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66 M. Kostić

1. Introduction and preliminaries

The theory of generalized almost periodic and generalized almost automorphic
functions is still an active field of research. Composition principles for generalized
almost periodic and generalized almost automorphic functions, sometimes also called
superposition principles, play an important role in the qualitative theory of abstract
semilinear integro-differential equations in Banach spaces (see [7]–[8], [10] and ref-
erences cited therein for more details on the subject). The main aim of this paper is to
consider composition principles for generalized almost periodic functions, only. As
mentioned in the abstract, we focus our attention to the Stepanov p-almost periodic
type functions and Weyl p-almost periodic type functions, where 1  p < 1.

The organization and main ideas of paper are briefly described as follows. In Sub-
section 1.1, we recall the basic definitions and results from the theory of generalized
almost periodic functions. Our first contribution is Theorem 2.1, in which we recon-
sider a recent result of F. Bedouhene, Y. Ibaouene, O. Mellah and P. Raynaud de Fitte
[3, Theorem 3] for the class of Stepanov p-almost periodic functions (see also Theo-
rem 2.3, where we clarify a related result for the class of generalized Weyl p-almost
periodic functions in the sense of Kovanko’s approach [16]). We continue by stating
and proving Proposition 2.1, in which we examine an analogue of Theorem 2.1 for
asymptotically Stepanov p-almost periodic functions. The main result of paper is
Theorem 2.2, in which we clarify a new composition principle for the class of (equi-
)Weyl p-almost periodic functions. The proof of Theorem 2.2, which is much simpler
than that of [3, Theorem 3] and works also for both classes of Weyl p-almost periodic
functions under our consideration, is based on the method proposed by W. Long and
H.-S. Ding in the proof of [17, Theorem 2.2] for Stepanov class. The main purpose
of Theorem 2.4 is to analyze a composition principle for asymptotically (equi-)Weyl
p-almost periodic functions. Finally, Subsection 2.1 is deserved for applications of
our abstract theoretical results to abstract semilinear Cauchy inclusions in Banach
spaces.

We use the standard terminology throughout the paper. By X and Y we denote
two non-trivial complex Banach spaces; by kxk, kykY and kTkL(X,Y ) we denote the
norm of an element x 2 X, an element y 2 Y and a continuous linear mapping
T 2 L(X,Y ), respectively. Unless specified otherwise, we assume that 1  p < 1
and I = R or I = [0,1) henceforth. By Cb(I : X) and C0(I : X) we denote
the vector spaces consisting of all bounded continuous functions f : I ! X and all
bounded continuous functions f : I ! X such that lim|t|!+1 kf(t)k = 0. We refer
the reader to [10] for the notions of Weyl Liouville fractional derivatives and Caputo
fractional derivatives used in Subsection 2.1.
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1.1. Generalized almost periodic type functions

Let f : I ! X be continuous. Given a real number " > 0 in advance, we call
⌧ > 0 an "-period for f(·) iff kf(t + ⌧) � f(t)k  ", t 2 I. By #(f, ") we denote
the set consisting of all "-periods for f(·). We say that f(·) is almost periodic iff for
each " > 0 the set #(f, ") is relatively dense in I, which means that there exists l > 0
such that any subinterval of I of length l meets #(f, "). The space consisting of all
almost periodic functions from the interval I into X will be denoted by AP (I : X).

The class of asymptotically almost periodic functions was introduced by M.
Fréchet in 1941, for the case that I = [0,1) (more details about this class of func-
tions with values in Banach spaces can be found in [5]-[7], [8] and references cited
therein). A function f 2 Cb([0,1) : X) is said to asymptotically almost periodic iff
for every " > 0 we can find numbers l > 0 and M > 0 such that every subinterval of
[0,1) of length l contains, at least, one number ⌧ such that kf(t + ⌧) � f(t)k  "
provided t � M. The space consisting of all asymptotically almost periodic func-
tions from [0,1) into X is denoted by AAP ([0,1) : X). It is well known that, for
a function f 2 Cb([0,1) : X), the following statements are equivalent:

(i) f 2 AAP ([0,1) : X).

(ii) There exist uniquely determined functions g 2 AP ([0,1) : X) and � 2
C0([0,1) : X) such that f = g + �.

In this paper, we will not consider asymptotically almost periodic functions defined
on the real line.

Let l > 0 and f, g 2 Lp
loc(I : X). We define the Stepanov ‘metric’ by

Dp
Sl

⇥
f(·), g(·)

⇤
:= sup

x2I

"
1

l

Z x+l

x

��f(t)� g(t)
��p dt

#1/p
.

The Stepanov and Weyl ‘norm’ of f(·) are defined by
��f
��
Sp
l
:= Dp

Sl

⇥
f(·), 0

⇤
and

��f
��
W p := Dp

W

⇥
f(·), 0

⇤
:= lim

l!+1
Dp

Sl

⇥
f(·), 0

⇤
,

respectively. As it is well known, the last limit always exists in [0,1].
It is said that a function f 2 Lp

loc(I : X) is Stepanov p-bounded, Sp-bounded
shortly, iff kfkSp := supt2I(

R t+1
t kf(s)kp ds)1/p < 1. Let us recall that the func-

tion f 2 Lp
loc(I : X) is Stepanov p-bounded iff f 2 Lp

loc(I : X) is Weyl p-bounded,
W p-bounded shortly, i.e., if kfkW p < 1. The space Lp

S(I : X) consisted of all Sp-
bounded functions becomes a Banach space equipped with the above norm. We say
that a function f 2 Lp

S(I : X) is (asymptotically) Stepanov p-almost periodic iff the
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function f̂ : I ! Lp([0, 1] : X), defined by f̂(t)(s) := f(t+ s), t 2 I, s 2 [0, 1] is
(asymptotically) almost periodic. By APSp(I : X) and AAPSp(I : X) we denote
the spaces consisted of all Sp-almost periodic functions I 7! X and asymptotically
Sp-almost periodic functions I 7! X, respectively. In the case that p = 1, we set
L1
S (I : X) ⌘ L1(I : X); Lr

S(I) ⌘ Lr(I : C) for r 2 [1,1].
The notion of an (equi-)Weyl p-almost periodic function is given as follows (see

[2], [10] and references cited therein for more details on the subject):

Definition 1.1. Let f 2 Lp
loc(I : X).

(i) We say that the function f(·) is equi-Weyl p-almost periodic, f 2 e�W p
ap(I :

X) for short, iff for each " > 0 we can find two real numbers l > 0 and L > 0
such that any interval I 0 ✓ I of length L contains a point ⌧ 2 I 0 such that

sup
x2I

"
1

l

Z x+l

x

��f(t+ ⌧)� f(t)
��p dt

#1/p
 ".

(ii) We say that the function f(·) is Weyl p-almost periodic, f 2 W p
ap(I : X) for

short, iff for each " > 0 we can find a real number L > 0 such that any interval
I 0 ✓ I of length L contains a point ⌧ 2 I 0 such that

sup
x2I

"
1

l

Z x+l

x

��f(t+ ⌧)� f(t)
��p dt

#1/p
 ".

Asymptotically (equi-)Weyl p-almost periodic functions have been recently in-
troduced by the author in [15]. If q 2 Lp

loc([0,1) : X), then we define the function
q(·, ·) : [0,1)⇥ [0,1) ! X by q(t, s) := q(t+ s), t, s � 0.

Definition 1.2. It is said that q 2 Lp
loc([0,1) : X) is Weyl p-vanishing iff

lim
t!1

��q(t, ·)
��
W p = 0,

i.e.,

lim
t!1

lim
l!1

sup
x�0

"
1

l

Z x+l

x

��q(t+ s)
��p ds

#1/p
= 0. (1.1)

Replacing the limits in (1.1), we come to the class of equi-Weyl p-vanishing
functions. It is said that a function q 2 Lp

loc([0,1) : X) is equi-Weyl p-vanishing iff

lim
l!1

lim
t!1

sup
x�0

"
1

l

Z x+l

x

��q(t+ s)
��p ds

#1/p
= 0.
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We will use the following elementary lemma (see e.g., [4, p. 70] for the scalar-
valued case):

Lemma 1.1. Let �1 < a < b < 1, let 1  p0 < p00 < 1, and let f 2
Lp00([a, b] : X). Then f 2 Lp0([a, b] : X) and

"
1

b� a

Z b

a
kf(s)kp0 ds

#1/p0


"

1

b� a

Z b

a
kf(s)kp00 ds

#1/p00

.

In the remaining part of this section, we will analyze generalized (asymptotically)
almost periodic type functions depending on two parameters. Denote by C0([0,1)⇥
Y : X) the space consisting of all continuous functions h : [0,1)⇥Y ! X such that
limt!1 h(t, y) = 0 uniformly for y in any compact subset of Y. If f : I ⇥ Y ! X,
then we define f̂ : I ⇥ Y ! Lp([0, 1] : X) by f̂(t, y) := f(t+ ·, y), t � 0, y 2 Y.

We recall the following definition (cf. [10] and references cited therein):

Definition 1.3. Let 1  p < 1.

(i) A function f : I ⇥ Y ! X is said to be almost periodic iff f(·, ·) is bounded,
continuous as well as for every " > 0 and every compact K ✓ Y there exists
l(",K) > 0 such that every subinterval J ✓ I of length l(",K) contains a
number ⌧ with the property that kf(t + ⌧, y) � f(t, y)k  " for all t 2 I,
y 2 K. The collection of such functions will be denoted by AP (I ⇥ Y : X).

(ii) A function f : [0,1) ⇥ Y ! X is said to be asymptotically almost periodic
iff it is bounded, continuous and admits a decomposition f = g+q, where g 2
AP ([0,1)⇥Y : X) and q 2 C0([0,1)⇥Y : X). Denote by AAP ([0,1)⇥
Y : X) the vector space consisting of all such functions.

(iii) A function f : I⇥Y ! X is said to be Stepanov p-almost periodic, Sp-almost
periodic shortly, iff f̂ : I ⇥ Y ! Lp([0, 1] : X) is almost periodic. Denote by
APSp(I ⇥ Y : X) the vector space consisting of all such functions.

(iv) A function f : [0,1)⇥Y ! X is said to be asymptotically Sp-almost periodic
iff f̂ : [0,1) ⇥ Y ! Lp([0, 1] : X) is asymptotically almost periodic. The
collection of such functions will be denoted by AAPSp([0,1)⇥ Y : X).

The following definition is slightly different from the corresponding definitions
introduced recently in [3] and [11] for the class of equi-Weyl p-almost periodic func-
tions, with only one pivot space X = Y :
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Definition 1.4. (i) A function f : I ⇥ Y ! X is said to be equi-Weyl p-
almost periodic in t 2 I uniformly with respect to compact subsets of Y iff
f(·, u) 2 Lp

loc(I : X) for each fixed element u 2 Y and if for each " > 0 and
each compact K of Y there exist two numbers l > 0 and L > 0 such that any
interval I 0 ✓ I of length L contains a point ⌧ 2 I 0 such that

sup
u2K

sup
x2I

"
1

l

Z x+l

x

��f(t+ ⌧, u)� f(t, u)
��p dt

#1/p
< ".

We denote by e � W p
ap,K(I ⇥ Y : X) the vector space consisting of all such

functions.

(ii) A function f : I ⇥ Y ! X is said to be Weyl p-almost periodic in t 2 I
uniformly with respect to compact subsets of Y iff f(·, u) 2 Lp

loc(I : X) for
each fixed element u 2 Y and if for each " > 0 and each compact K of Y we
can find a real number L > 0 such that any interval I 0 ✓ I of length L contains
a point ⌧ 2 I 0 satisfying that there exists a finite number l(", ⌧) > 0 such that

sup
u2K

sup
x2I

"
1

l

Z x+l

x

��f(t+ ⌧, u)� f(t, u)
��p dt

#1/p
< ", l � l(", ⌧).

We denote by W p
ap,K(I ⇥ Y : X) the vector space consisting of all such func-

tions.

The following definition is known in the case that X = Y (cf. [11]):

Definition 1.5. Let q : [0,1)⇥ Y ! X be such that q(·, u) 2 Lp
loc([0,1) : X)

for each fixed element u 2 Y.

(i) It is said that q(·, ·) is Weyl p-vanishing uniformly with respect to compact
subsets of Y iff for each compact set K of Y we have:

lim
t!1

lim
l!1

sup
⇠�0,u2K

"
1

l

Z ⇠+l

⇠

��q(t+ s, u)
��p ds

#1/p
= 0.

(ii) It is said that q(·, ·) is equi-Weyl p-vanishing uniformly with respect to compact
subsets of Y iff for each compact set K of Y we have:

lim
l!1

lim
t!1

sup
⇠�0,u2K

"
1

l

Z ⇠+l

⇠

��q(t+ s, u)
��p ds

#1/p
= 0.
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We denote by W p
0,K(I ⇥ Y : X) and e�W p

0,K(I ⇥ Y : X) the classes consisting of
all Weyl p-vanishing functions, uniformly with respect to compact subsets of Y and
all equi-Weyl p-vanishing functions, uniformly with respect to compact subsets of Y ,
respectively.

2. Formulation and proof of main results

We start this section by stating Theorem 2.1, which has been recently considered
by F. Bedouhene, Y. Ibaouene, O. Mellah and P. Raynaud de Fitte [3, Theorem 3]
for the class of equi-Weyl p-almost periodic functions. To the best knowledge of the
author, this result has not been considered elsewhere for the class of (asymptotically)
Stepanov p-almost periodic functions. It should be noted that a well-known result
of W. Long and H.-S. Ding [17, Theorem 2.2] is not comparable with Theorem 2.1.
Simply said, with the notation used below, the assumption p = q always imposes
the value of exponent r = 1 in [17, Theorem 2.2], which is not a general case in
examination; on the other hand, the assumptions of [17, Theorem 2.2] requires the
value p > 1 of the exponent, which is not generally needed for applying Theorem
2.1. Only we can say is that [3, Theorem 3] in the Stepanov setting, i.e., Theorem 2.1,
is much more general than [10, Theorem 2.7.2], where the usual Lipschitz condition
for the value p = 1 of the exponent has been analyzed. The proof of theorem is
very similar to that of [17, Theorem 2.2] and we will include only the most relevant
details.

Theorem 2.1. Suppose that p, q 2 [1,1), r 2 [1,1], 1/p = 1/q+1/r and the
following conditions hold:

(i) f 2 APSp(I ⇥ Y : X) and there exists a function Lf 2 Lr
S(I) such that

kf(t, x)� f(t, y)k  Lf (t)kx� ykY , t 2 I, x, y 2 Y. (2.1)

(ii) x 2 APSq(I : Y ), and there exists a set E ✓ I with m(E) = 0 such that
K := {x(t) : t 2 I \ E} is relatively compact in X; here, m(·) denotes the
Lebesgue measure.

Then f(·, x(·)) 2 APSp(I : X).

PROOF. The measurability and Sp-boundedness of function f(·, x(·)) can be
shown as in the proof of [17, Theorem 2.2], by interchanging the role of exponents
p and q in the computation [17, p. 6, l.�1 / l.�4]. Using the same change of roles
for the exponents p and q in the computation ending the proof of above-mentioned
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theorem, we get that
✓Z 1

0

��f(t+ s+ ⌧, x(t+ s+ ⌧))� f(t+ s, x(t+ s))
��p ds

◆1/p


��Lf

��
Lr
S(I)

��x(t+ ⌧ + ·)� x(t+ ·)
��
Lq([0,1]:Y )

+

✓Z 1

0

⇣
sup
u2K

kf(t+ s+ ⌧, u)� f(t+ s, u)k
⌘p

ds

◆1/p

for all t 2 I, with the meaning clear. Since r  p, the argumentation given in the
proof of [17, Lemma 2.1] shows that there is an absolute constant M > 0 such that
✓Z 1

0

��f(t+s+⌧, x(t+s+⌧))�f(t+s, x(t+s))
��p ds

◆1/p

 M(1+
��Lf

��
Lr
S(I)

)",

finishing the proof.

Now we are in a position to clarify the following composition principle for asymp-
totically Stepanov p-almost periodic functions (cf. also [10, Proposition 2.7.3] for a
similar result in this direction):

Proposition 2.1. Let I = [0,1). Suppose that p, q 2 [1,1), r 2 [1,1],
1/p = 1/q + 1/r and the following conditions hold:

(i) g 2 APSp(I ⇥ Y : X), Lg 2 Lr
S(I) and (2.1) holds with the functions f(·, ·)

and Lf (·) replaced with the functions g(·, ·) and Lg(·) therein;

(ii) y 2 APSq(I : Y ) and there exists a set E ✓ I with m(E) = 0 such that
K = {y(t) : t 2 I \ E} is relatively compact in Y ;

(iii) f(t, u) = g(t, u)+q(t, u) for all t � 0 and u 2 Y, where q̂ 2 C0([0,1)⇥Y :
Lp([0, 1] : X));

(iv) x(t) = y(t) + z(t) for all t � 0, where ẑ 2 C0([0,1) : Lq([0, 1] : Y ));

(v) There exists a set E0 ✓ I with m(E0) = 0 such that K 0 = {x(t) : t 2 I \ E0}
is relatively compact in Y.

Then f(·, x(·)) 2 AAPSp(I : X).

PROOF. The proof is very similar to that of above-mentioned proposition; for
the sake of completeness, we will include all details. Without loss of generality, we
may assume that X = Y. By Theorem 2.1, we have that the function t 7! g(t, y(t)),
t � 0, is Stepanov p-almost periodic. Since

f(t, x(t)) =
⇥
g(t, x(t))� g(t, y(t))

⇤
+ g(t, y(t)) + q(t, x(t)), t � 0,
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it suffices to show that

lim
t!+1

✓Z t+1

t

��g(s, x(s))� g(s, y(s))
��p ds

◆1/p

= 0 (2.2)

and

lim
t!+1

✓Z t+1

t

��q(s, x(s))
��p ds

◆1/p

= 0. (2.3)

For the estimate (2.2), we can argue as in the proof of estimate [17, (2.12)]: by (2.1)
and the Hölder inequality, we have that

 Z t+1

t

��g(s, x(s))� g(s, y(s))
��p ds

!1/p


 Z t+1

t
Lg(s)

p
��x(s)� y(s)

��p ds
!1/p


 Z t+1

t
Lg(s)

r ds

!1/r Z t+1

t

��x(s)� y(s)
��q ds

!1/q

=

 Z t+1

t
Lg(s)

r ds

!1/r Z t+1

t

��z(s)
��q ds

!1/q

, t � 0.

Hence, (2.2) holds on account of Sr-boundedness of function Lg(·) and assumption
ẑ 2 C0([0,1) : Lq([0, 1] : X)). The proof of (2.3) follows from assumption q̂ 2
C0([0,1) ⇥ X : Lp([0, 1] : X)) and relative compactness of set K 0 = {x(t) : t 2
I \ E0} in X .

Similarly, for the class of (equi-)Weyl p-almost periodic functions, we have the
following result which is not comparabe with [3, Theorem 3] in the case of consider-
ation of equi-Weyl p-almost periodic functions, with I = R and X = Y :

Theorem 2.2. Suppose that the following conditions hold:

(i) f 2 (e�)W p
ap,K(I ⇥ Y : X) with p > 1, and there exist a number r �

max(p, p/p� 1) and a function Lf 2 Lr
S(I) such that (2.1) holds.

(ii) x 2 (e�)W p
ap(I : Y ), and there exists a set E ✓ I with m(E) = 0 such that

K := {x(t) : t 2 I \ E} is relatively compact in Y.
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(iii) For every " > 0, there exist two numbers l > 0 and L > 0 such that any
interval I 0 ✓ I of length L contains a number ⌧ 2 I 0 such that

sup
t2I,u2K

"
1

l

Z t+l

t

��f(s+ ⌧, u)� f(s, u)
��p ds

#1/p
 " (2.4)

and

sup
t2I

"
1

l

Z t+l

t

��x(s+ ⌧)� x(s)
��p
Y
ds

#1/p
 " (2.5)

in the case of consideration of equi-Weyl p-almost periodic functions, resp.,
there exists a finite number L > 0 such that any interval I 0 ✓ I of length L
contains a number ⌧ 2 I 0 satisfying that there exists a number l(", ⌧) > 0 so
that (2.4)–(2.5) hold for all numbers l � l(", ⌧), in the case of consideration
of Weyl p-almost periodic functions.

Then q := pr/p+ r 2 [1, p) and f(·, x(·)) 2 (e�)W q
ap(I : X).

PROOF. Without loss of generality, we may assume that X = Y. Since the func-
tion Lf (·) is Stepanov r-bounded, equivalently, Weyl r-bounded, the measurability
and Sp-boundedness of function f(·, x(·)) follow similarly as in the proof of [17,
Theorem 2.2]. Applying the Hölder inequality and an elementary calculation involv-
ing the estimate (2.1) and condition (ii), we get that, for every t, ⌧ 2 I and l > 0,

1

l

Z t+l

t

��f(s+ ⌧, x(s+ ⌧))� f(s, x(s))
��q ds

 1

l

✓Z t+l

t
Lr
f (s+ ⌧) ds

◆1/r✓Z t+l

t

��x(s+ ⌧)� x(s)
��p dt

◆1/p

+

✓Z t+l

t

��f(s+ ⌧, x(s))� f(s, x(s))
��q ds

◆1/q�

 1

l

✓Z t+l

t
Lr
f (s+ ⌧) ds

!1/r✓Z t+l

t

��x(s+ ⌧)� x(s)
��p dt

◆1/p

+

✓Z t+l

t

�
sup
u2K

��f(s+ ⌧, u)� f(s, u)
��
⌘q

ds

◆1/q�
.

The remaining part of proof is almost the same for both classes of functions, equi-
Weyl p-almost periodic functions and Weyl p-almost periodic functions; because of
that, we will consider only the first class up to the end of proof. Let " > 0 be given.
By (iii), there exist two numbers l > 0 and L > 0 such that any interval I 0 ✓ I of
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length L contains a number ⌧ 2 I 0 such that (2.4)–(2.5) hold. Since the validity of
(2.4)–(2.5) with given numbers l > 0 and ⌧ 2 I implies the validity of (2.4)–(2.5)
with numbers nl and ⌧ 2 I (n 2 N), we may assume that the number l > 0 is as
large as we want to be. Then, due to Lemma 1.1, we obtain the existence of a finite
number M > 0 such that:

1

l

✓Z t+l

t
Lr
f (s+ ⌧) ds

◆1/r

 Ml(1/r)�1kLfkW r , t 2 I,

and

1

l

✓Z t+l

t
Lr
f (s+ ⌧) ds

◆1/r✓Z t+l

t

��x(s+ ⌧)� x(s)
��p dt

◆1/p

Ml(1/p)+(1/r)�1kLfkW r = l(1/q)�1kLfkW r  kLfkW r , t 2 I.

For the estimation of term

1

l

✓Z t+l

t

⇣
sup
u2K

��f(s+ ⌧, u)� f(s, u)
��
⌘q

ds

◆1/q

, t 2 I,

we can use the trick employed for proving [17, Lemma 2.1]. Since K is totally
bounded, there exist an integer k 2 N and a finite subset {x1, . . . , xk} of K such
that K ✓

Sk
i=1B(xi, "), where B(x, ") := {y 2 X : kx � yk  "}. Applying

Minkowski’s inequality and a simple argumentation similar to that used in the proof
of above-mentioned lemma, we get the existence of a finite positive real number
cq > 0 such that

1

l

✓Z t+l

t

�
sup
u2K

��f(s+ ⌧, u)� f(s, u)
���q ds

◆1/q

 cq
l


"

✓Z t+l

t

⇥
Lq
f (s+ ⌧) + Lq

f (s)
⇤
ds

◆1/q

+
kX

i=1

✓Z t+l

t

��f(s+ ⌧, xi)� f(s, xi)
��q ds

◆1/q�
.

The term 1
l (
R t+l
t [Lq

f (s + ⌧) + Lq
f (s)] ds)

1/q can be estimated by using Lemma 1.1
in the following way:

 1

l

✓Z t+l+⌧

t+⌧
Lq
f (s) ds

◆1/q

+
1

l

✓Z t+l

t
Lq
f (s) ds

◆1/q

 Ml(�1/r)+(1/q)�1
��Lf

��
W r l

1/r  M
��Lf

��
W r , t 2 I.
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Similarly, using Lemma 1.1 and (iii), we get

1

l

kX

i=1

✓Z t+l

t

��f(s+ ⌧, xi)� f(s, xi)
��q ds

◆1/q

 1

l
l(1/q)�(1/p)

kX

i=1

✓Z t+l

t

��f(s+ ⌧, xi)� f(s, xi)
��p ds

◆1/p

 "l(1/q)�1, t 2 I.

This completes the proof of theorem.

Remark 2.1. To the best knowledge of the author, it is not known whether the
assumptions f 2 (e�)W p

ap(I ⇥ Y : X) and x 2 (e�)W p
ap(I : Y ) imply the validity

of condition (iii), as for the class of Stepanov p-almost periodic functions.

The following result for the class of Weyl p-almost periodic functions can be also
deduced with the help of argumentation contained in [17] (compare with Theorem
2.1, where we have analyzed the Stepanov class):

Theorem 2.3. Suppose that p, q 2 [1,1), r 2 [1,1], 1/p = 1/q+1/r and the
following conditions hold:

(i) f 2 W p
ap,KAP (I ⇥ Y : X) and there exists a function Lf 2 Lr

S(I) such that
(2.1) holds.

(ii) x 2 W q
apAP (I : Y ), and there exists a set E ✓ I with m(E) = 0 such that

K := {x(t) : t 2 I \ E} is relatively compact in Y.

(iii) For every " > 0, there exists a finite number L > 0 such that any interval
I 0 ✓ I of length L contains a number ⌧ 2 I 0 satisfying that there exists a
number l(", ⌧) > 0 so that (2.4) holds for all numbers l � l(", ⌧) and (2.5)
holds for all numbers l � l(", ⌧), with the number p replaced by q therein.

Then f(·, x(·)) 2 W p
apAP (I : X).

After proving Theorem 2.2, the subsequent composition principle for asymptot-
ically (equi-)Weyl p-almost periodic functions follows almost immediately; cf. also
[11, Theorem 3.4] for a similar result in this direction.

Theorem 2.4. Suppose that p > 1, r � max(p, p/p� 1), q = pr/p+ r, and the
conditions (i)–(iii) of Theorem 2.2 hold with the interval I = [0,1) and the func-
tions f(·, ·), x(·) replaced therein with the functions g(·, ·), y(·). Suppose, further,
that the following holds:
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(i) The function Q := f�g : [0,1)⇥Y ! X is in class (e�)W q0

0,K([0,1)⇥Y :
X) for some number q0 2 [1,1).

(ii) The function z : [0,1) ! Y is in class (e�)W q00

0 ([0,1) : Y ) for some
number q00 2 [1,1).

(iii) x(t) = y(t) + z(t) for a.e. t � 0, and there exists a set E ✓ I with m(E) = 0
such that K := {x(t) : t 2 I \ E} is relatively compact in Y .

Then the mapping t 7! f(t, x(t)), t � 0 is in class (e�)W q
ap([0,1) : X) +

(e�)W q0

0 ([0,1) : X) + (e�)W q000

0 ([0,1) : X), provided q000 2 [1,1) and 1/r +
1/q00 = 1/q000.

PROOF. It is clear that f(t, x(t)) =
⇥
g(t, x(t)) � g(t, y(t))

⇤
+ g(t, y(t)) +

Q(t, x(t)), t � 0. By Theorem 2.2, we know that g(·, y(·)) 2 (e�)W q
ap([0,1) :

X). Keeping in mind (i) and (iii), the function t 7! Q(t, x(t)), t � 0 is in class
(e�)W q0

0 ([0,1) : X) by definition (see the notions of classes W p
0,K(I⇥Y : X) and

e � W p
0,K(I ⇥ Y : X) introduced in Definition 1.5). Therefore, it suffices to show

that the mapping t 7! g(t, x(t))�g(t, y(t)), t � 0 is in class (e�)W q000

0 ([0,1) : X).
But, this follows similarly as in the proof of [11, Theorem 3.4], with the exponents
p, q, r replaced therein with the exponents q000, q00, r, respectively.

An analogue of [11, Theorem 3.4] for the class of asymptotically Weyl p-almost
periodic functions can be also deduced by means of Theorem 2.3.

Before we move ourselves to the next subsection, we would like to mention that
S. Abbas has recently proved a composition principle for the class of Weyl pseudo
almost automorphic functions in [1].

2.1. Applications to semilinear Cauchy inclusions

The composition principles for (asymptotically) Stepanov p-almost periodic func-
tions can be almost straightforwardly incorporated in the study of existence and
uniqueness of (asymptotically) almost periodic solutions for a great number of differ-
ent types of abstract semilinear Cauchy inclusions in Banach spaces with Stepanov
forcing coefficients. For example, Theorem 2.1 is applicable in the study of qualita-
tive properties of solutions of the abstract semilinear Volterra integral inclusion

u(t) 2 A
Z t

�1
a(t� s)u(s) ds+ f(t, u(t)), t 2 R,

where a 2 L1
loc([0,1)), a 6= 0, f : R ! X is Stepanov p-almost periodic, A is

a closed multivalued linear operator on X and certain extra assumptions are satis-
fied (see e.g. the articles [6] by C. Cuevas, C. Lizama and [9] by H. R. Henrı́quez,
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C. Lizama as well as [10] for the notion and basic results about multivalued linear
operators). We can also analyze almost periodic solutions of the following abstract
Cauchy fractional relaxation inclusion

D�
t,+u(t) 2 �Au(t) + f(t, u(t)), t 2 R,

where D�
t,+ denotes the Weyl Liouville fractional derivative of order � 2 (0, 1),

f : R ! X is Stepanov p-almost periodic and A is a closed multivalued linear
operator on X. For example, the assertions of [14, Theorem 4.3, Theorem 4.5] can
be reformulated in our framework.

Combining Theorem 2.1 and Proposition 2.1, we can examine the existence and
uniqueness of asymptotically almost periodic solutions of fractional relaxation inclu-
sions with Caputo derivatives. More precisely, let � 2 (0, 1) and let A be a closed
multivalued linear operator on X. Of concern is the abstract semilinear Cauchy in-
clusion

(DFP)f,�,s :

(
D�

t u(t) 2 Au(t) + f(t, u(t)), t > 0,

u(0) = x0,

where D�
t denotes the Caputo fractional derivative of order �, x0 2 X and f :

[0,1) ⇥ X ! X is Stepanov p-almost periodic. Using the above-mentioned re-
sults, we can simply reformulate the assertions of [13, Theorem 2.3, Corollary 2.1,
Theorem 2.6, Corollary 2.3] in our framework.

As in a great number of our recent research studies, the results obtained in the
first part of this section can be successfully applied in the analysis of degenerate
Poisson heat equation and its fractional analogues (cf. [10] for further information in
this direction). Let ⌦ be a bounded domain in Rn, b > 0, m(x) � 0 a.e. x 2 ⌦,
m 2 L1(⌦), 1 < p < 1 and X := Lp(⌦). We can apply Theorem 2.1 for proving
certain results about the existence and uniqueness of almost periodic solutions of
semilinear Poisson heat equation

D�
t,+[m(x)v(t, x)] = (�� b)v(t, x) + f(t,m(x)v(t, x)), t 2 R, x 2 ⌦.

Taken together, Theorem 2.1 and Proposition 2.1 are applicable in the study of ex-
istence and uniqueness of asymptotically almost periodic solutions of the fractional
semilinear Poisson heat equation
8
><

>:

D�
t [m(x)v(t, x)] = (�� b)v(t, x) + f(t,m(x)v(t, x)), t � 0, x 2 ⌦,

v(t, x) = 0, (t, x) 2 [0,1)⇥ @⌦,

m(x)v(0, x) = u0(x), x 2 ⌦.
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The spaces of (equi-)Weyl p-almost periodic functions are not complete with the
respect to the Weyl norm, as it is well known. Without any doubt, this seriously hin-
ders possibilities to apply Theorem 2.2, Theorem 2.3 and Theorem 2.4 in the analysis
of existence and uniqueness of (asymptotically) almost Weyl p-almost periodic so-
lutions of abstract semilinear Cauchy inclusions. The existence and uniqueness of
bounded, continuous, equi-Weyl p-almost periodic solutions of the abstract semilin-
ear differential equations of first order has been initiated in [3, Section 3.3] (cf. also
[11, Theorem 3.5, Theorem 3.6]). Because of its non-trivial character, we will con-
tinue this theme somewhere else.

The paper is dedicated to the memory of old Professor Bogoljub Stanković. For
his contributions in the field of generalized almost periodic functions, we would like
to recommend for the reader the articles [18]–[19].
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Novi Sad 21125, Serbia
e-mail: marco.s@verat.net


