

Accepted Manuscript

Integer Codes Correcting Burst and Random Asymmetric Errors
within a Byte

Aleksandar Radonjic , Vladimir Vujicic

PII: S0016-0032(17)30622-1
DOI: 10.1016/j.jfranklin.2017.11.033
Reference: FI 3243

To appear in: Journal of the Franklin Institute

Received date: 23 February 2016
Revised date: 6 May 2017
Accepted date: 26 November 2017

Please cite this article as: Aleksandar Radonjic , Vladimir Vujicic , Integer Codes Correcting Burst
and Random Asymmetric Errors within a Byte , Journal of the Franklin Institute (2017), doi:
10.1016/j.jfranklin.2017.11.033

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service
to our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and
all legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.jfranklin.2017.11.033
https://doi.org/10.1016/j.jfranklin.2017.11.033

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 1

Integer Codes Correcting Burst and Random

Asymmetric Errors within a Byte

Aleksandar Radonjic and Vladimir Vujicic

Abstract-In most communication networks, error probabilities 1 → 0 and 0 → 1 are equally

likely to occur. However, in some optical networks, such as local and access networks, this

is not the case. In these networks, the number of received photons never exceeds the

number of transmitted ones. Hence, if the receiver operates correctly, only 1 → 0 errors

can occur. Motivated by this fact, in this paper, we present a class of integer codes capable

of correcting burst and random asymmetric (1 → 0) errors within a b-bit byte. Unlike

classical codes, the proposed codes are defined over the ring of integers modulo 2
b
 – 1. As a

result, they have the potential to be implemented in software without any hardware assist.

Keywords: Integer codes, error correction, asymmetric errors, optical networks.

1. Introduction

 Most classes of codes have been designed for use on symmetric channels, where 0 → 1 and

1 → 0 errors occur with equal probability. In some practical systems, however, the probability

of 0 → 1 errors is extremely small. One such example are optical networks without optical

amplifiers (ONWOAs) (e.g. local and access networks) [1]. In these networks, the number of

received photons never exceed the number of sent ones [2], [3]. Hence, if the receiver operates

correctly, only asymmetric (1 → 0) errors may occur. These include random errors as well as

bursts of length up to 8 bits [4], [5], [6], [7].

Although this fact is known for decades, there has been very little work on codes for

ONWOAs. Some classes of burst asymmetric codes were presented in [8], [9], but without any

information regarding their implementation. The same holds for [10], [11], where the authors

proposed two classes of codes capable of correcting random and byte asymmetric errors,

respectively. Unlike the above-mentioned works, in [13] we have presented a class of codes that

is specially designed for use in ONWOAs. The main advantage of these codes is the ability to

exploit high computing power of the network nodes (PCs, servers, routers, switches, OLT/ONU

units, etc.) [1]. This has been achieved by using integer and lookup table (LUT) operations,

which are supported by all processors. Unfortunately, in terms of error correction, these codes

were quite weaker than [8], [9], [10], [11]. More precisely, they were able to correct spotty byte

asymmetric errors, unlike [8], [9], [10], [11] which are designed to correct multiple asymmetric

errors within a byte or codeword.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 2

In this paper, we present a class of codes that significantly outperforms the codes proposed

in [13]. Unlike them, the codes presented in this paper can correct two types of errors within a b-

bit byte: burst asymmetric errors up to l (< b) bits (l/b BA errors) and random asymmetric errors

up to t (< l) bits (t/b RA errors). The only penalty for this improved performance is a slight

increase in memory requirements. On the other hand, the proposed codes retain all the desirable

properties of [13] including systematic structure, simple encoding/decoding algorithm and fast

error control procedure based on table lookups.

The organization of this paper is as follows: Section 2 deals with the construction of

integer codes capable of correcting l/b BA and t/b RA errors (integer (BlAEC/RtAEC)b codes).

The implementation strategy and theoretical decoding throughputs for these codes are described

and evaluated in Section 3. In Section 4 the proposed codes are compared with the existing

codes of similar properties. Finally, Section 5 concludes the paper. For ease of reading, a list of

notations is given in Table 1.

2. Codes Construction

A. Encoding and Decoding Procedures

Let 2 1bZ
 = {0, 1,…, 2

b
 - 2} be the ring of integers modulo 2

b - 1, and let 0,1 ,
2 -1biC Z \

where 1 ≤ i ≤ k. In addition, let us assume that the encoder/decoder uses a LUT1 to store the

coefficients 0,1 .
2 -1biC Z \ In that case, the encoder will generate the check-byte CB by using

the following operations:

B 1 1
1

[] (mod 2 1) (mod 2 1)

k

b b
k k i i

i

C C B C B C B (1)

At the receiver, the decoder will perform the same calculation

 ˆ 1 1B
1

ˆ ˆ ˆ[] (mod 2 1) (mod 2 1)

k
b b

k k i i
i

C C B C B C B (2)

after which the syndrome S will be formed

 ˆ BB
ˆ[] (mod 2 1)bS C C (3)

Obviously, when S ≠ 0, the codeword is corrupted by one or more errors.

Table 1. Notations Used in This Paper.

Symbol

93

197

Meaning

2359
iB Integer value of the i-th b-bit data byte at the sender side

BC Integer value of the b-bit check-byte at the sender side

ˆ
iB Integer value of the received i-th b-bit data byte

BĈ Integer value of the received b-bit check-byte

B̂
C Integer value of the b-bit check-byte at the receiver side

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 3

B. Necessary and Sufficient Conditions

In order to be able to correct all l/b BA and t/b RA errors, the decoder must know which

nonzero values of S correspond to these errors. However, before we move to the mathematical

details, let us observe that t/b RA errors spaced less than l bits (short t/b RA errors) can be

treated as l/b BA errors. Hence, in addition to l/b BA errors, we need to consider only t/b RA

errors that are spaced d (l < d < b) bits apart (long t/b RA errors) (Fig. 1).

Now we can give two definitions, the first of which stems from our previous work [12].

Definition 1. Let e1 = {1} and ew = {2
w-1

+ 1, 2
w-1

 + 3, …, 2
w

- 1} be the sets of odd integers,

and let l be an integer such that 2 ≤ w ≤ l < b. Then, the set of syndromes corresponding to l/b

BA errors is defined as

1 21ε s s (4)

where

 1 m m

 1

2 mod 2 1 : 0 –
l

r b

m=

s e r b (5)

 2

l

m m

 1 1

2 mod 2 1 : 0 –
k

r b
i

m= i=

s C e r b (6)

Definition 2. Let f2 ={ }2 + 2s z
 and fv = -2{ }v1 22 + 2 + 2 + + 2 +2xx xs z

be the sets of integers,

where 3 ≤ v < l < b, 0 ≤ s < x1 < x2 < < xv-2 < z and s + l ≤ z ≤ b – 1. Then, the set of syndromes

corresponding to long t/b RA errors is defined as

3 42ε s s (7)

where

 3

2

:

mod 2 1 2
t

b
n

n=

s f t l (8)

 4

2

:

 1

mod 2 1 2
t k

b
i n

n= i=

s C f t l
 (9)

Fig. 1. (a) Short t/b RA errors and (b) long t/b RA errors.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 4

Although the expressions (1)-(9) provide a theoretical basis for the construction of (kb + b,

kb) integer (BlAEC/RtAEC)b codes, they do not give the explicit information about the number

of nonzero syndromes. Hence, we need the following theorem.

Theorem 1. The codes defined by (1)-(3) can correct all l/b BA and t/b RA errors iff there

exist k mutually different coefficients
2 -1

0,1biC Z \ such that

1

1

2

1 2

ε

ε

ε ε

-1

=0 =2

1. (+ 1) 2 (+ 2) 1

1
2. (+ 1)

2

3.

l

b l t

i j

= k b l

l i
= k b l i

j

where A denotes the cardinality of A, and A B the intersection of A and B.

Proof. Condition 1 of this theorem says that l/b BA errors generate
-1(+1) 2 (+ 2) -1lk b - l

syndromes that are nonzero. To prove this, observe that the set s1 can be expressed as

1

m

a
1

l

m
=

s

where

1

2

1 (mod 1)

3 (mod 1)

1 3, 5, 1 (mod 1)

a

a

a

 1 1 1

() 2 2 : = 0,1,..., – 1

() 2 2 : = 0,1,..., – 2

(2 , 2 2 ...,2) 2 2 : = 0,1,..., –

r b

r b

l- l- l - l r b
l

r b

r b

r b l

Consequently, we can write

1

1 2

().
l l

m

m h

a

 -22 1hs b b h

To calculate the sum we can use equalities

1

l

j

-1 1
1

1

l
j x

x
x

1

l

j

-1-1

2

1 (1)

(1) 1

l l
j x l x

j x x
x x

wherefrom it follows that

1 ((-1 -1 -1 -11) 2 1) 2 2 = 2 (+ 2) 1.l l l ls b b + - - l b l

On the other hand, from (5) and (6) we see that the set s2 can be expressed as

2

i

b
1

k

i
=

s

where

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 5

1 1 1

2 2 1

1k k

b

b

b

mod 2 1

mod 2 1

mod 2 1

b

b

b

C s

C s

C s

From this it is easy to conclude that the syndromes caused by l/b BA errors will be different and

not equal to zero iff there exist k mutually different coefficients
2 -1

0, 1 biC Z \ such that

1 2 1 1 2

1 1 2

k

k

s b b b

 -1= 2 (+ 2) 1.l

s s

s b b b b l

In that and only in that case, the set ε1 will have

1 1 2 1 1ε
-1(+ 1) 2 (+ 2) 1l= s s s k s k b l

nonzero elements. In a similar way Condition 2 says that long t/b RA errors generate

1

=0 =2

1
(+1)

2

b l t

i j

l i
k b l i

j
syndromes that are nonzero. To prove this, note that the set s3 can

be expressed as

3 c
1

0

b-l-

u
u=

s

where

0

2 addends

1

2 addends

2 addends

(mod 1)

(mod 1)

c

c

c

1

– –1

2 + 2 + 2 + + 2 + 2 2 : = 0,1,..., – 1

2 + 2 + 2 + + 2 + 2 2 : = 0,1,..., – 2

2 + 2 + 2 + + 2

f ps e s+ l b

t

f ps e s+l+ b

t

f ps e
b l

t

s b l

s b l

(mod 1)

1+ 2 2 : = 0s+b- b s

and s < e < f < < p < s + l + u for any u = 0, 1, …, b – l – 1. Consequently, we can write

0

1

c

c

c

– –1

1

2

1
2

2
1

2b l

l -
b - l

t -

l
b - l -

t -

b -

t -

wherefrom it follows that

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 6

1 1

3

0

.c

=0 =2

1

2

b l b l t

u
u i j

l i
s = b l i

j

On the other hand, from (8) and (9) we see that the set s4 can be expressed as

4 i

i

d
1

k

=

s

where

1 1 3

2 2 3

3k k

d

d

d

mod 2 1

mod 2 1

mod 2 1

b

b

b

C s

C s

C s

Obviously, the syndromes caused by long t/b RA errors will be different and not equal to zero iff

there exist k mutually different coefficients
2 -1

0,1biC Z \ such that

3 4 3 1 2

1

3 1 2

k

k

d d d

=0 =2

1

2

b l t

i j

s s s

l i
s = d = d = = d b l i

j

Only in that case the set ε2 will have

1

2 3 4 3 3ε

= 0 =2

1
(+ 1)

2

b l t

i j

l i
= s s s k s k b l i

j

nonzero elements. Finally, Condition 3 is a necessary condition for distinguishing l/b BA errors

from long t/b RA errors. So, (kb + b, kb) integer (BlAEC/RtAEC)b codes must satisfy all the

conditions 1 to 3. Conversely, if the codes satisfy conditions 1 to 3, then we can distinguish l/b

BA errors from long t/b RA errors. We can also correct all l/b BA and t/b RA errors. Therefore,

these codes are (kb + b, kb) integer (BlAEC/RtAEC)b codes. □

From a practical point of view it is sufficient to use the codes capable of correcting up to

three RA errors within a b-bit byte. Such a choice is completely in agreement with the theory [6]

as well as with experimental results [4], [5], [6], [7]. In addition, it significantly reduces the size

of the syndrome table which is used during the error correction process.

Theorem 2. Let t = 2, 3 and let 2 1l,t,b,kξ be the error set for (kb + b, kb) integer

(BlAEC/RtAEC)b codes. Then,

2

2

2 .

ε ε

ε ε

2
-1

2 1

2 3
-1

1

()
= 2 (+ 2) 1 + 1

2

() 2 () + 3 ()
= = 2 (+ 2) 1 + 1 1

2 6

l
l, ,b,k

l
l,3,b,k

b l b l
ξ b l k +

b l b l b l b l b l
ξ b - l b k + k +

Proof. This theorem follows directly from Theorem 1.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 7

To illustrate the applicability of Theorem 1, we show results of a computer-search for the

codes with parameters b = 32, 2 ≤ t ≤ 3 and 8 ≤ l ≤ 9 (Appendix A). The software used for the

search is written in MATLAB (Appendix B). Its aim is to find the first 128 coefficients

 32
2 -1

0,1iC Z \ that satisfy the conditions of Theorem 1.

C. Error Control Procedure

Suppose that the decoder uses the syndrome table (LUT2) with l,t,b,kξ entries, where each

entry has
2b 2+ (+1)log k bits. Unlike the LUT1, which stores the coefficients Ci, this table is

generated using (4)-(9). Its aim is to describe the relationship between the nonzero syndrome

(element of the set l,t,b,kξ), error location (i) and error vector (e) (Fig. 2).

Bearing this in mind, it is easy to see that the main task of the decoder is to find the entry where

the first b bits match that of the syndrome S. For that purpose, the decoder must perform a series

of table lookups, where each lookup includes a comparison of two b-bit vectors (similar to

routing [14]). In the end, after nTL table lookups, the decoder will declare failure ()S l,t,b,kξ or

execute ()S l,t,b,kξ one of the following operations:

 for l/b BA errors within the check-byte

 B B
ˆ[] (mod 2 1);bC C e (10)

m m m *2 + (mod 2 1), 0 – 1r be e r b , l < b;

 for l/b BA errors within the i-th data byte

ˆ[] 1 (mod 2 1),b
i iB B e i k; (11)

[]m m m 2 (mod 2 1), 0 – 1r be e r b , l < b;

 for t/b RA errors within the check-byte

 B B
ˆ[] (mod 2 1);bC C e (12)

2 [] (mod 2 1),b
ne f n t < b;

 for t/b RA errors within the i-th data byte

ˆ[] 1

[] 2

(mod 2 1),

(mod 2 1),

b
i i

b
n

B B e i k;

e f n t < b;
 (13)

Fig. 2. Bit-width of one LUT2 entry.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 8

Although error correction procedure is very simple, it is clear that its efficiency depends on

the number of compares. For this reason it is very important that the elements of l,t,b,kξ are

sorted in increasing order. In that case it is possible to use binary search algorithm, which

requires nTL table lookups TL 2(1 2)n log
 l,t,b,kξ [15].

Example 1. Let b = 10, t = 2, l = 3, k = 2, C1 = 3 and C2 = 13. According to Lemma 1, the

LUT2 will have 1893 2 10 2 =, , ,ξ entries (Table 2). Given this, let us assume that we want to

transmit 20 bits of data, D = 1011100000 0111010011. In that case, after calculating

2208 6071 1023 95B 1 1 2 2[] (mod 2 1) [] (mod) bC C B C B

the codeword Cw = 1011100000 0111010011 0001011111 will have 30 bits.

Table 2. The Syndrome Table (LUT2) for (30, 20) Integer (B3AEC/R2AEC)10 Decoder.

Element of

the set ξ3,2,10,2 i e

Element of

the set ξ3,2,10,2 i e

Element of

the set ξ3,2,10,2 i e

Element of

the set ξ3,2,10,2 i e
1 1 3 1 49 165 2 66 97 507 1 513 145 828 1 65
2 2 3 2 50 174 2 144 98 510 1 512 146 831 1 64
3 3 3 3 51 178 2 65 99 512 3 512 147 841 2 14
4 4 3 4 52 191 2 64 100 513 3 513 148 855 1 56
5 5 3 5 53 192 3 192 101 514 3 514 149 867 2 12
6 6 3 6 54 207 1 272 102 516 3 516 150 879 1 48
7 7 3 7 55 224 3 224 103 520 3 520 151 887 2 640
8 8 3 8 56 231 1 264 104 528 3 528 152 893 2 10
9 9 3 9 57 243 1 260 105 543 1 160 153 894 1 384

10 10 3 10 58 246 2 768 106 544 3 544 154 896 3 896
11 12 3 12 59 249 1 258 107 555 2 36 155 903 1 40
12 14 3 14 60 252 1 257 108 556 2 272 156 906 2 9
13 16 3 16 61 255 1 256 109 573 2 192 157 915 1 36
14 17 3 17 62 256 3 256 110 576 3 576 158 919 2 8
15 18 3 18 63 257 3 257 111 581 2 34 159 921 1 34
16 20 3 20 64 258 3 258 112 590 2 112 160 924 1 33
17 24 3 24 65 260 3 260 113 591 1 144 161 927 1 32
18 28 3 28 66 264 3 264 114 594 2 33 162 932 2 7
19 32 3 32 67 272 3 272 115 607 2 32 163 939 1 28
20 33 3 33 68 278 2 136 116 615 1 136 164 945 2 6
21 34 3 34 69 288 3 278 117 627 1 132 165 951 1 24
22 36 3 36 70 295 2 56 118 628 2 896 166 955 2 320
23 40 3 40 71 297 2 528 119 633 1 130 167 958 2 5
24 48 3 48 72 314 2 448 120 636 1 129 168 963 1 20
25 56 3 56 73 318 1 576 121 639 1 128 169 969 1 18
26 63 1 320 74 320 3 320 122 640 3 640 170 971 2 4
27 64 3 64 75 330 2 132 123 659 2 28 171 972 1 17
28 65 3 65 76 348 2 288 124 660 2 264 172 975 1 16
29 66 3 66 77 351 1 224 125 687 1 112 173 981 1 14
30 68 3 68 78 356 2 130 126 696 2 576 174 984 2 3
31 72 3 72 79 369 2 129 127 702 1 448 175 987 1 12
32 80 3 80 80 381 1 896 128 711 2 24 176 989 2 160
33 87 2 72 81 382 2 128 129 712 2 260 177 993 1 10
34 89 2 544 82 384 3 384 130 735 1 96 178 996 1 9
35 96 3 96 83 399 2 48 131 738 2 258 179 997 2 2
36 112 3 112 84 401 2 520 132 751 2 257 180 999 1 8
37 123 2 384 85 414 1 544 133 763 2 20 181 1002 1 7
38 126 1 640 86 447 1 192 134 764 2 256 182 1005 1 6
39 128 3 128 87 448 3 448 135 765 1 768 183 1006 2 80
40 129 3 129 88 453 2 516 136 768 3 768 184 1008 1 5
41 130 3 130 89 462 1 528 137 783 1 80 185 1010 2 1
42 132 3 132 90 479 2 514 138 789 2 18 186 1011 1 4
43 136 3 136 91 486 1 520 139 798 2 96 187 1014 1 3
44 139 2 68 92 492 2 513 140 802 2 17 188 1017 1 2
45 144 3 144 93 498 1 516 141 807 1 72 189 1020 1 1
46 157 2 224 94 503 2 40 142 815 2 16
47 159 1 288 95 504 1 514 143 819 1 68
48 160 3 160 96 505 2 512 144 825 1 66

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 9

Scenario 1 (l/b BA error): Let us assume that during data transmission an error on the 3rd,

4th and 5th bit has occurred (Ĉw = 1000000000 0111010011 0001011111). After calculating

1536 6071 1023 446ˆ 1 1 2 2B
ˆ ˆ[] (mod 2 1) [] (mod) bC C B C B

446 95 1023 351ˆ BB
ˆ[] (mod 2 1) [] (mod) bS C C

the decoder will check whether the value S = 351 belongs to the set 3,2,10,2ξ (Table 2). After

completing this task, it will perform error correction by using

1 1
ˆ[] 2 1 [512 224] 1023 736.(mod) = (mod) =b B B e

Scenario 2 (t/b RA error): Suppose that during data transmission an error on the 12th and

19th bit has occurred (Ĉw = 1011100000 0011010001 0001011111). In that case, after calculating

2208 2717 1023 833ˆ 1 1 2 2B
ˆ ˆ[] (mod 2 1) [] (mod) bC C B C B

833 95 1023 738ˆ BB
ˆ[] (mod 2 1) [] (mod) bS C C

the decoder will conclude that the value S = 738 indicates an error within the second byte (Table

2). On the basis of this information it will perform the error correcting procedure by using

2 2
ˆ[] 2 1 [209 258] 1023 467.(mod) = (mod) =b B B e

3. Implementation Strategy and Theoretical Decoding Throughputs

An important feature of ONWOAs, which is already mentioned, refers to the architecture of

the network nodes. Namely, regardless of its role, each network node (PC, server, router, switch,

ONU unit, etc.) [1] is equipped with a processor (general purpose or network processor) that is

optimized for integer and LUT operations [16], [17]. Thus, it is interesting to investigate which

of the proposed codes have the potential to be implemented on existing network hardware.

Without loss of generality, let us suppose that all network nodes are equipped with quad-

core processors (Fig. 3) having the following specifications [17], [18]:

1) clock rate: CR = 3.5·10
9
 Hz,

2) integer addition/subtraction operation: 1 cycle latency,

3) integer multiplication operation: 3 cycles latency,

4) 128-bit shift operation: 1 cycle latency,

5) modulo reduction operation: 1 cycle latency,

6) comparison operation: 1 cycle latency,

7) access to the L1 cache (32 KB per core): 4 cycles latency,

8) access to the L2 cache (256 KB per core): 11 cycles latency,

9) access to the L3 cache (16 MB shared): 28 cycles latency.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 10

In addition, let us suppose that the coefficients Ci are stored in each of the four L1 caches and

that the syndrome table is placed into the L3 cache (Table 3). In that case, the processing cores

will perform the following operations:

 Core 1

2 2ˆ 1 1 2 5 4 (-1)+1 4 (-1)+1B1 1
ˆ ˆ ˆ ˆ[] (mod 1) (mod 1)

kb b

k k i ii
C C B C B C B C B

 (14)

 Core 2

2 2ˆ 1 2 2 6 4 (-1)+2 4 (-1)+2B2 1
ˆ ˆ ˆ ˆ[] (mod 1) (mod 1)

kb b

k k i ii
C C B C B C B C B

 (15)

 Core 3

2 2ˆ 1 3 2 7 4 (-1)+3 4 (-1)+3B3 1
ˆ ˆ ˆ ˆ[] (mod 1) (mod 1)

kb b

k k i ii
C C B C B C B C B

 (16)

 Core 4

2 2ˆ 1 4 2 8 4 (-1)+4 4 (-1)+4B4 1
ˆ ˆ ˆ ˆ[] (mod 1) (mod 1)

kb b

k k i ii
C C B C B C B C B

 (17)

If we add to this K/128 shift operations (K - the number of data bits) we easily calculate that

each processing core requires T1 = 8·k + K/128 - 1 clock cycles (k accesses to the L1 cache, k

integer multiplications, k - 1 integer additions and K/128 shift operations) to compute the value

of the check-byte
B̂P

C (P = 1, 2, 3, 4). After finishing this task, each core will take T2 = 2 clock

cycles (1 integer subtraction and 1 modulo reduction) to perform the following operations:

Fig. 3. Block diagram of a quad-core processor.

Table 3. Memory Requirements for Some (BlAEC/R3AEC)32 Codes.

Code l

Memory

Requirements

for Storing the

Coefficients Ci

Memory

Requirements

for Storing the

Syndrome Table

of Table

Lookups

(1056, 1024) 8 4 x 128 B 2.32 MB 1 ≤ nTL ≤ 20

(1056, 1024) 9 4 x 128 B 3.15 MB 1 ≤ nTL ≤ 20

(2080, 2048) 8 4 x 256 B 4.63 MB 1 ≤ nTL ≤ 20

(2080, 2048) 9 4 x 256 B 6.29 MB 1 ≤ nTL ≤ 21

(4128, 4096) 8 4 x 512 B 9.32 MB 1 ≤ nTL ≤ 21

(4128, 4096) 9 4 x 512 B 12.66 MB 1 ≤ nTL ≤ 22

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 11

 Core 1
32

1 2S ˆ B1B1
ˆ[] (mod 1)C C

 (18)

 Core 2
32

2 2S ˆ B2B2
ˆ[] (mod 1)C C

 (19)

 Core 3
32

3 2S ˆ B3B3
ˆ[] (mod 1)C C

 (20)

 Core 4
32

4 2S ˆ B4B4
ˆ[] (mod 1)C C

 (21)

As explained in Section 2, if the data are received in error (S ≠ 0), the decoder will additionally

perform nTL table lookups, nTL comparisons, 1 integer addition and 1 modulo reduction. In our

case, four such operations will be executed in parallel in T3 = 29·nTL + 2 clock cycles.

Consequently, if we sum up all processing times, we come to the conclusion that the processor

requires

total 1 2 3 TLT = T + T + T = 8· + /128 + 29· + 3k K n (22)

clock cycles to process 4·K data bits, i.e. one second to decode

9
R

total TL

3.5 10 4
= =

T / 4) 8· + /128 + 29· + 3

()

(

C K
G

K k K n

 (23)

data bits. By substituting the values of K, k and nTL in (23), we obtain that Gmin = 16.93 Gbps

and Gmax = 34.38 Gbps. In other words, all codes from Table 4 have the potential to be used in

10G networks (e.g. 10G PONs) [1]. In addition, from Table 4 we see that the codes with code

rate 0.9922 have theoretical throughputs above 33 Gbps. Thus, they could be candidates for use

in ONWOAs operating at 32 Gbps (e.g. 32G Fibre Channel network) [1]. Finally, from (14)-(21)

it is evident that the analyzed codes (Table 4) can correct burst/random asymmetric errors

affecting four adjacent 32-bit bytes. This feature makes them more attractive for potential use,

since in practice channel errors may corrupt two adjacent bytes [4], [5], [6], [7].

Table 4. Theoretical Decoding Throughputs for Some Four-Byte Interleaved Codes.

Four-Byte Interleaved

(Bl/32AEC/R3AEC)32 Code
l

Code

Rate

Decoding

Throughput

(1056, 1024) 8 0.9697 16.93 Gbps

(1056, 1024) 9 0.9697 16.93 Gbps

(2080, 2048) 8 0.9846 25.81 Gbps

(2080, 2048) 9 0.9846 25.15 Gbps

(4128, 4096) 8 0.9922 34.38 Gbps

(4128, 4096) 9 0.9922 33.79 Gbps

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 12

4. Comparison with Existing Codes of Similar Properties

In Section 1 we listed several codes capable of correcting multiple asymmetric errors within

a b-bit byte. Among them, the most interesting are codes presented in [10] and [13]. These codes

have similar error correction properties as the proposed codes, and hence, they will be compared

to each other.

At the outset, let us focus on the parameters of all codes. According to [10], the codes

correcting single b-bit byte asymmetric errors (the SbAEC codes) have b + log2 (k) check bits,

where k < 2
b-1

. This means that the S16AEC codes require up to 23 check-bits to protect data

words of length K ≤ 2048 bits. On the other hand, although the presented codes always have b

check bits, they cannot be constructed when l = 8, t = 3 and b = 16. Hence, to protect data words

of length K ≤ 2048 bits, one must use integer (B8AEC/R3AEC)b codes that have 32 check-bits.

The same applies to codes correcting t asymmetric errors within a b-bit [13]. For the parameters

t = 3 and b = 16, these codes can protect data words of length up to 224 bits. However, for the

parameters t = 3 and b = 32 they can protect more than 2048 bits.

As far as data processing is concerned, the codes from [10] are significantly different from

the proposed codes and the codes given in [13]. Namely, besides using integer and LUT

operations, these codes also use bit-oriented operations (b - 1 binary additions per b-bit byte

[10]). Because of this, they are not suited for implementation on modern processors. On the

other hand, in Section 3 we have seen that the proposed codes are very suitable for software

implementation. The same holds for the codes presented in [13]. The only difference between

these two codes is that codes from [13] are less demanding in terms of memory needs. More

precisely, for data words of length K ≤ 2048 bits they require up to 3.17 MB of memory. In

contrast to them, the proposed codes demand at most 6.29 MB of memory (Table 5).

Table 5. Comparison of the Proposed Codes with Existing Codes of Similar Properties.

Main

characteristics
Proposed codes Codes from [13] Codes from [10]

Error correction

capabilities

Correction of burst and

random asymmetric

errors within a b-bit byte

Correction of random

asymmetric errors within

 a b-bit byte

Correction of any

asymmetric error within

a b-bit byte

Maximum number

of data bytes

Not specified

(depends on the results

of a computer search)

Not specified

(depends on the results

of a computer search)

The largest prime

less than 2
k

Number

of check-bits
b b b + log2 (k)

Processing

of data bits

Integer and LUT

operations

Integer and LUT

operations

Integer, LUT and

bit-oriented operations

Size of the

syndrome table

when K ≤ 2048 bits

≤ 6.29 MB ≤ 3.17 MB ≤ 64 B

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 13

Finally, it must be mentioned that the proposed codes provide the same level of reliability as

SbAEC codes. Namely, although they cannot correct any asymmetric error within a b-bit byte,

they are sufficiently powerful to correct almost all channel errors. Such a conclusion is indirectly

supported by experimental results reported in [4], [5], [6], [7]. On the other hand, the codes from

[13] are unable to correct burst asymmetric errors affecting four or more bits. Because of this,

they cannot provide high throughput and reliability simultaneously.

 5. Conclusion

In this paper we presented a class of codes suitable for use in optical networks without

optical amplifiers. We have shown that these codes have two important characteristics: first,

they can correct burst and random asymmetric errors confined to a b-bit byte, and second, they

use integer and lookup table operations which make them suitable for software implementation.

In addition to this, it was also shown that the proposed codes can be interleaved without delay

and without using any additional hardware. Thanks to this fact, it is possible to construct simple

codes capable of correcting multiple asymmetric errors affecting several consecutive bytes.

 References

[1] R. Ramaswani, K. Sivarajan and G. Sasaki, Optical Networks: A Practical Perspective, 3rd

ed., Elsevier, Inc., 2010.

[2] J. R. Pierce, “Optical Channels: Practical Limits with Photon Counting,” IEEE Trans.

Communications, vol. 26, pp. 1819-1821, Dec. 1978.

[3] P. Oprisan and B. Bose, “ARQ in Optical Networks,” Proc. IEEE Int’l Symp. Pacific Rim

Dependable Computing, pp. 251-257, Dec. 2001.

[4] D. Mello, E. Offer and J. Reichert, “Error Arrival Statistics for FEC Design in Four-Wave

Mixing Limited Systems,” Proc. Optical Fiber Communications Conference, pp. 529-530,

Mar. 2003.

[5] L. James, “Error Behaviour in Optical Networks,” PhD thesis, Department of Engineering,

University of Cambridge, 2005.

[6] P. Anslow and O. Ishida, “Error Distribution in Optical Links,” IEEE 802.3 HSSG Interim

Meeting, Nov. 2007.

[7] K. Cho et al., “Performance of Forward-Error Correction Code in 10-Gb/s RSOA-Based

WDM PON,” IEEE Photon. Technology Letters, vol. 22, no. 1, pp. 57-59, Jan. 2010.

[8] S. Park and B. Bose, “Burst Asymmetric/Unidirectional Error Correcting/Detecting Codes,”

Proc. IEEE 20th Int’l Symp. Fault-Tolerant Computing, pp. 273-280, June 1990.

[9] Y. Saitoh and H. Imai, “Some Classes of Burst Asymmetric or Unidirectional Error

Correcting Codes,” Elect. Letters, vo1. 26, no. 5, pp. 286-287, Mar. 1990.

[10] B. Bose and S. Al-Bassam, “Byte Unidirectional Error Correcting and Detecting Codes,”

IEEE Trans. Computers, vol. 41, no. 12, pp. 1601-1606, Dec. 1992.

[11] S. Al-Bassam and B. Bose, “Asymmetric/Unidirectional Error Correcting and Detecting

Codes,” IEEE Trans. Computers, vol. 43, no. 5, pp. 590-597, May 1994.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 14

[12] A. Radonjic and V. Vujicic, “Integer Codes Correcting Burst Errors within a Byte,” IEEE

Trans. Computers, vol. 62, no. 2, pp. 411-415, Feb. 2013.

[13] A. Radonjic and V. Vujicic, “Integer Codes Correcting Spotty Byte Asymmetric Errors,”

IEEE Comm. Letters, vol. 20, no. 12, pp. 2338-2341, Dec. 2016.

[14] M. Ruiz-Sanchez, E. Biersack and W. Dabbous, “Survey and Taxonomy of IP Address

Lookup Algorithms,” IEEE/ACM Trans. Networking, vol. 15, no. pp. 8-23, Mar./Apr. 2001.

[15] K. Mehlhornand and P. Sanders, Algorithms and Data Structures: The Basic Toolbox,

Springer, 2008.

[16] R. Giladi, Network Processors: Architecture, Programming, and Implementation, Elsevier,

Inc., 2008.

[17] J. Hennessy and D. Patterson, Computer Architecture: A Quantitative Approach, 5th ed.,

Elsevier, Inc., 2012.

[18] A. Fog, “The Microarchitecture of Intel, AMD and VIA CPUs: An Optimization Guide for

Assembly Programmers and Compiler Makers,” Tech. University of Denmark, Feb. 2017.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 15

APPENDIX A

FIRST 128 COEFFICIENTS CI IN [2, 232
 – 2] FOR INTEGER (BlAEC/RtAEC)32 CODES

l = 8 and t = 2

2 259 261 263 265 269 271 277 281 283 289 293 299 307 311 313

317 337 341 347 349 353 359 361 367 373 379 383 389 397 401 409

419 421 431 433 439 443 449 457 461 463 467 479 487 491 499 503

509 521 523 541 547 557 563 569 571 577 587 593 599 601 607 613

617 619 631 641 643 647 653 659 661 673 677 691 701 709 719 727

733 739 743 751 757 761 773 787 797 809 811 821 823 827 829 839

853 857 859 863 877 881 883 887 907 911 919 929 937 941 947 953

967 971 977 983 991 997 1009 1013 1019 1021 1039 1049 1051 1061 1063 1069

l = 8 and t = 3

2 263 267 269 271 275 281 283 287 299 307 313 317 349 353 361

367 373 379 383 389 397 401 409 421 431 433 443 463 467 479 487

499 503 509 523 527 541 547 557 563 587 593 599 601 613 617 619

631 643 647 653 659 661 673 677 691 701 727 733 739 743 751 757

761 773 787 797 809 811 823 827 831 839 841 853 857 859 863 873

877 879 881 883 887 907 911 919 929 937 947 953 967 971 977 983

991 997 1009 1011 1013 1019 1021 1031 1039 1049 1051 1061 1063 1069 1077 1087

1091 1093 1097 1103 1109 1117 1123 1129 1151 1163 1181 1187 1193 1201 1213 1217

l = 9 and t = 2

2 515 517 519 521 523 527 529 533 541 547 551 553 557 563 569

571 577 587 593 599 601 607 613 617 619 631 643 647 653 659 661

673 677 691 701 709 719 727 733 739 743 751 757 761 769 773 787

797 809 811 821 823 827 829 839 853 857 859 863 877 881 883 887

907 911 919 929 937 941 947 953 967 971 977 983 991 1009 1013 1019

1021 1031 1039 1049 1051 1061 1063 1069 1087 1091 1093 1097 1103 1109 1117 1123

1129 1151 1163 1171 1181 1187 1193 1201 1213 1217 1223 1229 1231 1237 1249 1259

1277 1279 1289 1291 1297 1301 1303 1307 1319 1321 1327 1361 1367 1369 1373 1381

l = 9 and t = 3

2 519 523 527 533 541 547 553 557 563 575 583 587 593 599 601

613 617 619 631 643 647 653 659 661 673 677 691 701 703 727 733

739 743 751 761 773 787 797 809 811 823 827 839 841 853 857 859

863 877 881 883 887 907 911 919 929 937 947 953 967 971 977 983

991 1009 1013 1019 1021 1031 1039 1049 1051 1061 1063 1069 1091 1093 1097 1103

1109 117 1123 1129 1151 1163 1181 1187 1193 1201 1213 1217 1223 1231 1237 1249

1259 1277 1279 1289 1291 1297 1301 1303 1307 1319 1327 1361 1373 1381 1399 1423

1427 1429 1433 1439 1453 1459 1471 1481 1483 1487 1489 1493 1499 1523 1531 1543

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 16

APPENDIX B

MATLAB CODE FOR FINDING THE COEFFICIENTS CI

function [] = Coefficients

b=input('\nPlease, specify the byte length (in bits): \nb = ');
l=input('\nPlease, specify the parameter l (l < b): \nl = ');
t=input('\nPlease, specify the parameter t (t=2 or t=3): \nt = ');
if (l>b)||(t>3)||(t<2)||(t>=l)
 fprintf('Error! The following condition must be satisfied: 2 <= t <=3 < l < b)\n');
 return;
end

Q=2^b-1;
q1=0;
s1=[];
for i=0:b-1
 for k=1:2^l-1
 q1=q1+1;
 s1 (q1)=mod(k*(2^i),Q);

 end
end
f3=[];
q3=0;
for i=0:b-3
 for j=i+1:b-2
 for k=j+1:b-1

 q3=q3+1;
 f3(q3)=mod(2^i+2^j+2^k,Q);
 end
 end
end
f2=[];

q2=0;
for i=0:b-2
 for j=i+1:b-1
 q2=q2+1;
 f2(q2)=mod(2^i+2^j,Q);
 end
end

if (t==2)
 e=[s1 f2];
elseif (t==3)
 e=[s1 f2 f3];
end
X=setdiff(e,0);
L=length(X);

E=X;
Coefficients=[-1];
k=1;
for m=2:Q-1
 A=[];
 z=0;
 for i=1:L

 A(i)=mod(-m*X(i),Q);
 end
 if (nnz(setdiff(A,E))==L)
 k=k+1;
 if (k<=129)
 Coefficients(k)=m;
 E=union(E,A);

 else
 break;
 end
 end
end
Ci=setdiff(Coefficients,-1);
fprintf(1,'The following coefficients are found: %d\n',Ci);

