrogen adsorption–desorption isotherm, respectively. The optical properties were studied using UV–Vis diffuse reflectance and photoluminescence (PL) spectroscopy. Photoelectrochemical activity of the Zn1-xFeyO(1-x+1.5y) samples as anode material was evaluated by linear sweep voltammetry in Na2SO4 electrolyte; the oxygen evolution kinetics were determined and compared. In addition, a series of first principles calculations were performed to address the influence of the iron concentration on the electronic structure of Zn1-xFeyO(1-x+1.5y) samples.
PB  - Belgrade : Materials Research Society of Serbia
C3  - Programme and The Book of abstracts / Twenty-first Annual Conference YUCOMAT 2019 & Eleventh World Round Table Conference on Sintering WRTCS 2019, Herceg Novi, Montenegro, September 2-6, 2019
T1  - Point defect-enhanced optical and photoelectrochemical water splitting activity of nanostructured Zn1-xFeyO(1-x+1.5y)
SP  - 54
EP  - 54
UR  - https://hdl.handle.net/21.15107/rcub_dais_6677
ER  - 
@conference{
author = "Marković, Smilja and Rajić, Vladimir B. and Stojković Simatović, Ivana and Veselinović, Ljiljana and Belošević Čavor, Jelena and Ivanovski, Valentin N. and Novaković, Mirjana and Škapin, Srečo Davor and Stojadinović, Stevan and Rac, Vladislav and Uskoković, Dragan",
year = "2019",
abstract = "Even has been under study since 1935, zinc oxide (ZnO) based materials still attract a huge scientific attention. Owing to a wide band gap energy (3.37 eV at room temperature) and a large exciton binding energy (60 meV) ZnO has a variety of application, e.g. in electronics, optoelectronics, spintronics and photocatalysis. Besides, it has been shown that zinc oxide-based materials have a great potential as photoelectrocatalysts in the processes of water splitting, yielding an increased both photocurrent density and photoconversion efficiency. However, with a band gap energy of 3.37 eV, ZnO is restricted to absorb UV light only. This restriction can be overcome by modifying optical properties of zinc oxide particles. During the years different approaches have been applied to modify the visible light photocatalytic activity of ZnO materials, for example: (1) metal and nonmetal ion doping, (2) hydrogenation, (3) the incorporation of crystalline defects in the form of vacancies and interstitials, (4) the modification of particles morphology and surface topology, etc.
In this study we employed 3d metal ion substitution to improve visible light-driven photoactivity of zinc oxide particles. We investigated the influence of Fe concentration in Zn1-xFeyO(1-x+1.5y) nanoparticles on crystal structure, textural, optical and photoelectrocatalytic properties. Zn1-xFeyO(1-x+1.5y) nanoparticles with nominally 5, 10, 15 and 20 at.% of Fe ions were synthesized by microwave processing of a precipitate. The crystal structure and phase purity of the samples were investigated by X-ray diffraction, Raman and ATR-FTIR spectroscopy. Mössbauer spectroscopy was carried out to clarify the valence state of the iron ions in the ZnO crystal structure. Effects of the iron ions concentration on particles morphology and texture properties were observed with field emission scanning electron microscopy (FE–SEM), transmission electron microscopy (TEM) with elemental mapping, and nitrogen adsorption–desorption isotherm, respectively. The optical properties were studied using UV–Vis diffuse reflectance and photoluminescence (PL) spectroscopy. Photoelectrochemical activity of the Zn1-xFeyO(1-x+1.5y) samples as anode material was evaluated by linear sweep voltammetry in Na2SO4 electrolyte; the oxygen evolution kinetics were determined and compared. In addition, a series of first principles calculations were performed to address the influence of the iron concentration on the electronic structure of Zn1-xFeyO(1-x+1.5y) samples.",
publisher = "Belgrade : Materials Research Society of Serbia",
journal = "Programme and The Book of abstracts / Twenty-first Annual Conference YUCOMAT 2019 & Eleventh World Round Table Conference on Sintering WRTCS 2019, Herceg Novi, Montenegro, September 2-6, 2019",
title = "Point defect-enhanced optical and photoelectrochemical water splitting activity of nanostructured Zn1-xFeyO(1-x+1.5y)",
pages = "54-54",
url = "https://hdl.handle.net/21.15107/rcub_dais_6677"
}
Marković, S., Rajić, V. B., Stojković Simatović, I., Veselinović, L., Belošević Čavor, J., Ivanovski, V. N., Novaković, M., Škapin, S. D., Stojadinović, S., Rac, V.,& Uskoković, D.. (2019). Point defect-enhanced optical and photoelectrochemical water splitting activity of nanostructured Zn1-xFeyO(1-x+1.5y). in Programme and The Book of abstracts / Twenty-first Annual Conference YUCOMAT 2019 & Eleventh World Round Table Conference on Sintering WRTCS 2019, Herceg Novi, Montenegro, September 2-6, 2019
Belgrade : Materials Research Society of Serbia., 54-54.
https://hdl.handle.net/21.15107/rcub_dais_6677
Marković S, Rajić VB, Stojković Simatović I, Veselinović L, Belošević Čavor J, Ivanovski VN, Novaković M, Škapin SD, Stojadinović S, Rac V, Uskoković D. Point defect-enhanced optical and photoelectrochemical water splitting activity of nanostructured Zn1-xFeyO(1-x+1.5y). in Programme and The Book of abstracts / Twenty-first Annual Conference YUCOMAT 2019 & Eleventh World Round Table Conference on Sintering WRTCS 2019, Herceg Novi, Montenegro, September 2-6, 2019. 2019;:54-54.
https://hdl.handle.net/21.15107/rcub_dais_6677 .
Marković, Smilja, Rajić, Vladimir B., Stojković Simatović, Ivana, Veselinović, Ljiljana, Belošević Čavor, Jelena, Ivanovski, Valentin N., Novaković, Mirjana, Škapin, Srečo Davor, Stojadinović, Stevan, Rac, Vladislav, Uskoković, Dragan, "Point defect-enhanced optical and photoelectrochemical water splitting activity of nanostructured Zn1-xFeyO(1-x+1.5y)" in Programme and The Book of abstracts / Twenty-first Annual Conference YUCOMAT 2019 & Eleventh World Round Table Conference on Sintering WRTCS 2019, Herceg Novi, Montenegro, September 2-6, 2019 (2019):54-54,
https://hdl.handle.net/21.15107/rcub_dais_6677 .