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Membre de l’Académie

B E O G R A D 2 0 1 8



Publie et impimé par
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4. T. Atanacković, S. Pilipović: Bogoljub Stanković: Contributions
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A b s t r a c t. We define and study wave-front sets for weighted Fourier-Lebesgue spaces
when the weights are moderate with respect to associated functions for general sequences
{Mp} which satisfy Komatsu’s conditions (M.1)− (M.3)′. In particular, when {Mp} is the
Gevrey sequence (Mp = p!s, s > 1) we recover some previously observed results. Further-
more, we consider wave-front sets for modulation spaces in the same setting, and prove the
invariance property related to the Fourier-Lebesgue type wave-front sets.
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1. Introduction

Wave front sets in the context of Fourier-Lebesgue spaces, together with the study
of corresponding pseudodifferential operatros, were first considered in [35], see also
[36, 37, 38]. They are recently used in [7] for a mathematical explanation of phe-
nomena related to the interferences in the Born-Jordan distribution. The conic neigh-
borhoods in the definition of such wave-front sets are replaced in [14] by a filter of
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neighborhoods for the study of propagation of singularities of Fourier-Lebesgue type
for partial (pseudo)differential equations, whose symbol satisfies generalized elliptic
properties. We refer to [10, 21, 24] for discrete characterization of the wave front sets.
An important extension of investigations from [36, 37] to general weighted Fourier
Banach spaces is given in [2, 3].

The above mentioned results are performed in the framework of weights of poly-
nomial growth and, consequently, within the realm of tempered distributions. Spaces
of ultradistributions in the context of weighted Fourier-Lebesgue type spaces were
first observed in [22], see also [23]. The sequences of the form Mp = p!s, s > 1,
are used there to define the corresponding test function spaces. This in turn leads to
the analysis of weighted Fourier-Lebesgue spaces such that the growth of the weight
function at infinity is bounded by e

k|·|1/s
, for some k > 0.

In this paper we extend the results from [22] to a more general context when the
spaces of test functions are given by the means of {Mp} sequences which satisfy
Komatsu’s conditions (M.1) − (M.3)′, see Section 2. Note that this allows ”fine
tuning” between the two Gevrey type sequences, see Remark 2.1.

The paper is organized as follows. We end introduction with the basic nota-
tion and a brief account on weight functions. Section 2. contains a discussion on
sequences and corresponding associate functions, which are the basic notions in
our analysis. We proceed with an exposition of Gelfand-Shilov spaces and other
test function spaces, and their dual spaces of ultradistributions. Section 3. con-
tains the definition of wave-front sets for weighted Fourier-Lebesgue spaces when
the weights are submultiplicative with respect to the associated function of a given
non-quasianalytic sequence {Mp}. We study its basic properties, convolution rela-
tions, and discuss its relation to some other types of wave-front sets. In Section 4. we
first study the short-time Fourier transform in the context of test function spaces and
their duals from Section 2., and then define modulation spaces and recall their basic
properties. Finally, in Section 5. we introduce wave-front sets for modulation spaces
and show that they coincide with appropriate wave-front sets from Section 3.. Since
we consider general non-quasianalytic sequences {Mp}, we recover the main results
from [22, 23] where the particular case Mp = p!s, s > 1, is observed.

1.1. Basic notation

We put N = {0, 1, 2, . . . }, 〈x〉 = (1 + |x|2)1/2, x ∈ Rd, xy = x · y denotes the
scalar product on Rd and

〈(x,ω)〉s = 〈z〉s = (1 + x
2 + ω2)s/2, z = (x,ω) ∈ R2d

, s ∈ R.

The partial derivative of a vector x = (x1, . . . , xd) ∈ Rd with respect to xj is denoted
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by ∂j = ∂
∂xj

. Given a multi-index p = (p1, . . . , pd) ≥ 0, i.e., p ∈ Nd
0 and pj ≥ 0,

we write ∂p = ∂p1
1 · · · ∂pd

d and x
p = (x1, . . . , xd)

(p1,...,pd) =
!d

i=1 x
pi
i . Similarly,

h · |x|1/α =
"d

i=1 hi|xi|1/αi . Moreover, for p ∈ Nd
0 and α ∈ Rd

+, we set (p!)α =
(p1!)

α1 . . . (pd!)
αd . In the sequel, a real number r ∈ R+ may play the role of the

vector with constant components rj = r, so for α ∈ Rd
+, by writing α > r we mean

αj > r for all j = 1, . . . , d. By X we denote an open set in Rd
, and K ⋐ X means

that K is compact subset in X .
The Fourier transform is normalized to be

f̂(ω) = Ff(ω) =

#
f(t)e−2πitω

dt.

We use the brackets 〈f, g〉 to denote the extension of the inner product 〈f, g〉 =$
f(t)g(t)dt on L

2(Rd) to the dual pairing between a test function space A and its
dual A′: 〈·, ·〉 = A′〈·, ·〉A. We use the standard notation for usual spaces of func-
tions and distributions, e.g. Lp(Rd), Lp

loc(Ω), 1 ≤ p ≤ ∞, denote Lebesgue spaces
and their local versions respectively, S(Rd) denotes the Schwartz space of rapidly
decreasing test functions, etc.

Translation and modulation operators, T and M respectively, when acting on
f ∈ L

2(Rd) are defined by

Txf(·) = f(·− x) and Mξf(·) = e
2πiξ·

f(·), x ∈ Rd
. (1.1)

Then for f, g ∈ L
2(Rd) the following relations hold:

MyTx = e
2πix·y

TxMy, (Txf )̂ = M−xf̂ , (Mxf )̂ = Txf̂ , x, y ∈ Rd
.

These operators are extended to other spaces of functions and distributions in a natu-
ral way.

Throughout the paper, A ≲ B denotes A ≤ cB for a suitable constant c > 0,
whereas A ≍ B means that c−1

A ≤ B ≤ cA for some c ≥ 1. The symbol B1 ↩→
B2 denotes the continuous and dense embedding of the topological vector space B1

into B2.

1.2. Weights

In general, a weight function is a non-negative function in L
∞
loc.

Definition 1.1. Let ω, v be weight functions. Then

1. v is called submultiplicative if

v(x+ y) ≤ v(x)v(y), ∀ x, y ∈ Rd;
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2. ω is called v-moderate if

ω(x+ y) ≲ v(x)ω(y), ∀ x, y ∈ Rd
.

For a given submultiplicative weight v the set of all v-moderate weights will be de-
noted by Mv.

If v is even and ω ∈ Mv, then 1/v ≲ ω ≲ v, ω ∕= 0 everywhere and 1/ω ∈ Mv.
In the sequel we assume that v is an even submultiplicative function. Submulti-

plicativity implies that v is dominated by an exponential function, i.e.

v ≤ Ce
k| · | for some C, k > 0.

For example, every weight of the form

v(z) = e
s$z$b(1 + ,z,)a logr(e+ ,z,)

for parameters a, r, s ≥ 0, 0 ≤ b ≤ 1 satisfies the above conditions.
Let s > 1. By M{s}(Rd) we denote the set of all weights which are moderate

with respect to a weight v which satisfies v ≤ Ce
k| · |1/s for some positive constants

C and k. The weight v satisfy the Beurling-Domar non-quasi-analyticity condition
which takes the form

∞%

n=0

log v(nx)

n2
< ∞, x ∈ Rd

.

We refer to [17] for a detailed account on weights in time-frequency analysis.

2. Spaces of test functions and their duals

Let (Mp)p∈N0 be a sequence of positive numbers monotonically increasing to
infinity which satisfies:
(M.1) M

2
p ≤ Mp−1Mp+1, p ∈ N;

(M.2) There exist positive constants A,H such that

Mp ≤ AH
p min 0≤q≤pMp−qMq, p, q ∈ N0,

or, equivalently, there exist positive constants A,H such that

Mp+q ≤ AH
p+q

MpMq, p, q ∈ N0;

(M.3)′
"∞

p=1Mp−1/Mp < ∞.

We assume that M0 = 1, and that M1/p
p is bounded below by a positive constant.
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The condition (M.3)′ provides the existence of nontrivial compactly supported
smooth functions (and therefore partitions of unity) in the corresponding spaces of
test functions. It is therefore known as the non-quasianalyticity condition.

The Gevrey sequences Mp = p!s, p ∈ N, s > 1, are basic examples of sequences
which satisfy (M.1)− (M.3)′.

Let (Mp)p∈N0 and (Nq)q∈N0 be sequences which satisfy (M.1). We write Mp ⊂
Nq ((Mp) ≺ (Nq), respectively) if there are constants H,C > 0 (for any H > 0
there is a constant C > 0, respectively) such that Mp ≤ CH

p
Np, p ∈ N0. Also,

(Mp)p∈N0 and (Nq)q∈N0 are said to be equivalent if Mp ⊂ Nq and Nq ⊂ Mp hold.

Remark 2.1. The conditions (M.1) and (M.2) can be described as follows. Let
(sp)p∈N0 be a sequence of positive numbers monotonically increasing to infinity
(sp ↗ ∞) so that for every p, q ∈ N0 there exist A,H > 0 such that

q&

j=1

sp+j = sp+1 · · · sp+q ≤ AH
p
s1 · · · sq = AH

p
q&

j=1

sj . (2.1)

Then the sequence (Sp)p∈N0 given by Sp =
!p

j=1 sj , S0 = 1, satisfies (M.1) and
(M.2).

Conversely, if (Sp)p∈N0 given by Sp =
!p

j=1 sj , sj > 0, j ∈ N, S0 = 1, satisfies
(M.1) then the sequence (sp)p∈N0 increases to infinity. If, in addition, it satisfies
(M.2) then (2.1) holds.

Furthermore, if (Mp)p∈N0 and (Nq)q∈N0 are given by

Mp := p!
1
2

p&

k=0

lk = p!
1
2Lp, p ∈ N0, Nq := q!

1
2

q&

k=0

rk = q!
1
2Rq, q ∈ N0 ,

where (rp)p∈N0 and (lp)p∈N0 are sequences of positive numbers monotonically in-
creasing to infinity such that (2.1) holds with the letter s replaced by r and l respec-
tively, and which satisfy: For every α ∈ (0, 1] and every k > 1 so that kp ∈ N, p ∈ N,

max

'(
rkp

rp

)2

,

(
lkp

lp

)2
*

≤ k
α
, p ∈ N.

Then p! ≺ MpNp and the sequences (Rp)p∈N0 and (Lp)p∈N0 (Rp = r1 · · · rp, Lp =
l1 · · · lp, p ∈ N R0 = 1, and L0 = 1) satisfy (M.1) and (M.2). Moreover,

max{Rp, Lp} ≤ p!α/2, p ∈ N,

for every α ∈ (0, 1]. (For p, q, k ∈ Nd
0 we have L|p| =

!
|k|≤|p| l|k|, and R|q| =!

|k|≤|q| r|q|.) Such sequences are used in the study of localization operators in the
context of quasianalytic spaces in [9].
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The associated function for a given sequence (Mp) is defined by

M(ρ) = sup
p∈N

ln+
ρpM0

Mp
, 0 < ρ < ∞,

where ln+ t := max{ln t, 0}, t > 0. It is a non-negative monotonically increasing
function which vanishes for sufficiently small ρ, and tends to infinity faster than ln ρp,
as ρ → ∞. Moreover, if (Mp) satisfies (M.1) and (M.3)′, then k

p
p!/Mp → 0 as

p → ∞.

For example, the associated function for the Gevrey sequence Mp = p!s, p ∈ N0,
s > 1, behaves at infinity as | · |1/s, cf. [30]. In fact, the interplay between the
defining sequence and its associated function plays an important role in the theory of
ultradistributions.

The following result will be intensively used in this paper. We refer to [1] for its
proof.

Lemma 2.1. Let there be given sequence (Mp) which satisfies (M.1). Then

M

+
n%

k=1

ρk

,
≤

n%

k=1

M(ρk), ρk > 0, k = 1, . . . , n.

If, in addition, (Mp) satisfies (M.2), then

2M(ρ) ≤ M(Hρ) + ln+(A), ρ > 0,

where A and H are the constants in (M.2). Furthermore, if L ≥ 1, then there is a
constant C > 0 such that

M(Lρ) ≤ 3

2
LM(ρ) + C, ρ > 0,

and there is a constant B > 0 and a constant KL > 0 which depends on L, such that

LM(ρ) ≤ M(BL−1ρ) +KL, ρ > 0.

Remark 2.2. By Lemma 2.1, it follows that estimates of the form |f(·)| ≲
e
M(h|·|) for some/every h > 0 and |f(·)| ≲ e

kM(|·|) for some/every k > 0 are
equivalent. This observation will be often used in proofs.

2.1. Gelfand-Shilov spaces

We give here only the basic properties and refer to [15, 29] for a more detailed
discussion and applications in partial differential equations.
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Definition 2.1. Let there be given sequences of positive numbers (Mp)p∈N0 and
(Nq)q∈N0 which satisfy (M.1) and (M.2). Let SNq ,B

Mp,A
(Rd) be defined by

SNq ,B
Mp,A

(Rd) = {f ∈ C
∞(Rd) | ,xα∂β

f,L∞ ≤ CA
α
M|α|B

β
N|β|, ∀α,β ∈ Nd

0},

for some positive constant C, and A = (A1, . . . , Ad), B = (B1, . . . , Bd), A,B > 0.

Gelfand-Shilov spaces ΣNq

Mp
(Rd) and SNq

Mp
(Rd) are projective and inductive limits

of (Fréchet) spaces SNq ,B
Mp,A

(Rd) with respect to A and B:

Σ
Nq

Mp
(Rd) := proj lim

A>0,B>0
SNq ,B
Mp,A

(Rd); SNq

Mp
(Rd) := ind lim

A>0,B>0
SNq ,B
Mp,A

(Rd).

The corresponding dual spaces of ΣNq

Mp
(Rd) and SNq

Mp
(Rd) are the spaces of ultra-

distributions of Beurling and Roumieu type respectively:

(Σ
Nq

Mp
)′(Rd) := ind lim

A>0,B>0
(SNq ,B

Mp,A
)′(Rd);

(SNq

Mp
)′(Rd) := proj lim

A>0,B>0
(SNq ,B

Mp,A
)′(Rd).

Gelfand-Shilov spaces are closed under translation, dilation, multiplication with
x ∈ Rd

, and differentiation. Moreover, they are closed under the action of certain
differential operators of infinite order (ultradifferentiable operators in the terminology
of Komatsu).

Whenever nontrivial, Gelfand-Shilov spaces contain ”enough functions” in the
following sense. A test function space Φ is ”rich enough” if

#
f(x)ϕ(x)dx = 0, ∀ϕ ∈ Φ ⇒ f(x) ≡ 0 (a.e.).

The following theorem enlightens the fundamental properties of Gelfand-Shilov
spaces implicitly contained in their definition. Among other things, it states that the
decay and regularity estimates of f ∈ SNq

Mp
(Rd) can be studied separately.

Theorem 2.1. Let there be given sequences of positive numbers (Mp)p∈N0 and
(Nq)q∈N0 which satisfy (M.1), (M.2) and p! ⊂ MpNp (p! ≺ MpNp, respectively).
Moreover, let M(·) and N(·) denote the associated functions for (Mp)p∈N0 and
(Nq)q∈N0 respectively. Then the following conditions are equivalent:

1. f ∈ SNq

Mp
(Rd) (f ∈ Σ

Nq

Mp
(Rd), respectively).
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2. There exist constants A,B ∈ Rd
, A,B > 0 (for every A,B ∈ Rd

, A,B > 0
respectively), and there exist C > 0 such that

,eM(|Ax|)∂q
f(x),L∞ ≤ CB

q
N|q|, ∀p, q ∈ Nd

0.

3. There exist constants A,B ∈ Rd
, A,B > 0 (for every A,B ∈ Rd

, A,B > 0,
respectively), and there exist C > 0 such that

,xpf(x),L∞ ≤ CA
p
M|p| and ,∂q

f(x),L∞ ≤ CB
q
N|q|, ∀p, q ∈ Nd

0.

4. There exist constants A,B ∈ Rd
, A,B > 0 (for every A,B ∈ Rd

, A,B > 0,
respectively), and there exist C > 0 such that

,xpf(x),L∞ ≤ CA
p
M|p| and ,ωq

f̂(ω),L∞ ≤ CB
q
N|q|, ∀p, q ∈ Nd

0.

5. There exist constants A,B ∈ Rd
, A,B > 0 (for every A,B ∈ Rd

, A,B > 0,
respectively), such that

,f(x)eM(|Ax|) ,L∞ < ∞ and ,f̂(ω) eN(|Bω|),L∞ < ∞.

Theorem 2.1 is proved in [5] and reinvented many times afterwards, see e.g. [8,
19, 25, 29, 33, 45].

By the above characterization FSNq

Mp
(Rd) = SMp

Nq
(Rd). When Mp = Nq we

put SMp

Mp
(Rd) = S{Mp}(Rd), and Σ

Mp

Mp
(Rd) = S(Mp)(Rd). Moreover, the Fourier

transform F extends to a homeomorphism on (S{Mp})′(Rd) and on (S(Mp))′(Rd) in
a usual way.

Next we discuss the important case when (Mp)p∈N0 and (Nq)q∈N0 are chosen to
be the Gevrey sequences Mp = p!r, p ∈ N0 and Nq = q!s, q ∈ N0, for some r, s ≥ 0,
then we use the notation

SNq

Mp
(Rd) = Ss

r (Rd) and Σ
Nq

Mp
(Rd) = Σs

r(Rd).

If, in addition, s = r, then we put

S{s}(Rd) = Ss
s (Rd) and Σ(s)(Rd) = Σs

s(Rd).

The choice of Gevrey sequences is the most often used choice in the literature
since it serves well in different contexts. For example, when discussing nontriviality
of Gelfand-Shilov spaces we have the following:
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1. the space Ss
r (Rd) is nontrivial if and only if s+r > 1, or s+r = 1 and sr > 0,

2. if s+ r ≥ 1 and s < 1, then every f ∈ Ss
r (Rd) can be extended to the complex

domain as an entire function,

3. if s+ r ≥ 1 and s = 1, then every f ∈ Ss
r (Rd) can be extended to the complex

domain as a holomorphic function in a strip {x + iy ∈ Cd : |y| < T} some
T > 0

4. the space Σs
r(Rd) is nontrivial if and only if s + r > 1, or, if s + r = 1 and

sr > 0 and (s, r) ∕= (1/2, 1/2).

We refer to [15] or [29] for the proof in the case of Ss
r (Rd), and to [31] for the

spaces Σs
r(Rd), see also [46].

The discussion here above shows that Gelfand-Shilov classes Ss
r (Rd) consist of

quasi-analytic functions when s ∈ (0, 1). This is in a sharp contrast with e.g. Gevrey
classes Gs(Rd), s > 1, another family of functions commonly used in regularity the-
ory of partial differential equations, whose elements are always non-quasi-analytic.
Recall, for 1 < s < ∞ and an open set X ∈ Rd the Gevrey class Gs(X) is given by

G
s(X) = {φ ∈ C

∞(X) | (∀K ⋐ X)(∃C > 0)(∃h > 0)

sup
x∈K

|∂αφ(x)| ≤ Ch
|α||α|!s}.

We refer to [39] for microlocal analysis in Gervey classes and note that

G
s
0(Rd) ↩→ Ss

s (Rd) ↩→ G
s(Rd), s > 1.

When the spaces are nontrivial we have the inclusions:

Σs
r(Rd) ↩→ Ss

r (Rd) ↩→ S(Rd),

and S(Rd) can be revealed as the limiting case of spaces Ss
r(Rd), i.e.

S(Rd) = S∞
∞ (Rd) = lim

s,r→∞
Ss
r (Rd),

when the passage to the limit when s and r tend to infinity is interpreted correctly,
see [15, page 169].

Remark 2.3. Note that Σ1/2
1/2(R

d) = {0} and Σs
s(Rd) is dense in the Schwartz

space whenever s > 1/2. One may consider a ”fine tuning”, that is the spaces
Σ
Nq

Mp
(Rd) such that

{0} = Σ
1/2
1/2(R

d) ↩→ Σ
Nq

Mp
(Rd) ↩→ SNq

Mp
(Rd) ↩→ Σs

s(Rd), s > 1/2,

see also Remark 2.1.
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We refer to [47] where it is shown how to overcome the minimality condition
(Σ1/2

1/2(R
d) = 0) by transferring the estimates for ,xα∂β

f,L∞ into the estimates of
the form ,HN

f,L∞ ≲ h
N (N !)2s, for some (for every ) h > 0, where H = |x|2−∆

is the harmonic oscillator.
We also mention that the Gelfand-Shilov space of analytic functions S(1)(Rd) :=

Σ1
1(Rd) plays a prominent role in the theory since it is isomorphic to the Sato test

function space for the space of Fourier hyperfunctions. More precisely, if f ∈
S(1)(Rd) then it can be extended to a holomorphic function f(x + iy) in the strip
{x+ iy ∈ Cd : |y| < T} for some T > 0. According to Theorem 2.1, we have

f ∈ S(1)(Rd) ⇐⇒ sup
x∈Rd

|f(x)eh·|x|| < ∞ and sup
ω∈Rd

|f̂(ω)eh·|ω|| < ∞,

for every h > 0. This representation is used to establish an isomorphism between its
dual space (S(1))′(Rd) and the space of Fourier hyperfunctions, see [4] for details.

Already in [15] it is shown that the Fourier transform is a topological isomor-
phism between Ss

r (Rd) and Sr
s (Rd) (F(Ss

r ) = Sr
s ), which extends to a continuous

linear transform from (Ss
r )

′(Rd) onto (Sr
s )

′(Rd). In particular, if s = r and s ≥ 1/2

then F(Ss
s )(Rd) = Ss

s (Rd), and S1/2
1/2 (R

d) is the smallest non-empty Gelfand-Shilov
space invariant under the Fourier transform, cf. [45, Remark 1.2]. Similar assertions
hold for Σs

r(Rd).

2.2. Test function spaces on open sets

Since we are interested in non-quasianalytic classes, we restrict our intention to
the sequences which satisfy (M.1) − (M.3)′, and refer to [26] for a more general
setting.

Definition 2.2. Let there be given a sequence (Mp), p ∈ Nd
, which satisfies

(M.1) − (M.3)′ and let X be an open set in Rd. For a given compact set K ⊂ X

and a constant A > 0 we denote by EMp

A,K(X) the space of all ϕ ∈ C
∞(X) such that

the norm

,ϕ,Mp,A,K = sup
p∈Nn

0

sup
x∈K

A
|p|

Mp
|ϕ(p)(x)| < ∞. (2.2)

Note that , · ,Mp,A,K is a norm in EMp

A,K(X).
The space of functions ϕ ∈ C

∞(X) such that (2.2) holds and suppϕ ⊆ K is
denoted by DMp

A (K).
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Let (Kn)n be a sequence of compact sets such that Kn ⊂⊂ Kn+1 and
-

Kn =
X . Then

E(Mp)(X) = proj lim
n→∞

(proj lim
A→∞

EMp

A,Kn
)(X),

E{Mp}(X) = proj lim
n→∞

(ind lim
A→0

EMp

A,Kn
)(X),

D(Mp)(X) = ind lim
n→∞

(proj lim
A→∞

DMp

A (Kn))

= ind lim
n→∞

(D(Mp)
Kn

),

D{Mp}(X) = ind lim
n→∞

(ind lim
A→0

DMp

A (Kn))

= ind lim
n→∞

(D{Mp}
Kn

).

Obviously, D(Mp)(X) (D{Mp}(X) resp.) is the subspace of E(Mp)(X) (of E{Mp}(X)
resp.) whose elements are compactly supported.

Remark 2.4. Let ∗ denote (Mp) or {Mp}. Then D∗, S∗ and E∗ correspond to
C

∞
0 , S and C

∞, respectively, and

D∗ ⊆ C
∞
0 , S∗ ⊆ S and E∗ ⊆ C

∞
.

The spaces of linear functionals over D(Mp)(X) and D{Mp}(X), denoted by
(D(Mp))′(X) and (D{Mp})′(X) respectively, are called the spaces of ultradistribu-
tions of Beurling and Roumieu type respectively, while the spaces of linear func-
tionals over E(Mp)(X) and E{Mp}(X), denoted by (E(Mp))′(X) and (E{Mp})′(X),
respectively are called the spaces of ultradistributions of compact support of Beurl-
ing and Roumieu type respectively. Clearly,

(E{Mp})′(X) ⊆ (E(Mp))′(X), (E(Mp))′(X) ⊆ (E(Mp))′(Rd) and

(E{Mp})′(X) ⊆ (E{Mp})′(Rd).

Moreover,

(E{Mp})′(Rd) ⊆ (S{Mp})′(Rd) ⊆ (D{Mp})′(Rd)

and

(E(Mp))′(Rd) ⊆ (S(Mp))′(Rd) ⊆ (D(Mp))′(Rd).
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Any ultra-distribution with compact support can be viewed as an element of
(S(1))′(Rd). More generally, by using similar reasoning as in the case of distri-
butions (see [20]), it follows that E∗ are exactly those elements in S∗ or D∗ with
compact support.

The following fact follows from the Paley-Wiener type theorems which can be
found e.g. in [26].

Theorem 2.2. Let there be given a sequence (Mp), p ∈ Nd
, which satisfies

(M.1) − (M.3)′ and let K be a compact convex set in Rd. Then ϕ ∈ D(Mp)
K (ϕ ∈

D{Mp}
K resp.) if and only if for every h > 0 there is a constant C > 0 (there are

constants h > 0 and C > 0 resp.) such that

|ϕ̂(ξ)| ≤ Ce
−hM(|ξ|)

, ξ ∈ Rd
.

3. Wave-front sets in weighted Fourier-Lebesgue spaces

Although in principle both Beurling and Roumieu cases could be treated simul-
taneously (as we did in Section 2.), in order to simplify the exposition, from now on
we will treat the Beurling case only. See also [23] for a discussion related to a slight
difference between the cases.

Throughout the section {Mp} will always denote a sequence satisfies (M.1) −
(M.3)′ and M(ρ) denotes its associated function. For the notational convenience,
the set of weights ω moderated with respect to the weight eM(ρ) will be denoted by
MM(ρ)(Rd) (instead of a more cumbersome notation MeM(ρ)(Rd)).

Let q ∈ [1,∞] and let ω ∈ MM(ρ)(Rd). The (weighted) Fourier Lebesgue space
FL

q
(ω)(R

d) is the inverse Fourier image of Lq
(ω)(R

d), i. e. FL
q
(ω)(R

d) consists of all

f ∈ (S(1))′(Rd) such that

,f,FLq
(ω)

≡ , .f · ω,Lq .

is finite. If ω = 1, then the notation FL
q is used instead of FL

q
(ω). We note that if

ω(ξ) = 〈ξ〉s, then FL
q
(ω) is the Fourier image of the Bessel potential space H

p
s .

Remark 3.1. We may permit an x dependency for the weight ω in the definition
of Fourier Lebesgue spaces. More precisely, for each ω ∈ MM(ρ)(R2d) we let FL

q
(ω)

be the set of all ultradistributions f such that

,f,FLq
(ω)

≡ , .f ω(x, · ),Lq

is finite. Since ω is eM(ρ)-moderate it follows that different choices of x give rise to
equivalent norms, hence ,f,FLq

(ω)
< ∞ is independent of x. Therefore, a FL

q
(ω)(R

d)

is independent of x although , · ,FLq
(ω)

might depend on x.
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Next we introduce local Fourier-Lebesgue spaces of ultradistributions related to
the given sequence {Mp}. Let X be an open set in Rd and let ω ∈ MM(ρ)(Rd). The
local Fourier Lebesgue space FL

q
(ω),loc(X) consists of all f ∈ (S(1))′(Rd) such that

ϕf ∈ FL
q
(ω)(R

d) for each ϕ ∈ D(Mp)(X). It is a Fréchet space under the topology

given by the family of seminorms f 6→ ,ϕf,FLq
(ω)

, where ϕ ∈ D(Mp)(X), and the
following simple properties hold.

Lemma 3.1. Let there be given a sequence {Mp} with the associate function
M(ρ), ρ > 0. Let X be an open set in Rd and ω ∈ MM(ρ)(Rd). Then

FL
q
(ω)(R

d) ⊆ FL
q
(ω),loc(R

d) ⊆ FL
q
(ω),loc(X). (3.1)

Furthermore, let q1, q2 ∈ [1,∞] and ω1,ω2 ∈ MM(ρ)(Rd). Then

FL
q1
(ω1),loc

(X) ⊆ FL
q2
(ω2),loc

(X), when q1 ≤ q2 and ω2 ≲ ω1. (3.2)

PROOF. If f ∈ FL
q
(ω)(R

d) and if ϕ ∈ D(Mp)(X), then Young’s inequality gives

,ϕf,FLq
(ω)

= ,F(ϕf)ω,Lq = (2π)−d/2,(.ϕ ∗ .f )ω,Lq

≲ ,|.ϕ e
M(·)| ∗ | .f ω|,Lq ≲ , .f ω,Lq = ,f,FLq

(ω)
,

if ,.ϕ e
M(·),L1 is finite. Since ϕ ∈ D(Mp)(X), from Theorem 2.2 and Remark 2.2 it

follows that for every N > 0 we have

|.ϕ(ξ)eM(ξ)| ≲ e
−(N+1)M(ξ)

e
M(ξ) = e

−NM(ξ)
. (3.3)

Therefore, ,.ϕeM(·),Lp < ∞ for every p ∈ [1,∞], and (3.1) is proved.
It remains to prove (3.2). The inclusion in (3.2) is clear when q1 = q2 and

ω2 ≲ ω1. It remains to show that FL
q
(ω),loc increases with respect to q. Assume,

without any loss of generality, that f ∈ (E(Mp))′(X), and that ϕ ∈ D(Mp)(Rd)
is such that ϕ ≡ 1 in the neighborhood of supp f . Choose p ∈ [1,∞] such that
1/q1 + 1/p = 1/q2 + 1. Then, for a e

M(·)-moderate weight ω, it follows from
Young’s inequality that

,f,FL
q2
(ω)

≲ ,(.ϕ ∗ .f )ω,Lq2 ≲ ,.ϕeM(·),Lp, .fω,Lq1 = C,f,FL
q1
(ω)

,

for some constant C, and the result follows.
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Next we extend the definition of wave-front sets of Fourier-Lebesgue type given
in [22, 35, 36].

Let {Mp} satisfy (M.1) − (M.3)′ and let M(ρ) denote its associated function.
Furthermore, let q ∈ [1,∞], and Γ ⊆ Rd \0 be an open cone. If f ∈ (S(1))′(Rd) and
ω ∈ MM(ρ)(R2d), then we define

|f |FLq,Γ
(ω)

= |f |FLq,Γ
(ω),x

≡
/#

Γ
| .f(ξ)ω(x, ξ)|q dξ

01/q
(3.4)

(with obvious interpretation when q = ∞). We note that | · |FLq,Γ
(ω),x

defines a semi-

norm on (S(1))′(Rd) which might attain the value +∞. Since ω is eM(ρ)-moderate
it follows that different x ∈ Rd gives rise to equivalent semi-norms |f |FLq,Γ

(ω),x
, see

Remark 3.1. Furthermore, if Γ = Rd\0, f ∈ FL
q
(ω)(R

d) and q < ∞, then |f |FLq,Γ
(ω),x

agrees with the Fourier Lebesgue norm ,f,FLq
(ω),x

of f .
For the sake of notational convenience we set

B = FL
q
(ω) = FL

q
(ω)(R

d), and | · |B(Γ) = | · |FLq,Γ
(ω),x

. (3.5)

We let ΘB(f) = ΘFLq
(ω)

(f) be the set of all ξ ∈ Rd \ 0 such that |f |B(Γ) < ∞, for

some open conical neighborhood Γ = Γξ of ξ. We also let ΣB(f) be the complement
of ΘB(f) in Rd \ 0. Then ΘB(f) and ΣB(f) are open respectively closed subsets in
Rd \ 0, which are independent of the choice of x ∈ Rd in (3.4).

Definition 3.1. Let there be given a sequence {Mp} which satisfies (M.1) −
(M.3)′ and let M(ρ) be its associated function. Furthermore, let q ∈ [1,∞], B be as
in (3.5), and let X be an open subset of Rd. If ω ∈ MM(ρ)(R2d), then the wave-front
set of f ∈ (D∗)′(X), WFB(f) ≡ WFFLq

(ω)
(f) with respect to B consists of all pairs

(x0, ξ0) in X × (Rd \ 0) such that ξ0 ∈ ΣB(ϕf) holds for each ϕ ∈ D(Mp)(X) such
that ϕ(x0) ∕= 0.

The set WFB(f) is a closed set in Rd × (Rd \ 0), since it is obvious that its
complement is open. We also note that if x ∈ Rd is fixed and ω0(ξ) = ω(x, ξ), then
WFB(f) = WFFLq

(ω0)
(f), since ΣB is independent of x.

The following theorem shows that wave-front sets with respect to FL
q
(ω) satisfy

appropriate micro-local properties. It also shows that such wave-front sets are de-
creasing with respect to the parameter q, and increasing with respect to the weight ω.

Theorem 3.1. Let there be given a sequence {Mp} which satisfy (M.1)−(M.3)′

and let M(ρ) be its associated function. Furthermore, let q, r ∈ [1,∞], X be an open
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set in Rd and ω,ϑ ∈ MM(ρ)(R2d) be such that

r ≤ q, and ω(x, ξ) ≲ ϑ(x, ξ).

Also let B be as in (3.5) and put B0 = FL
r
(ϑ)(R

d). If f ∈ (D(Mp))′(X) and ϕ ∈
D(Mp)(X) then

WFB(ϕ f) ⊆ WFB0(f).

PROOF. When Mp = p!s, s > 1, we recover [22, Theorem 2.1]. In fact, the more
general situation when {Mp} is an arbitrary sequence which satisfies (M.1)−(M.3)′

can be proved by using the idea of the proof of [22, Theorem 2.1] as follows.
By the definition it is sufficient to prove

ΣB(ϕf) ⊆ ΣB0(f)

when ϕ ∈ D(Mp)(X), ϑ = ω and f ∈ (E(Mp))′(Rd), since the statement only
involves local assertions. For the same reasons we may assume that ω(x, ξ) = ω(ξ)
is independent of x. We prove the assertion for r ∈ [1,∞), and leave the case r = ∞
to the reader.

By using the idea of the proof of [39, Theorem 1.6.1] we conclude that if f ∈
(E(Mp))′(Rd) then there exists N0 > 0 such that | .f(ξ)ω(ξ)| ≲ e

N0M(|ξ|).
Choose open cones Γ1 and Γ2 in Rd such that Γ2 ⊆ Γ1. It is enough to prove that

for every N > 0, there exist CN > 0 such that

|ϕf |B(Γ2) ≤ CN

/
|f |B0(Γ1) + sup

ξ∈Rd

1
| .f(ξ)ω(ξ)|e−NM(|ξ|)2

0
(3.6)

when Γ2 ⊆ Γ1.

Since ω ∈ MM(ρ)(Rd) by letting F (ξ) = | .f(ξ)ω(ξ)| and ψ(ξ) = |.ϕ(ξ)|eM(|ξ|)

we have

|ϕf |B(Γ2) =
/#

Γ2

|F(ϕf)(ξ)ω(ξ)|q dξ
01/q

≲
/#

Γ2

/#

Rd

ψ(ξ − η)F (η) dη
0q

dξ
01/q

≲ J1 + J2,

where

J1 =
/#

Γ2

/#

Γ1

ψ(ξ − η)F (η) dη
0q

dξ
01/q

,

J2 =
/#

Γ2

/#

∁Γ1

ψ(ξ − η)F (η) dη
0q

dξ
01/q

.
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Let q0 be chosen such that 1/r0+1/r = 1+1/q, and let χΓ1 be the characteristic
function of Γ1. Then Young’s inequality gives

J1 ≤
/#

Rd

/#

Γ1

ψ(ξ − η)F (η) dη
0q

dξ
01/q

= ,ψ ∗ (χΓ1F ),Lq ≤ ,ψ,Lr0,χΓ1F,Lr = Cψ|f |B0(Γ1),

where Cψ = ,ψ,Lq0 < ∞.
To estimate J2, we note that since ϕ ∈ D(Mp)(X), then by Theorem 2.2 it follows

that for every N > 0 there exist CN > 0 such that

ψ(ξ) = |.ϕ(ξ)| eM(|ξ|) ≤ CNe
−(N+1)M(|ξ|)

e
M(|ξ|) ≤ CNe

−NM(|ξ|)
. (3.7)

Furthermore, Γ2 ⊆ Γ1 implies that

|ξ − η| > 2cmax(|ξ|, |η|)

≥ c(|ξ|+ |η|), ξ ∈ Γ2, η /∈ Γ1 (3.8)

holds for some constant c > 0, since this is true when 1 = |ξ| ≥ |η|. Now, a
combination of Lemma 2.1, (3.7) and (3.8) (together with the monotone increasing
property of M(ρ)) implies that for every N1 > 0 we have

ψ(ξ − η) ≲ Ce
−2N1(M(|ξ|)+M(|η|))

,

which gives

J2 ≲
/#

Γ2

/#

∁Γ1

e
−2N1(M(|ξ|)+M(|η|))

F (η) dη
0r

dξ
01/r

≲
/#

Γ2

/#

∁Γ1

e
−2N1(M(|ξ|)+M(|η|))

e
N1M(|η|)(e−N1M(|η|)

F (η)) dη
0r

dξ
01/r

≲ sup
η∈Rd

|e−N1M(|η|)
F (η))|.

This implies (3.6) and the proof is finished.

3.1. Comparisons to other types of wave-front sets

Let ω ∈ Mv(R2d) be moderated with respect to the weight v of a polynomial
growth at infinity, and let f ∈ D′(X). Then the wave frpont set WFFLq

(ω)
(f) in Def-

inition 3.1 agrees with the wave-front set introduced in [36, Definition 3.1]. There-
fore, the information on regularity in the background of wave-front sets of Fourier-
Lebesgue type in Definition 3.1 might be compared to the information obtained from
the classical wave-front sets, cf. Example 4.9 in [36].
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Next we compare the wave-front sets introduced in Definition 3.1 to the wave-
front sets in spaces of ultradistributions given in [20, 32, 39].

Let s > 1 and let X be an open subset of Rd. The ultradistribution f ∈
(D(s))′(X) (f ∈ (D{s})′(X)) is (s)-micro-regular ({s}-micro-regular) at (x0, ξ0)
if there exists ϕ ∈ D(s)(X) (ϕ ∈ D{s}(X)) such that ϕ(x) = 1 in a neighborhood
of x0 and an open cone Γ which contains ξ0 such that

|F(ϕf)(ξ)| ≲ e
−N |ξ|1/s

, ξ ∈ Γ,

for each N > 0 (for some N > 0). The (s)-wave-front set ({s}-wave-front set) of f ,
WF(s)(f) (WF{s}(f)) is defined as the complement in X × Rd \ 0 of the set of all
(x0, ξ0) where f is (s)-micro-regular ({s}-micro-regular), cf. [39, Definition 1.7.1].

The {s}-wave-front set WF{s}(f) can be found in [32] and it coincides with
certain wave-front set WFL(f) introduced in [20, Chapter 8.4].

Next we modify the definitions from [36, 22].
Let there be given a sequence {Mp} which satisfy (M.1)− (M.3)′ and let M(ρ)

be its associated function. Furthermore, let ωj ∈ MM(ρ)(R2d), qj ∈ [1,∞] when j

belongs to some index set J , and let B be the array of spaces, given by

(Bj) ≡ (Bj)j∈J , where Bj = FL
qj
(ωj)

= FL
qj
(ωj)

(Rd), j ∈ J. (3.9)

If f ∈ (D(Mp))′(Rd), and (Bj) is given by (3.9), then we let Θsup
(Bj)

(f) be the set

of all ξ ∈ Rd \ 0 such that for some Γ = Γξ and each j ∈ J it holds |f |Bj(Γ) < ∞.
We also let Θinf

(Bj)
(f) be the set of all ξ ∈ Rd \ 0 such that for some Γ = Γξ and

some j ∈ J it holds |f |Bj(Γ) < ∞. Finally we let Σsup
(Bj)

(f) and Σinf
(Bj)

(f) be the

complements in Rd \ 0 of Θsup
(Bj)

(f) and Θinf
(Bj)

(f) respectively.

Definition 3.2. Let there be given a sequence {Mp} which satisfy (M.1)−(M.3)′

and let M(ρ) be its associated function. Furthermore, let J be an index set, qj ∈
[1,∞], ωj ∈ MM(ρ)(R2d) when j ∈ J , (Bj) be as in (3.9), and let X be an open
subset of Rd.

1. The wave-front set of f ∈ (D(Mp))′(X), of sup-type with respect to (Bj),
WF sup

(Bj)
(f), consists of all pairs (x0, ξ0) in X × (Rd \ 0) such that ξ0 ∈

Σsup
(Bj)

(ϕf) holds for each ϕ ∈ D(Mp)(X) such that ϕ(x0) ∕= 0;

2. The wave-front set of f ∈ (D(Mp))′(X), of inf-type with respect to (Bj),
WF inf

(Bj)
(f) consists of all pairs (x0, ξ0) in X × (Rd \ 0) such that ξ0 ∈

Σinf
(Bj)

(ϕf) holds for each ϕ ∈ D(Mp)(X) such that ϕ(x0) ∕= 0.
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Now we are ready to rewrite the classical Gevrey wave-front sets WF{s}(f) and
WF(s)(f) in terms of wave-front sets introduced in Definition 3.2.

Proposition 3.1. [22] Let s > 1, and let Bj be the same as in (3.9) with qj ∈
[1,∞] and ωj(ξ) ≡ e

j|ξ|1/s . Then the following is true:

1. if f ∈ (D{s})′(Rd), then

WF inf
(Bj)

(f) =
3

j>0

WFBj (f) = WF{s}(f) ⊆ WF(s)(f);

2. if f ∈ (D(s))′(Rd), then

WF(s)(f) =
4

j>0

WFBj (f) ⊆ WF sup
(Bj)

(f).

Remark 3.2. We recall that if f ∈ D′(Rd), and ωj(x, ξ) = 〈ξ〉j for j ∈ J = N,
then it follows that WF sup

(Bj)
(f) in Definition 3.2 is equal to the standard wave front

set WF(f) in Chapter VIII in [20].

3.2. Convolution

We finish the section by recalling that the convolution properties, valid for stan-
dard wave-front sets of Hörmander type, also hold for the wave-front sets of Fourier
Lebesgue types, see [37, 38] for related results in the framework of tempered distri-
butions. More generally, the following convolution result holds true.

Theorem 3.2. Let there be given a sequence {Mp} which satisfy (M.1)−(M.3)′

and let M(ρ) be its associated function. Furthermore, let q, q1, q2 ∈ [1,∞] and let
ω,ω1,ω2 ∈ MM(ρ)(Rd) satisfy

1

q1
+

1

q2
=

1

q
and ω(ξ) ≲ ω1(ξ)ω2(ξ).

Then the convolution map (f1, f2) 6→ f1 ∗ f2 from S(1)(Rd)× S(1)(Rd) to S(1)(Rd)
extends to a continuous mapping from FL

q1
(ω1)

(Rd) × FL
q2
(ω2)

(Rd) to FL
q
(ω)(R

d).
This extension is unique if q1 < ∞ or q2 < ∞.

If f1 ∈ FL
q1
(ω1),loc

(Rd), f2 ∈ (D(Mp))′(Rd) and f1 or f2 have compact supports,
then

WFFLq
(ω)

(f1 ∗ f2) ⊆ { (x+ y, ξ) ; x ∈ supp f1 and (y, ξ) ∈ WFFL
q2
(ω2)

(f2) }.
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The proof is omitted, since the arguments for the first part of Theorem are the
same as in the proof of [37, Lemma 2.1], taking into account that S(1) is dense in
FL

q
(ω) when q < ∞. The second part of Theorem 3.2 can be proved in the same way

as [23, Theorem 2.2].

4. Modulation Spaces

In this section we first recall the action of the short-time Fourier transform on
Gelfand-Shilov spaces and their dual spaces, and then proceed with modulation spaces
and their properties. Since the short-time Fourier transform gives a phase-space de-
scription of a function or distribution, we first extend Definition 2.1.

Definition 4.1. Let there be given sequences of positive numbers (Mp)p∈N0 ,
(Nq)q∈N0 , (M̃p)p∈N0 , (Ñq)q∈N0 which satisfy (M.1) and (M.2).

We define SNq ,Ñq ,B

Mp,M̃p,A
(R2d) to be the set of smooth functions f ∈ C

∞(R2d) such
that

,xα1ωα2∂β1
x ∂β2

ω f,L∞ ≤ CA
|α1+α2|M|α1|M̃|α2|B

|β1+β2|N|β1|Ñ|β2|,

∀α1,α2,β1,β2 ∈ Nd
0},

and for some A,B,C > 0. Gelfand-Shilov spaces are projective and inductive limits

of SNq ,Ñq ,B

Mp,M̃p,A
(R2d):

Σ
Nq ,Ñq

Mp,M̃p
(R2d) := proj lim

A>0,B>0
SNq ,Ñq ,B

Mp,M̃p,A
(R2d);

SNq ,Ñq

Mp,M̃p
(R2d) := ind lim

A>0,B>0
SNq ,Ñq ,B

Mp,M̃p,A
(R2d).

Clearly, the corresponding dual spaces are given by

(Σ
Nq ,Ñq

Mp,M̃p
)′(R2d) := ind lim

A>0,B>0
(SNq ,Ñq ,B

Mp,M̃p,A
)′(R2d);

(SNq ,Ñq

Mp,M̃p
)′(R2d) := proj lim

A>0,B>0
(SNq ,Ñq ,B

Mp,M̃p,A
)′(R2d).

By Theorem 2.1, the Fourier transform is a homeomorphism from Σ
Nq ,Ñq

Mp,M̃p
(R2d)

to Σ
Mp,M̃p

Nq ,Ñq
(R2d) and, if F1f denotes the partial Fourier transform of f(x,ω) with

respect to the x variable, and if F2f denotes the partial Fourier transform of f(x,ω)
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with respect to the ω variable, then F1 and F2 are homeomorphisms from Σ
Nq ,Ñq

Mp,M̃p
(R2d)

to Σ
Nq ,M̃p

Mp,Ñq
(R2d) and Σ

Nq ,M̃p

Mp,Ñq
(R2d), respectively. Similar facts hold when Σ

Nq ,Ñq

Mp,M̃p
(R2d)

is replaced by SNq ,Ñq

Mp,M̃p
(R2d), (ΣNq ,Ñq

Mp,M̃p
)′(R2d) or (SNq ,Ñq

Mp,M̃p
)′(R2d).

When Mp = M̃p and Nq = Ñq we use usual abbreviated notation: SNq

Mp
(R2d) =

SNq ,Ñq

Mp,M̃p
(R2d) and similarly for other spaces.

4.1. Short-time Fourier transform

Let (Mp)p∈N0 satisfy (M.1) and (M.2). For any given f, g ∈ SMp

Mp
(Rd) (f, g ∈

Σ
Mp

Mp
(Rd), respectively) the short-time Fourier transform (STFT) of f with respect to

the window g is given by

Vgf(x, ξ) =

#

Rd

f(y) g(y − x) e−2πi〈ξ,y〉
dy = 〈f,MξTxg〉,

where the translations Tx and modulations Mξ are given by (1.1).
The following theorem (and its variations) is a folklore, in particular in the frame-

work of the duality between S(R2d) and S ′
(R2d). For Gelfand-Shilov spaces we

refer to e.g. [19, 42, 44, 46].

Theorem 4.1. Let there be given sequences (Mp)p∈N0 and (Nq)q∈N0 which sat-
isfy (M.1), (M.2) and

{N.1} : (∃H > 0)(∃A > 0) p!1/2 ≤ AH
p
Mp, p ∈ N0.

If f, g ∈ SNq

Mp
(Rd), then Vφf ∈ SNq ,Mp

Mp,Nq
(Rd

d) and extends uniquely to a continuous

map from (SNq

Mp
)′(Rd)× (SMp

Nq
)′(Rd) into (SNq ,Mp

Mp,Nq
)′(R2d).

Conversely, if Vφf ∈ SNq ,Mp

Mp,Nq
(Rd

d) then f, g ∈ SNq

Mp
(Rd).

Next, assume that (Mp)p∈N0 and (Nq)q∈N0 satisfy (M.1), (M.2) and

(N.1) : (∀H > 0)(∃A > 0) p!1/2 ≤ AH
p
Mp, p ∈ N0.

If f, g ∈ Σ
Nq

Mp
(Rd), then Vφf ∈ Σ

Nq ,Mp

Mp,Nq
(Rd) and extends uniquely to a continu-

ous map from (Σ
Nq

Mp
)′(Rd)× (Σ

Mp

Nq
)′(Rd) into (Σ

Nq ,Mp

Mp,Nq
)′(R2d).

Conversely, if Vφf ∈ Σ
Nq ,Mp

Mp,Nq
(Rd

d) then f, g ∈ Σ
Nq

Mp
(Rd).
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The conditions {N.1} and (N.1) are taken from [28] where they are called non-
triviality conditions for the spaces SMp

Mp
(Rd) and Σ

Mp

Mp
(Rd) respectively, see also [27].

We will also need the following proposition when proving that the wave-front
sets of Fourier-Lebesgue and modulation space types are the same. The first part is
an extension of [8, Proposition 4.2].

Proposition 4.1. Let {Mp} satisfies (M.1) − (M.3)′ and let M(ρ) denotes its
associated function. Then the following is true:

1. if f ∈ (E(Mp))′(Rd) and φ ∈ S(Mp)(Rd), then

|Vφf(x, ξ)| ≲ e
−hM(|x|)

e
εM(|ξ|)

,

for some ε > 0 and for every h > 0;

2. if f ∈ (D(Mp))′(Rd) and φ ∈ D(Mp)(Rd) \ 0, then f ∈ (E(Mp))′(Rd), if and
only if suppVφf ⊆ K × Rd for some compact set K, and then

|Vφf(x, ξ)| ≲ e
εM(|ξ|)

,

for some ε > 0.

PROOF. We only prove (1) and (3). The other statements follow by similar argu-
ments and are left for the reader. As before, we will use Remark 2.2 in our calcula-
tions. Recall, f ∈ (E(Mp))′(Rd) implies that

| .f(ξ)| ≲ e
εM(|ξ|)

,

for some ε > 0, cf. [39, Theorem 1.6.1].
For φ ∈ S(Mp)(Rd) and ψ ∈ D(Mp)(Rd) such that ψ = 1 in supp f by Theorem

4.1, Lemma 2.1 and Remark 2.2 it follows that

|Vψφ(x, ξ)| ≲ e
−hM(|x|)−kM(|ξ|)

,

for every h, k > 0. Now straight-forward calculations give

|Vφf(x, ξ)| = |(Vφ(ψf))(x, ξ)| ≲ (|Vψφ(x, ·)| ∗ | .f |)(ξ)

=

#
|Vψφ(x, ξ − η)|| .f(η)| dη ≲

#
e
−hM(|x|)−2εM(|ξ−η|)

e
εM(|η|)

dη

≤ e
−hM(|x|)

#
e
−2εM(|η|)+2εM(|ξ|)+εM(|η|)

dη ≲ e
−hM(|x|)+2εM(|ξ|)

,
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and (1) follows.
Next we prove (3). First assume that φ ∈ D(Mp)(Rd) \ 0 and f ∈ (E(Mp))′(Rd).

Since both φ and f have compact support, it follows that supp(Vφf) ⊆ K × Rd.
Furthermore, by slightly modifying the proof of [46, Theorem 2.5] we conclude thay

|Vφf(x, ξ)| ≲ e
ε(M(|x|)+M(|ξ|))

,

for some ε > 0, see also [22, Proposition 3.2]. Since Vφf(x, ξ) has compact support
in the x-variable, it follows that

|Vφf(x, ξ)| ≲ e
εM(|ξ|)

.

For the opposite direction, assume that suppVφf ⊆ K ×Rd, for some compact
set K. Assume that suppφ ⊆ K and choose ϕ ∈ D(s)(Rd) such that suppϕ∩2K =
∅. Then

(f,ϕ) = (,φ,L2)−2(Vφf, Vφϕ) = 0,

which implies that f has compact support. Here the first equality is the Moyal’s
identity (cf. [16]). This implies that f has compact support and the condition f ∈
(D(Mp))′(Rd) now gives f ∈ (E(Mp))′(Rd).

4.2. Modulation spaces and their basic properties

The modulation space norms traditionally measure the joint time-frequency dis-
tribution of f ∈ S ′, we refer, for instance, to [11], [16, Ch. 11-13] and the original
literature quoted there for various properties and applications. It is usually sufficient
to observe modulation spaces with weights which admit at most polynomial growth
at infinity. However the study of ultra-distributions requires a more general approach
that includes the weights of exponential or even superexponential growth, cf. [8, 47].
Note that the general approach introduced already in [11] includes the weights of
sub-exponential growth. We refer to [12, 13] for related but even more general con-
structions, based on the general theory of coorbit spaces.

Depending on the growth of the weight function m, different Gelfand-Shilov
classes may be chosen as fitting test function spaces for modulation spaces, see [8,
42, 47]. The widest class of weights allowing to define modulation spaces is the
weight class N . A weight function m on Rd belongs to N if it is a continuous,
positive function such that

m(z) = o(ecz
2
), for |z| → ∞, ∀c > 0,

with z ∈ Rd. For instance, every function m(z) = e
s|z|b , with s > 0 and 0 ≤ b < 2,

is in N . Thus, the weight m may grow faster than exponentially at infinity. For ex-
ample, the choice m ∈ N \ ∪vMv, when the weights v satisfy the Beurling-Domar
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condition from Introduction, is related to the spaces of quasianalytic functions, [9].
We notice that there is a limit in enlarging the weight class for modulation spaces,
imposed by Hardy’s theorem: if m(z) ≥ Ce

cz2 , for some c > π/2, then the corre-
sponding modulation spaces are trivial [18].

Definition 4.2. Let m ∈ N , and g a non-zero window function in S1/2
1/2 (R

d). For

1 ≤ p, q ≤ ∞ the modulation space M
p,q
m (Rd) consists of all f ∈ (S1/2

1/2 )
′(Rd) such

that Vgf ∈ L
p,q
m (R2d) (weighted mixed-norm spaces). The norm on M

p,q
m is

,f,Mp,q
m

= ,Vgf,Lp,q
m

=

+#

Rd

(#

Rd

|Vgf(x,ω)|pm(x,ω)p dx

)q/p

dω

,1/q

(with obvious changes if either p = ∞ or q = ∞). If p, q < ∞, the modulation
space M

p,q
m is the norm completion of S1/2

1/2 in the M
p,q
m -norm. If p = ∞ or q = ∞,

then M
p,q
m is the completion of S1/2

1/2 in the weak∗ topology.

When f, g ∈ S(1)(Rd), the above integral is convergent thanks to Theorem 4.1.
Namely, for a given m ∈ Mv there exist l > 0 such that m(x,ω) ≤ Ce

l$(x,ω)$ and
therefore

55555

#

Rd

(#

Rd

|Vgf(x,ω)|pm(x,ω)p dx

)q/p

dω

55555

≤ C

55555

#

Rd

(#

Rd

|Vgf(x,ω)|pelp$(x,ω)$ dx
)q/p

dω

55555 < ∞

since by Theorems 4.1 and Theorem 2.1 we have |Vgf(x,ω)| < Ce
−s$(x,ω)$ for

every s > 0. This implies S(1) ⊂ M
p,q
m .

In particular, when m is a polynomial weight of the form m(x,ω) = 〈x〉t〈ω〉s
we will use the notation M

p,q
s,t (Rd) for the modulation spaces which consists of all

f ∈ S ′(Rd) such that

,f,Mp,q
s,t

≡
+#

Rd

(#

Rd

|Vφf(x,ω)〈x〉t〈ω〉s|p dx
)q/p

dω

,1/q

< ∞

(with obvious interpretation of the integrals when p = ∞ or q = ∞).
If p = q, we write M

p
m instead of Mp,p

m , and if m(z) ≡ 1 on R2d, then we write
M

p,q and M
p for Mp,q

m and M
p,p
m , and so on.
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In the next proposition we show that Mp,q
m (Rd) are Banach spaces whose defini-

tion is independent of the choice of the window g ∈ M
1
v \ {0}. In order to do so, we

need the adjoint of the short-time Fourier transform.
For given window g ∈ S(1) and a function F (x, ξ) ∈ L

p,q
m (R2d) we (formally)

define V
∗
g F by

〈V ∗
g F, f〉 := 〈F, Vgf〉.

Proposition 4.2. Let v be a submultiplicative weight. Fix m ∈ Mv and g,ψ ∈
S(1)

, with 〈g,ψ〉 ∕= 0. Then

1. V
∗
g : Lp,q

m (R2d) → M
p,q
m (Rd), and

,V ∗
g F,Mp,q

m
≤ C,Vψg,L1

v
,F,Lp,q

m
.

2. The inversion formula holds: IMp,q
m

= 〈g,ψ〉−1
V

∗
g Vψ, where IMp,q

m
stands for

the identity operator.

3. M
p,q
m (Rd) are Banach spaces whose definition is independent on the choice of

g ∈ S(1) \ {0}.

4. The space of admissible windows can be extended from S(1) to M
1
v .

PROOF. We refer to [8] for the proof which is based on the proof of [16, Propo-
sition 11.3.2.]. Note that in (4) the density of S(1) in M

p,q
m is essential. This fact is

not obvious, and we refer to [6] for the proof. Then we may proceed by using the
standard arguments, cf. [16, Theorem 11.3.7].

The following theorem lists some basic properties of modulation spaces. We refer
to [11, 16, 19, 33, 34, 43, 46] for the proof.

Theorem 4.2. Let p, q, pj , qj ∈ [1,∞] and s, t, sj , tj ∈ R, j = 1, 2. Then:

1. M
p,q
s,t (Rd) are Banach spaces, independent of the choice of φ ∈ S(Rd) \ 0;

2. if p1 ≤ p2, q1 ≤ q2, s2 ≤ s1 and t2 ≤ t1, then

S(Rd) ⊆ M
p1,q1
s1,t1

(Rd) ⊆ M
p2,q2
s2,t2

(Rd) ⊆ S ′(Rd);

3. ∩s,tM
p,q
s,t (R

d) = S(Rd), ∪s,tM
p,q
s,t (R

d) = S ′(Rd);

4. Let 1 ≤ p, q ≤ ∞, and let ws(x,ω) = e
s$(x,ω)$

, x,ω ∈ Rd
. Then

Σ1
1(Rd) = S(1)(Rd) =

3

s≥0

M
p,q
ws

(Rd), (Σ1
1)

′(Rd) =
4

s≥0

M
p,q
1/ws

(Rd),

S1
1 (Rd) = S{1}(Rd) =

4

s>0

M
p,q
ws

(Rd), (S1
1 )

′(Rd) =
3

s>0

M
p,q
1/ws

(Rd).
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5. For p, q ∈ [1,∞), the dual of Mp,q
s,t (Rd) is Mp′,q′

−s,−t(Rd), where 1
p +

1
p′ =

1
q +

1
q′

= 1.

Remark 4.1. In the context of quasianalytic Gelfand-Shilov spaces, we recall (a
special case of) [46, Theorem 3.9]: Let s, t > 1/2 and set

wh(x,ω) ≡ e
h(|x|1/t+|ω|1/s)

, h > 0, x,ω ∈ Rd
.

Then
Σs
t (Rd) =

3

h>0

M
p,q
wh

(Rd), (Σs
t )

′(Rd) =
4

h>0

M
p,q
1/wh

(Rd),

Ss
t (Rd) =

4

h>0

M
p,q
wh

(Rd), (Ss
t )

′(Rd) =
3

h>0

M
p,q
1/wh

(Rd).

Modulation spaces include the following well-know function spaces:

1. M
2(Rd) = L

2(Rd), and M
2
t,0(Rd) = L

2
t (Rd);

2. The Feichtinger algebra: M1(Rd) = S0(Rd);

3. Sobolev spaces: M2
0,s(Rd) = H

2
s (Rd) = {f | f̂(ω)〈ω〉s ∈ L

2(Rd)};

4. Shubin spaces: M2
s (Rd) = L

2
s(Rd) ∩H

2
s (Rd) = Qs(Rd), cf. [41].

5. The invariance property of Wave-front sets

Next we define wave-front sets with respect to modulation spaces and show that
they agree with corresponding wave-front sets of Fourier Lebesgue types. More pre-
cisely, we prove that [36, Theorem 6.1] holds if the weights of polynomial growth
are replaced by more general submultiplicative weights.

Let there be given a sequence {Mp} which satisfies (M.1)−(M.3)′ and let M(ρ)
denote its associated function. Furthermore, let p, q ∈ [1,∞], and Γ ⊆ Rd \ 0 be an
open cone. If f ∈ (S(1))′(Rd) and ω ∈ MM(ρ)(R2d), then we define

|f |B(Γ) = |f |B(φ,Γ) ≡
/#

Γ

/#

Rd

|Vφf(x, ξ)ω(x, ξ)|p dx
0q/p

dξ
01/q

when B = M
p,q
(ω) = M

p,q
(ω)(R

d). (5.1)

We note that |f |B(Γ) = ,f,Mp,q
(ω)

when Γ = Rd \ 0 and φ ∈ S(s)(Rd), and that

|f |B(φ,Γ) might attain +∞.
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Furthermore, when B = M
p,q
(ω), the sets ΘB(f), ΣB(f) and WFB(f) with respect

to the modulation space B are defined in the same way as in Section 3., after replacing
the semi-norms of Fourier Lebesgue types in (3.4) with the semi-norms in (5.1).

Proposition 5.1. Let there be given a sequence of positive numbers (Mp)p∈N0

which satisfies (M.1) − (M.3)′, and let M(ρ), ρ > 0, be its associated function. If
f ∈ (D(Mp))′(Rd) then WFMp,q

(ω)
(f) is independent of p and φ ∈ S(Mp)(Rd) \ 0 in

(5.1) .

PROOF. We may assume that f ∈ (E(Mp))′(Rd) and that ω(x, ξ) = ω(ξ) since
the statements only concern local assertions.

We follow the idea of the proof of [22, Theorem 3,1], and in order to prove
that WFMp,q

(ω)
(f) is independent of φ ∈ S(Mp)(Rd) \ 0, we assume that φ,φ1 ∈

S(Mp)(Rd)\0 and let | · |C1(Γ) be the semi-norm in (5.1) after φ has been replaced by
φ1. Let Γ1 and Γ2 be open cones in Rd such that Γ2 ⊆ Γ1. The asserted independency
of φ follows if we prove that

|f |C(Γ2) ≤ C(|f |C1(Γ1) + 1), (5.2)

for some positive constant C. Let

Ω1 = { (x, ξ) ; ξ ∈ Γ1 } ⊆ R2d and Ω2 = ∁Ω1 ⊆ R2d
,

with characteristic functions χ1 and χ2 respectively, and set

Fk(x, ξ) = |Vφ1f(x, ξ)|ω(ξ)χk(x, ξ), k = 1, 2,

and G = |Vφφ1(x, ξ)e
M(|ξ|)|. Since ω is v-moderate, it follows from [16, Lemma

11.3.3] that
|Vφf(x, ξ)ω(x, ξ)| ≲

1
(F1 + F2) ∗G

2
(x, ξ),

which implies that
|f |C(Γ2) ≲ J1 + J2,

where

Jk =
/#

Γ2

/#

Rd

|(Fk ∗G)(x, ξ)|p dx
0q/p

dξ
01/q

, k = 1, 2.

By Young’s inequality

J1 ≤ ,F1 ∗G,Lp,q
1

≤ ,G,L1,F1,Lp,q
1

= C|f |C1(Γ1),
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where C = ,G,L1 = ,Vφφ1(x, ξ)e
M(|ξ|),L1 < ∞, in view of Proposition 4.1.

Next we consider J2. For ξ ∈ Γ2 fixed and integrating over η ∈ ∁Γ1, it follows
from Propositon 4.1 and Lemma 2.1 that for some ε > 0 and every N, h > 0 we have
that |(F2 ∗G)(x, ξ)| is bounded by

C

##

R2d

e
−NM(|y|)

e
εM(|η|)

e
−h(M(|x−y|)+M(|ξ−η|))

e
M(|ξ−η|)

dydη,

for some constant C > 0. Therefore, there exist a constant c > 0 such that

|(F2 ∗G)(x, ξ)|

≲
##

R2d

e
−NM(|y|)

e
εM(|η|)

e
−hM(|x−y|)−hc(M(|ξ|)+M(|η|))

e
(M(|ξ|)+M(|η|))

dydη

≲ e
(−N+h)M(|x|)

e
(1−hc)M(|ξ|)

##

R2d

e
−hM(|y|)

e
(1+ε−hc)M(|η|)

dydη,

≲ e
(−N+h)M(|x|)

e
(1−hc)M(|ξ|)

< ∞,

since N > 0 and h can be chosen arbitrarily. Therefore

J2 =
/#

Γ2

/#

Rd

|(F2 ∗G)(x, ξ)|p dx
0q/p

dξ
01/q

≲
/#

Γ2

/#

Rd

/
e
(−N+h)M(|x|)

e
(1−hc)M(|ξ|)

0p
dx

0q/p
dξ

01/q
< ∞.

This proves that (5.2), and hence WFC(f) is independent of φ ∈ S(s)(Rd) \ 0.

The main result of this section, Theorem 5.1, now follows from Proposition 5.1
and calculations given in the proof of [22, Theorem 3.1]. For that reason we omit the
proof.

Theorem 5.1. Let there be given a sequence of positive numbers (Mp)p∈N0 which
satisfies (M.1)− (M.3)′, and let M(ρ), ρ > 0 be its associated function. Let p, q ∈
[1,∞] and ω ∈ MM(ρ)(R2d). If f ∈ (D(Mp))′(Rd) then

WFFLq
(ω)

(f) = WFMp,q
(ω)

(f).

Finally, note that for a given sequence of positive numbers (Mp)p∈N0 which sat-
isfies (M.1)− (M.3)′, and its associated function M(ρ), ρ > 0, when p, q ∈ [1,∞],
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ω ∈ MM(ρ)(R2d) and f ∈ (E(Mp))′(Rd), then it follows from the definition of
wave-front sets that then

f ∈ B ⇐⇒ WFB(f) = ∅,

when B is equal to FL
q
(ω) or Mp,q

(ω). In particular, by Theorem 5.1 we obtain

FL
q
(ω) ∩ (E(Mp))′(Rd) = M

p,q
(ω) ∩ (E(Mp))′(Rd),

and we recover Corollary 6.2 in [36], Theorem 2.1 and Remark 4.6 in [40].
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[12] H. G. Feichtinger, K. H. Gröchenig, Banach spaces related to integrable group repre-
sentations and their atomic decompositions, I, J. Funct. Anal. 86 (1989), 307–340.
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60th anniversary of G.V. Milovanović (edited by W. Gautschi, G. Mastroianni, Th.M.
Rassias), pp. 357–376, Springer, 2010.



Wave-front sets in non-quasianalytic setting for Fourier-Lebesgue and modulation spaces 111

[39] L. Rodino, Linear Partial Differential Operators in Gevrey Spaces, World Scientific,
1993.

[40] M. Ruzhansky, M. Sugimoto, N. Tomita, J. Toft, Changes of variables in modulation
and Wiener amalgam spaces, Math. Nachr., 284 (2011), 2078–2092.

[41] M. A. Shubin, Pseudodifferential Operators and Spectral Theory. Springer-Verlag,
Berlin, Second edition, 2001.

[42] N. Teofanov, Ultradistributions and time-frequency analysis, In: Pseudo-differential
Operators and Related Topics, Operator Theory: Advances and Applications (P. Bog-
giatto, L. Rodino, J. Toft, M.W. Wong, eds.), Birkhäuser, 164 (2006), 173–191.
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Novi Sad, Serbia
e-mail: nenad.teofanov@dmi.uns.ac.rs


