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Abstract 

The olivine type LiFePO4 is synthesized via a simple and inexpensive route by aqueous 

co-precipitation of an Fe(II) precursor material in molten stearic acid and subsequent heat 

treatment at different temperatures. Stearic acid serves as both chelating agent and 

carbonaceous material. The obtained composites with carbon are characterized by X-ray 

powder diffraction, field emission scanning electron microscopy, and Mössbauer 

spectroscopy. Electrochemical characteristics of the composites are evaluated by using 

galvanostatic charge/discharge tests. The powder obtained at 700 ºC delivers discharge 

capacity of 160 mAhg-1, quite near the theoretical value. 
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1. Introduction 

 

Recent review on challenges facing the development of rechargeable Li batteries for 

electric vehicles emphasized their cost, safety, cell energy density, rate of 

charge/discharge, and service life [1]. The olivine type LiFePO4 is among the most 

attractive materials for the cathode of lithium-ion battery that meets the above criteria. 

The benefits of using LiFePO4 are: excellent cycle life, high structural stability, low cost 

and environmental friendliness. Lithium iron phosphate can utilize one lithium ion per 

formula unit which leads to the theoretical capacity of 170 mAhg-1. The first attempts to 

de-insert Li from this material were limited to about 0.6 e− owing to transport limitations 

of electrons and ions [2]. There are several possible means to overcome this main 

obstacle in reaching theoretical capacity, that is its low electronic and/or ionic 

conductivity: by selective doping with supervalent cations [3-5], coating particles with 
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electronically conductive agent such as carbon [6-9], Ag [10], RuO2 [11], etc., and by 

decreasing particle size [12-14].  

The olivine structure that typifies LiFePO4 has a slightly distorted hexagonally-close-

packed oxygen array. The cation arrangement in LiFePO4 differs significantly from that 

in the layered and spinel structures. The divalent Fe2+ ions occupy corner-shared 

octahedra (denoted as M2 sites). The phosphorus ions are located in tetrahedral sites, and 

the lithium ions reside in chains of edge-shared octahedra (M1 sites) [2, 15]. Lithium 

motion within the olivine crystal structure occurs through one-dimensional (1D) channels 

along the b axis [16]. These one-dimensional paths are particularly susceptible to 

blockage by defects and impurities [16, 17]. 

There are many synthesis routes in preparing LiFePO4 [18].  Its commercial use has 

already started and there are several companies that base their business on lithium 

phosphate technology. Still, there is a need for a manufacturing process that produces 

electrochemically active LiFePO4 at a low cost. Furthermore, simplicity of the synthesis 

process is vital for commercializing Li-ion batteries. Therefore, the interest in developing 

new approaches to the synthesis of LiFePO4 did not fade.  

Here is presented very simple and inexpensive route for obtaining LiFePO4/C composites 

by aqueous co-precipitation of an Fe(II) precursor material in molten stearic acid and 

subsequent heat treatment in argon atmosphere at different temperatures. Stearic acid 

serves as both surfactant and dispersant, it is cheap and environmentally friendly, and 

provides a stable environment for moisture sensitive precursors because of its 

hydrophobic nature. During pyrolytic degradation stearic acid decomposes in several 

steps that include decarboxylation, cracking and finally decomposition to carbon while 
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creating reductive atmosphere that can prevent Fe2+ oxidation [19]. The in situ formed 

carbon would effectively restrict the growth of the particles, and by coating the particles 

would increase powder conductivity.  

2. Experimental 

LiFePO4/C composites were synthesized by an aqueous co-precipitation of an Fe(II) 

precursor material in the presence of stearic acid. Stearic acid was melted and then 

appropriate amount of an aqueous solution of (NH4)2HPO4 was added into it. Equimolar 

amounts of FeSO4*7H20 (Fluka) and LiNO3 were dissolved in sufficient amount of water. 

This solution was added drop by drop into the heated melt under vigorous stirring when 

the precipitation occurred. The final molar ratio of Li:Fe:P:stearic acid was 1:1:1:1. After 

the evaporation of water, the melt was cooled to room temperature, thoroughly mixed and 

reground, and calcined at temperatures of 600, 700, and 800 ºC in argon atmosphere. 

Thus obtained powders were washed with distilled water and dried under vacuum.  

X-ray diffraction data were collected on a Philips PW 1050 diffractometer with Cu-Kα1,2 

radiation (Ni filter) at the room temperature. Measurements were done in 2θ range of 10-

120° with scanning step width of 0.02° and 14 s times per step. Crystal structure 

refinement was based on the Rietveld full profile method [20] using the Koalariet 

computing program [21].  

The Mössbauer absorption spectrum was obtained in a standard transmission geometry 

with constant acceleration using a source of 57Co in Rh (1.85 GBq) at room temperature. 

LiFePO4 powder was prepared as Mössbauer absorber with a diameter of 15 mm 

sandwiched by aluminium foils. The data were stored in 1024 multichannel analyzer. 

Laser spectrum and calibration spectrа were recorded and fitted in order to recalculate 
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channels in mm/s. The spectrum of sample synthesized at 800 oC has been examined by 

fitting data with WinNormos-Site program using a least squares method, while the other 

two samples were examined with WinNormos-Dist based on histogram method. Isomer 

shifts аrе shown with respect to α-Fe. 

Thermal analysis of the sample was performed on SDT 2960 simultaneous DSC–TGA 

TA Instruments in order to determine carbon content [22]. 

The morphologies of the synthesized powders were analyzed by field emission scanning 

electron microscopy (FE-SEM, Supra 35 VP, Carl Zeiss). 

Electrochemical measurements were carried out in a closed, argon filled two-electrode 

cell at room temperature, with metallic lithium as a counter electrode. 1M solution of 

LiClO4 (p.a., Chemmetall GmbH) in PC (p.a., Honeywell) was used as electrolyte. 

Working electrodes were made from synthesized material, carbon black and 

polyvinylidene fluoride (PVdF, Aldrich) mixed in 75:20:5 weight percent ratio and 

deposited on platinum foils from slurry prepared in N-methyl-2-pyrrolidone. 

Galvanostatic charge/discharge tests were performed between 4.1 and 2.5 V at C/10 

current rates.  

 

3. Results and discussion 

 

Fig. 1 shows particle morphologies of the samples revealed by field emission scanning 

electron microscopy (FESEM). At the lowest temperature of 600 ºC the particles are 

highly agglomerated, consisted of closely packed cauliflower-like nodular structures 

giving rise to irregularly shaped pores of variable width. The primary grains are less than 
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50 nm in size. Particle bonding and neck formation, denoting interparticle sintering, can 

be observed as well. By increasing the temperature to 700 ºC the morphology does not 

change a lot. Apparently, the in situ formed carbon effectively restricted the growth of the 

particles. Going to the highest temperature of 800 ºC there is remarkable difference in 

morphology, actually two different particle morphologies can be observed. Besides 

previously seen nodular morphology there are a great number of agglomerated micron-

sized polyhedra that are most probably grown on the account of small grains. Such 

polyhedral crystal shape is comparable to the theoretically calculated growth morphology 

of LiFePO4 [23]. Apparently, the temperature of 800 ºC was sufficient for enabling 

further crystallization and growth of the primary particles.  

X-ray powder diffraction patterns (Fig. 2) were used for phase identification and 

structural analysis. In all three samples olivine type LiFePO4 was obtained as a major 

phase with heterosite FePO4 as a minor phase. A two-phase refinement was performed on 

XRD data to quantify the amounts of different phases present. The amount of the second 

phase is increasing with increasing calcination temperature, starting from 9 wt% (Table 

1) at the lowest temperature and reaching almost 15 wt% (Table 1) at the highest 

temperature. This finding is quite surprising since, according to the literature, heterosite 

FePO4 is obtainable only by chemical or electrochemical delithiation of olivine LiFePO4 

phase [24]. To our best knowledge, it has never been synthesized or even found as an 

impurity phase before. Furthermore, on heating, heterosite FePO4 irreversibly converts to 

the electrochemically inactive trigonal verlinite phase FePO4 [22]. At temperatures higher  

than 200 ºC LiFePO4 and FePO4 make solid solution forming lithium deficient olivine 

phase LixFePO4 (x<1) that on cooling back to room temperature separates into mixtures 
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of LiFePO4 + FePO4 [25, 26]. Recently, solid-solution phases in LixFePO4 close to the 

stoichiometric end members LiFePO4 and FePO4 were successfully isolated at room 

temperature using both chemical and electrochemical routes [27, 28]. On further heating 

at temperatures greater than 500 ºC, solid solution LixFePO4 starts to decompose into 

mixtures of non-olivine compounds [25]. These imply that during our synthesis lithium 

deficient olivine type LixFePO4 was formed, which upon cooling separates into mixtures 

of LiFePO4 + FePO4. Apparently, atmosphere conditions where such that enabled the 

preservation of the olivine structure, even though high temperatures (higher than 500 ºC) 

were applied. Li2O was detected by XRD as the third phase in sample obtained at 800 ºC 

before it was washed with water. Obviously, departure of lithium from the structure and 

reaction with O2 is temperature dependent, but its cause is still not apparent. Li2O 

decomposes after washing the powders with water, and hence does not exist in the 

powders under investigation. There is no evidence for the formation of crystalline carbon, 

so internal carbon could be treated as a contribution to the background. The amount of an 

in situ formed carbon was determined by heating the powder in air considering that only 

Fe2+ ions oxidize and contribute to the weight gain. Taken in account the amount of Fe2+ 

ions obtained by Mössbauer spectroscopy the estimated amounts of carbon were ranging 

from 5 to 4 wt% with increasing temperature. In addition, energy dispersive spectroscopy 

(EDS) of the samples showed only peaks corresponding to Fe, P, C, and O. Li is too light 

for the detection with EDS. 

Crystal structure refinements were based on the Rietveld full profile method [20] using 

the Koalariet computing program based on a Fundamental Parameters convolution 

approach to generate line profiles [21]. This program is appropriate for processing the 
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data obtained from the samples with dominant microstructure parameters (small 

crystallite size and large microstrains). The observed and calculated X-ray diffraction 

profiles of the samples are given in Fig. 2, while the main results of the final Rietveld 

refinements are presented in Table 1 and Table 2. The structure of both LiFePO4 and 

FePO4 powders have been refined in the space group Pnma (D2h
16) in olivine type with 

following crystallographic positions: Li+ ions in special crystallographic position 4a 

[0,0,0] with local symmetry ī;  Fe2+ and P5+ ions occupy two different crystallographic 4c 

positions [x,0.25,z]  with local symmetry m; O2- ions occupy three different 

crystallographic positions: additional two 4c positions and one general 8d position [x,y,z] 

with local symmetry 1. The Rietveld refinement results indicate that lattice parameters 

and primitive cell volumes of each phase are similar for all three samples and consistent 

with the literature data [15]. Primitive cell volume of olivine LiFePO4 phase is near 291.7 

Å3, regardless of the synthesis temperature, very much the same as the volume of 

hydrothermally obtained single crystal [29]. The main differences are in microstructural 

parameters: mean crystallite size, microstrain and strain. The obtained values for 

microstrain and strain are refined to zero within an error, and therefore can not be 

quantified by number, still the trend that follows with increasing temperature is a 

decrease of microstrain, and an increase of strain. The value for mean crystallite size 

increases from 56 nm to 140 nm with increasing temperature. Material synthesized at the 

highest temperature presents the largest coherence domain length with no microstrain, 

and with noticeable strain. The Rietveld refinement also showed additional electron 

density on the lithium sites indicating so-called "anti-site" defect in which a Li ion (on the 

M1 site) and an Fe ion (on the M2 site) are interchanged. This anti-site disorder (ca. 1-2 
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mol %) is believed to be intrinsic property of olivine LiFePO4 [17]. Powder obtained at 

600 ºC has the highest value of this disorder suggesting 3at.% occupation of Li sites by 

Fe. It is not possible from powder Rietveld studies to differentiate between an iron-rich 

model, Li1 − 2yFeyFePO4, and a lithium–iron mixing model, Li1 − yFey[LiyFe1 − y]PO4, with 

only Fe2+ ions taking into consideration, or to exclude the existence of both cation 

vacancies and anti-site disorder ( xLi1-x-yFey)(  zFe1-z)PO4 with lithium deficiency and 

the presence of significant amounts of Fe at the oxidation state +3. By comparing mean 

crystallite size with the mean particle size estimated from FESEM images it can be 

concluded that at the lowest temperature of 600 ºC part of the particles could be 

considered as single nanocrystals, whereas at higher temperatures particles are 

polycrystalline composed of a number of crystallites. The refinement results imply that 

thermal treatment at 700 ºC is optimal for obtaining powder consisted of small particles 

with good crystallinity and iron ordering (Table 1), all of them being necessary for 

delivering good electrochemical properties. 

Asymmetric Mössbauer absorption spectra revealed the presence of Fe2+ and Fe3+ ions. 

As shown in Fig. 3, three doublets were required to adjust the calculated spectrum to the 

experimental one. There are no lines that could be attributed to sextet originated in Fe2O3 

impurity. The characteristic parameters deduced from these refinements (Table3) imply 

the presence of Fe2+ and Fe3+ in octahedral coordination, assigned to olivine LiFePO4 and 

heterosite FePO4, respectively [30], but also the presence of Fe3+ ions in tetrahedral 

coordination. According to the Mössbauer study, molar ratio of octahedrally coordinated 

Fe2+/Fe3+ is smaller than the Fe2+/Fe3+ ratio of crystallized phases calculated from the 

Rietveld two-phase refinement, meaning that octahedrally coordinated Fe3+ ions are 
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present not only in heterosite, but also in olivine phase within composite powder. Ferric 

iron can arise in two ways: either by ion replacement 3Fe2+→ 2Fe3+, leaving a vacancy in 

the M(2) site, or by the replacement process Li+Fe2+ →Fe3+, leaving a vacancy in the 

M(1) site [15]. This leads to the conclusion that olivine phase in the sample is lithium 

deficient LixFePO4 where lithium ion was replaced by Fe3+ ion creating both cation 

vacancies and anti-site disorder, the latter revealed by Rietveld refinement. The 

determined full widths at half maximum (Γ) for the two differently coordinated Fe3+ ions 

were significantly different, with Γ around 0.3 mms−1 for the octahedrally coordinated 

Fe3+ ions and around 0.6 mms−1 for the tetrahedrally coordinated Fe3+ ions. This large 

broadening of the Fe3+ Mössbauer absorption line suggests the existence of a distribution 

of quadrupolar effects [31], so additionally quadrupole splitting distribution was included 

in the fitting procedure. The two unimodal distributions are obtained for the sample 

synthesized at 700 ºC, while the bimodal distribution is present for the sample 

synthesized at 600 ºC. The average values of isomer shifts for named three distributions 

are approximately the same and are attached to the presence of ferric ions. The first peak 

in the bimodal distribution is positioned at Δ≈0.20 mms−1, and the second one at  Δ≈0.90 

mms−1. The distribution is related to the structural distortion in the environment of the 

absorbing ion, which could be associated with amorphous or nanoparticulate nature of 

this Fe3+ phase, which is of low crystallinity, and therefore not detectable by X-ray 

diffraction. Note that our samples were synthesized in a short time that can promote 

formation of residual amorphous impurities. Trivalent Fe might be formed during thermal 

treatments by a small amount of oxygen that is always included in argon flow, so it is 
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probably better to use a gas mixture of argon with few percentages of hydrogen during 

the thermal treatments.  

Electrochemical performances of the samples used as a cathode of a Li-ion battery were 

examined by charge-discharge tests. For all samples a flat plateau at around 3.4 V is 

observed during both charge and discharge (Fig. 4), implying typical two-phased 

deintercalation/intercalation reaction. Resulted specific capacities were calculated based 

on the mass of the powders as a whole, reduced only by the amount of estimated carbon. 

It is interesting to note that delivered capacity on first charging process (108 mAhg-1, 

116 mAhg-1, and 106 mAhg-1 for the powders obtained at 800, 700, 600 ºC, 

respectively) is smaller than that obtained on discharging for all samples. On the other 

hand, the first charge capacity is proportional to the amount of Fe2+ ions present in 

powders calculated by Mössbauer spectroscopy. The derived value of the discharge 

specific capacity for the powders obtained at 600 ºC and 700 ºC is about 160 mAhg-1, 

which is quite near the theoretical value, showing that heterosite FePO4 phase also 

participated in electrochemical reactions. Besides, discharging curves for the powders 

obtained at 600 ºC and 700 ºC show discrepancy between line profiles indicating 

dissimilar mechanism of lithium ion insertion. Namely, at 600 ºC at certain lithium 

content discharging curve changes its profile from flat plateau to sloping curve indicating 

shift in Li insertion mechanism from two-phase process to a single-phase process. There 

are several possibilities for such behavior documented in the literature: i) The third Fe3+ 

phase found by Mössbauer spectroscopy, which showed the existence of a distribution of 

quadrupolar effects, could be an amorphous trigonal FePO4 phase, which is 

electrochemically active showing sloping charge/discharge curves [32, 33]. The trigonal 
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form is composed of iron and phosphorus atoms tetrahedrally bonded to four oxygen 

atoms [22]. ii) The voltage slope is a surface effect, which suggests that the amorphous 

surface layer containing Fe3+(S = 1/2) allows a more homogeneous distribution of Li and 

Li vacancies upon delithiation than the crystal, where iron is in the Fe2+(S = 2) state [34]. 

iii) Recently, it has been shown that the two-phase nature of the LiFePO4/FePO4 system 

changes into a one-phase solid-solution LixFePO4 system by downsizing the particles 

having large anti-site disorder [12]. As previously showed, the particles obtained at 600 

ºC were the smallest in size, having the largest anti-site disorder, and part of them can be 

treated as nanocrystals. Powder obtained at 800 ºC delivered capacity of 110 mAhg-1. 

Such capacity loss, compared to the other two powders, is a consequence of increased 

both crystallite and particle size that suppressed the whole utilization of the material due 

to their small surface area and an impediment of lithium ions to diffuse through the 

LiFePO4/FePO4 interface. In addition, the voltage hysteresis between the charge and 

discharge curve obtained during galvanostatic testing is the largest for the sample 

obtained at 800 ºC, indicating the increase of impedance due to larger particle size since 

the electrode resistance depends solely on the mean particle size [13].  

 

4. Conclusion 

 

Simplicity of the synthesis process is vital for commercializing Li-ion batteries. Here we 

presented simple and inexpensive route for obtaining LiFePO4/C composites by aqueous 

co-precipitation of an Fe(II) precursor material in the presence of stearic acid. Stearic 

acid serves as both surfactant and dispersant, which decomposes to carbon during 
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pyrolytic degradation and creates reductive atmosphere that can prevent Fe2+ oxidation. 

The obtained powders were composites made of olivine type LiFePO4 and carbon, and 

with heterosite FePO4 as a minor phase evidenced for the first time in the literature as a 

byproduct of the synthesis. Nevertheless, the optimal powder delivered discharge 

capacity of 160 mAhg-1, which is quite near the theoretical value, showing that heterosite 

FePO4 phase also participated in electrochemical reactions. The discussed synthesis route 

does not suppose any specific or expensive equipment, and it can be easily scaled up for 

commercialization. This process also shows potential for further improvement by altering 

synthesis conditions to obtain fully electrochemically active LiFePO4.  
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Table 1. The final results of the two-phase Rietveld structural refinement of the samples obtained at 800  ºC, 700  ºC, and 600  ºC. 

 
Thermal treatment 

temperature (ºC) 
600 700 800 

Lattice parameters (Å) 

LiFePO4 

a = 10.3241(3) 

b =6.0096(2) 

c = 4.7023(2) 

FePO4 

a = 9.8635(7) 

b =5.8339(4) 

c = 4.7645(4) 

LiFePO4 

a = 10.3279(3) 

b =  6.0096(2) 

c = 4.6994(1) 

FePO4 

a = 9.8439(4) 

b =5.8089(2) 

c = 4.7809(2) 

LiFePO4 

a = 10.3345(6) 

b = 6.0101(3) 

c = 4.6957(3) 

 

FePO4 

a = 9.8304(2) 

b = 5.7995(1) 

c = 4.7828(1) 

 

Primitive cell volume 

(Å3) 
V = 291.75(2) V = 274.16(3) V = 291.68(9) V = 273.38(9) V =  291.66(6) V =  272.67(9) 

Weight (%) 90.6(1) 9.4(1) 88.7(1) 11.3(1) 85.1(1) 14.9(1) 

Mean crystallite size 

(nm) 
57(3) 75(4) 140(10) 

Li site occ. by Fe 0.027(7) 0.019(5) 0.020(5) 

R factor (%) Rwp =  4.43 Rwp  = 3.76 Rwp  =  4.49 
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Table 2. Fixed and refined atomic coordinates and isotropic displacement parameters 

in LiFePO4 and FePO4 phases present in the samples. 

Thermal treatment temperature 600 ºC 

 LiFePO4 FePO4  

fractional 

coordinates 
x y z x y z B (Å2)

Li    (4a) 0 0 0 - - - 1.8(1) 

Fe   (4c) 0.2824(4) 0.25 0.9766(1) 0.2822(4) 0.25 0.9568(1) 1.8(1) 

P     (4c) 0.0925(9) 0.25 0.4107(2) 0.1090(8) 0.25 0.4251(2) 1.8(1) 

O(1) (4c) 0.1081(2) 0.25 0.7289(3) 0.1821(7) 0.25 0.7226(3) 1.8(1) 

O(2) (4c) 0.4518(3) 0.25 0.2107(3) 0.4821(7) 0.25 0.2156(3) 1.8(1) 

O(3) (8d) 0.1639(1) 0.0432(2) 0.28214(2) 0.1260(8) 0.0652(1) 0.2694(1) 1.8(1) 

Thermal treatment temperature 700 ºC 

 LiFePO4 FePO4  

fractional 

coordinates 
x y z x y z B (Å2)

Li    (4a) 0 0 0 - - - 1.2(1) 

Fe   (4c) 0.2820(3) 0.25 0.9749(4) 0.2774(2) 0.25 0.9505(2) 1.2(1) 

P     (4c) 0.0924(4) 0.25 0.4140(6) 0.1052(4) 0.25 0.4048(5) 1.2(1) 

O(1) (4c) 0.1039(6) 0.25 0.7343(7) 0.1519(7) 0.25 0.7457(5) 1.2(1) 

O(2) (4c) 0.4563(6) 0.25 0.2100(7) 0.4299(7) 0.25 0.1714(6) 1.2(1) 

O(3) (8d) 0.1682(1) 0.0426(7) 0.2828(6) 0.1442(5) 0.0436(7) 0.2578(2) 1.2(1) 

Thermal treatment temperature 800 ºC 

 LiFePO4 FePO4  

fractional 

coordinates 
x y z x y z B (Å2)
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Li    (4a) 0 0 0 - - - 1.1(1) 

Fe   (4c) 0.2822(3) 0.25 0.9762(4) 0.2712(2) 0.25 0.9418(3) 1.1(1) 

P     (4c) 0.0942(7) 0.25 0.4153(5) 0.0926(3) 0.25 0.3858(5) 1.1(1) 

O(1) (4c) 0.1009(9) 0.25 0.7412(7) 0.1350(6) 0.25 0.6836(6) 1.1(1) 

O(2) (4c) 0.4602(9) 0.25 0.2158(7) 0.4241(6) 0.25 0.1615(6) 1.1(1) 

O(3) (8d) 0.1670(9) 0.0406(9) 0.2808(6) 0.1479(4) 0.0053(5) 0.2698(5) 1.1(1) 
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Table 3. Mössbauer parameters obtained by fittings for the powders thermally treated at 

800  ºC, 700  ºC, and 600  ºC.  

Thermal 

treatment 

temperature 

(ºC) 

Site A (% ) δ (mms-1) Δ (mms-1) Γ (mms-1) 

800 

Fe2+ (Oh) 60(1) 1.205(2) 2.958(5) 0.286(6) 

Fe3+ (Oh) 23(2) 0.494(9) 1.33(2) 0.36(3) 

Fe3+ (Th) 17(2) 0.36(1) 0.63(3) 0.40(4) 

700 

Fe2+ (Oh) 70(1) 1.210(1) 2.959(3) 0.311(4) 

Fe3+ (Oh) 19(2) 0.48(1) 1.32(3) 0.44(3) 

Distributions: < δ > < Δ > SD 

Fe3+ 4.5 0.40(7) 0.264 0.116 

Fe3+ 6.5 0.42(7) 0.759 0.126 

600 

Fe2+ (Oh) 66(1) 1.208(7) 2.94(1) 0.332(9) 

Fe3+ (Oh) 10(6) 0.42(7) 1.5(2) 0.4(1) 

Distributions: < δ > < Δ > SD 

Fe3+ 23.3 0.37(4) 0.65 0.316 

 

aδ, Δ, Γ, and A are isomer shift, quadrupole splitting, the full width at half maximum, 

and absorption area intensity ratio, respectively. 
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Figure captions  

Fig. 1.  FESEM micrographs of the powders obtained at a) 800 ºC, b) 700 ºC, and c) 

600 ºC. 

Fig. 2. The observed (•), calculated (-), and the difference between the observed and 

calculated (bottom) X-ray diffraction data  taken at room temperature from the 

powders thermally treated  at a) 800 ºC, b) 700 ºC, and c) 600 ºC under argon 

atmosphere. Vertical markers bellow the diffraction patterns indicate positions of 

possible Bragg reflections for olivine type LiFePO4 (upper) and heterosite FePO4 

(lower). 

Fig. 3. Mössbauer spectra at room temperature for the powders obtained at 800 ºC, 

700 ºC and 600 ºC. Insets on the left side are the quadrupole splitting distributions.  

Fig. 4. Cycle performances of the synthesized powders at C/10 rate. 
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Figure 1a 
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Figure 1b 
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Figure 1c 
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Figure 2a 
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Figure 2b 
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Figure 2c 
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Figure 3 
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Figure 4 

 


