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Abstract—Visual tracking of stationary points positioned at 

a large distance from moving robot provides a good basis 

for determining robot orientation and it may speed-up op-

eration of structure from motion and navigation algorithms. 

This paper considers an implementation of the tracker that 

builds a far background model by assigning each visually 

tracked point a degree of membership that express an extent 

to which an apparent motion of corresponding image patch 

is in accordance to motion of projections of points at infin-

ity. An experimental implementation of the tracker is de-

scribed together with illustrative examples of its operation. 
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I. INTRODUCTION 

This paper deals with motion-based detection and 
tracking of stationary distant visual features. This task is 
recognized as important both in everyday life as well as in 
robotics and computer vision. 

Keeping salient distant visual features in the field of 
view is significant part of everyday routine that is regu-
larly performed by humans in all tasks involving some 
kind of balancing. Although humans possess significant 
ability to detect orientation directly, using vestibular sys-
tem placed in inner ear, the sense of balance is normally 
result of joint operation of both eyes and inner ears [1]. 
Visual feedback obtained by tracking far features is a nor-
mal prerequisite for keeping orientation and ability to bal-
ance without it is regarded as an exceptional skill. 

In robotics and computer vision, it is well recognized 
that stationary distant visual features make a good basis 
for determining orientation of camera since their projec-
tion on image depends only on orientation and not on po-
sition of the camera [2]. Besides, estimation of orientation 
may accelerate pairing of visual keypoints detected in 
successive image frames: if an estimation of orientation is 
available, it may be used to constrain search region when 
looking for matching keypoints. Finally, after detecting 
image regions that are densely covered by distant features, 
such regions may be excluded from consideration when 
looking for near features that are of interest in e.g. naviga-
tion and collision avoidance. 
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In the context of this work, by far background we as-
sume a union of regions, laying on a sphere centered in 
the camera, and being tightly covered by polar projections 
of stationary objects positioned far from the camera. Dur-
ing motion of the camera, images of far background ob-
jects in front of the camera remain practically unchanged. 
Their position and orientation are however subject to 
change, aside small deformations that are consequence of 
the fact that camera projection is made on image plane 
and not on image sphere. Viewing angle of objects in far 
background does not depend on translatory movement of 
the camera. Besides, it is usually relatively easy to keep 
salient points of far background in visual field of the cam-
era, making them ideal visual inputs for maintenance of 
desired orientation. 

The proposed approach for extracting background 
from a sequence of images is based on using monocular 
vision sensor. Alternative techniques are also possible, 
e.g. using a gyroscope to determine change in orientation 
of the camera and afterward using this change to align 
successive frames in order to find best matching regions. 
However, a possibility of extracting background using 
only a camera is attractive because it eliminates a need to 
invest into additional sensory equipment. It should be 
noted here that use of stereo camera should not be consid-
ered as a serious advantage over monocular camera, at 
least not in outdoor situations, since the parallax that may 
be detected by the stereo rig is normally significantly 
lower than changes that could be found by comparing 
images obtained from possibly distant positions during 
motion of the camera. 

Distant points may also be detected using available a 
priori knowledge on robot environment. However, this 
approach is applicable only in specific situations, contrary 
to motion-based approach that is more general in nature.  

Background detection and tracking is of primary im-
portance in outdoor motion. Furthermore, the suggested 
motion-based tracker is specially envisioned for situations 
where motion of the camera is subject to fast dynamics, 
whereby dynamics of rotation is significantly larger than 
translation. This is a typical situation with cameras 
mounted on humanoid and other walking robots as well as 
with the platforms moving on rough terrain.  

Far background is a real-world approximation to ideal 
objects at infinite distance. This fact brings an idea to in-
troduce a degree of membership as an indicator of how 
much the apparent motion of considered image patch may 



be treated as apparent motion of a stationary point at in-
finity. The membership degree is conveniently modeled 
by a continual function that may be complex in the sense 
that it does not depend only on the actual state but also on 
tracking history of considered point as well as on apparent 
motion of surrounding points.  

Assignment of membership degrees to tracked points 
is also a heart idea of the proposed tracker. Once esti-
mated, membership degrees are employed to enhance es-
timation of the orientation of the robot. In turn, the esti-
mated orientation is afterward used to update member-
ships. 

The rest of the paper is organized as follows. The next 
section enlists some recent research activities that may be 
brought in relation to the problem of far background 
tracking. Basic relations and motivation for introducing 
membership function to describe degree of membership of 
particular point to far background are described in detail 
in section III. Afterward, section IV briefly outlines the 
operation of the proposed tracker, whereas section V de-
scribes results of an experimental application of the 
tracker to few typical outdoor situations. The final section 
considers possible improvements and further work on the 
tracker. 

II. RELATED WORK 

Projective geometry of very far points, i.e. points at 
infinity, is a well-developed field in computer vision [2,3]. 
However, it seems that there were no attempts so far for 
systematic extracting and tracking of far features for the 
purpose of vision-based robot navigation. 

Building a model of far background may be regarded 
as a special case of structure from motion algorithms. 
Contemporary approaches to structure from motion prob-
lem using monocular camera may be roughly divided into 
two groups: visual SLAM systems, with representative 
realizations [4,5], and bundle adjustment systems, with 
notable realizations [6,7,8,9]. What seems common to all 
approaches is the same treatment of all tracked points, 
irrespectively on their distance from observer. The out-
come is that far visual features, although their images dis-
play practically no parallax with translatory motion of the 
camera, influent the process of determining relative posi-
tion of the camera with respect to near objects. Similarly, 
the process of determining orientation of the camera is 
influenced by near objects, although their position in im-
age depends not only on orientation, but also on relative 
position with respect to the camera. Notable exceptions 
are works [5,10,11] that propose using inverse depth pa-
rameterization for distant features. Contrary to their ap-
proach, no attempt is made in this work to estimate in-
verse depth for far features. The parallax detected during 
motion of the camera is used here instead only as a crite-
rion for determining membership of the point to far back-
ground. 

An important degenerate case that has been treated by 
many authors is pure rotational motion of the camera. In 
the case of rotational motion, all points behave as points at 
infinity and they can be conveniently located using e.g. 
sphere coordinates. According to examined literature, this 
approach was used exclusively in tasks where rotational 

motion of the camera was employed to generate a mosaic, 
i.e. a spherical image obtained by assembling individual 
images taken from different views, e.g. [12,13,14].This 
approach is extended here to the case of general camera 
motion, whereby an additional classifier is employed to 
detect points for which the rotational model is justified. 

Yet another important field that may be related to this 
work is background extraction, a task characteristic in e.g. 
surveillance applications [15] and video editing [16]. 
However, the notion of “background” in these applica-
tions is different with respect to the notion used in this 
work. Additionally, both surveillance and video editing 
normally consider only the case of stationary or possibly 
quasi-stationary camera. On the contrary, this work is 
concentrated on approaches that may deal with fast dy-
namics of camera motion, what is a usual case with vehi-
cle-mounted cameras and, especially, with cameras 
mounted on bipeds and other walking robots. 

III. FAR BACKGROUND MODEL 

A. Points at Infinity 

A point at very large distance from the observer may 
be approximately regarded as a point at infinity. It is 
mathematically conveniently described using homogene-

ous coordinates [ ; ; ;0]Tx y z , where , ,x y z  are coordinates 

of a point laying on a ray along which the point is viewed 
from the origin of coordinate frame (i.e. from the center of 
the camera). Normalized image coordinates of such a 

point are [ ; ]Tx z y z  and they do not change during 

translatory camera motion.  

In the context of this work, far background is simply a 
set of infinity points. All infinity points belong to the 

plane at infinity . Projective geometry of intersection of 

  with 3D objects, is well developed in classic computer 

vision literature, e.g. [2,3]. However, for the purpose of 
this work, only few elementary relations will suffice. 

To begin, describe a point at infinity using unit vector 

[ ; ; ]Tx y ze e eе  along the ray passing through the point 

(note that value of e  is uniquely determined from normal-

ized image coordinates whenever the point is in the field 
of view of the camera). When the point is seen from two 
camera positions, related by rotation matrixR , then the 

unit vectors , e e  corresponding to the first and second 

camera position satisfy: 

   е R e  (1) 

By combining this relation for three points in general rel-
ative position: 

 1 2 3 1 2 3
          e e e R e e e  (2) 

or equivalently: 

 3 3 3 3 
  Е R Е  (3) 

with 3 3 1 2 3    Е e e e  and 3 3 1 2 3
      E e e e , rela-

tive rotation may be computed as:  

 1

3 3 3 3



 
 R Е Е . (4) 



Relation (4) may also be used to test whether three 
tracked points belong to far background: provided that 
camera has performed both translatory and rotational mo-
tion between two views, then it is sufficient to check 
whether the matrix obtained by (4) is a rotation matrix. 
Additionally, if an estimate of the rotation matrix is avail-
able, then relation (1) may be used to check whether sin-
gle point is a member of far background. 

Accuracy in determining orientation from tracked in-
finity points can be improved by involving a larger num-
ber of points. If there are data about n points at infinity 
available, then relation (2) may be extended to: 

 1 1... ...n n
         e e R e e  (5) 

By substituting
1 ... n   Е e e , ... n

     E e e  the matrix 

equation is obtained: 

   Е R E  (6) 

and it can be solved in the least square sense after post-

multiplication by T
E : 

 T T    E E R E E  (7) 

or, in developed form: 

 T T

i i i i

i i

     е е R е е  (8) 

yielding the solution: 

 

1

T T

i i i i

i i



   
      

   
 R е е е е  (9) 

B. Far Background Membership 

Relations (8–9) are rigorously valid only when applied 
to points at infinity. However, they will remain valid if the 
sums were made over all tracked points with the addition 

of scalar factors  0,1iw   indicating whether the corre-

sponding point belongs to far background: 

 
T T

i i i i i i

i i

w w      е е R е е  (10) 

 

1

T T

i i i i i i

i i

w w



   
        

   
 R е е е е  (11) 

Moreover, relations (10–11) would stay valid for any 

values (0,1]iw   assigned to infinity points, as long as 

non-infinity points would have assigned zero weights. 

On the other hand, infinity points are only a useful 
idealization of real 3D points. A consequence is that nei-
ther (9) nor (11) would yield an exact rotation matrix. 
Instead, the resulting matrix is deformed and it is neces-
sary to extract rotation part from it. In computer vision 
community, standard procedures for extracting rotational 
part from a matrix are QR decomposition and SVD de-
composition [17]. In context of this work, SVD is pre-
ferred approach because it gives a better basis for esti-
mating deformations superimposed on rotation matrix. 
The decomposition takes the form: 

 T  R L D U   (12) 

where L  and U  are rotation matrices and D  is diagonal. 

Now, an estimate: 

 ˆ T R L U  (13) 

may be adopted with diagonal elements of D  serving as a 
measure of stretching deformations along corresponding 
axes. For a good estimate, all diagonal elements must be 
close to unity. 

A related important aspect is that points that better ap-
proximate infinity points should be given higher mem-
bership value so that their contribution to resulting  rota-
tion estimate becomes enlarged. Here, the notion of “bet-
ter approximation” primarily means satisfactory outcome 
of tests such as (1) and (4) over long time. 

C. Fuzziness of Membership Function 

“Good estimates” of membership values should be re-
lated to geometry constrains, but they should not mecha-
nistically depend only on them. Several things should be 
emphasized here. First, the relations such as (1) and (4) 
provide only necessary and not sufficient conditions. For 
example, it is quite possible that a considered point is not 
stationary at all and it is moved instead in such a manner 
that the tests become fulfilled. Second, the outcome of a 
test must be evaluated in the context of outcomes obtained 
for other points. For example, if camera motion is rota-
tional, then all points would satisfy the tests. It is im-
portant to recognize such a situation, especially when 
having in mind that, with very large frequency of frames 
taken by the camera, successive images may be well ap-
proximated as being a result of pure rotation. Third, a 
history must be also taken into account, because far points 
may be temporarily occluded by near objects. Finally, it is 
important to realize that the quality of estimate (11) does 
not necessarily depend much on actual values of member-
ships, as long as the values assigned to near points are 
kept near zero. 

IV. PRINCIPAL OPERATION OF THE TRACKER  

The proposed tracker operates by updating current 
model of far background and estimate of current orienta-
tion of the camera according to apparent motion of key-
points (salient features) identified in sequence of images 
obtained by the camera. In its simplest form,  the model 

of far background is merely a set of tuples  , ,i i iw e d  

associated to tracked keypoints, where iw  denotes degree 

of membership, ie  represents a ray along which the key-

point has been detected for the first time, and id  is a de-

scriptor representing image characteristics of an image 
patch in vicinity of the point. Rotational motion of the 
camera may be represented by the current rotational ma-
trix R . Initially, the model may be filled with all key-
points identified in current image whereby memberships 
may be set to some neutral value, say 0.5.  

The update takes place when the next frame is ac-
quired by the camera. Here, the first step consists in ex-
tracting keypoints from input image, computing keypoint 
descriptors, and matching the extracted descriptors to 
descriptors of saved keypoints. These tasks are time con-
suming and error prone and therefore have received much 



attention in computer vision community. Many efforts 
have been done to develop robust, yet computationally 
efficient methods [18]. Two frequently emphasized at-
tributes are scale and affine invariance, which are often 
attained at the price of increase in computational time. A 
fortunate characteristic of patches in far background is 
that affine and scale invariance are of less importance for 
them, thus offering a possibility of using faster methods, 
such as [19,20]. 

Once the correspondence between model and newly 
detected keypoints has been established, an estimate of 
camera rotation can be obtained from relations (11–13). 
Provided that percentage of correct correspondences is 
high, this estimate would be close to the actual rotation 
and thus it could be employed in (1) to compute angles 

i  between expected ˆ R e  and detected orientation е  of 

paired keypoints: 

 
i ∢ ˆ( , ) е R e  (14) 

The distribution of angular deviations 
i  can be further 

used to remove outliers and recompute the rotation esti-
mate. 

The final step of the operation cycle consists in up-
dating membership degrees. This step should be per-
formed only when distribution of angular differences is 
sufficiently wide — for example, when its standard devi-

ation   is larger than some prescribed limit 
w : 

 w   (15) 

In other words, update in membership degrees should be 
done only when the motion of the camera is rich enough 
so that distinction between near and far keypoints can be 
accurately made. Once this precondition is fulfilled, a 
border between near and far features should be estab-
lished. This border is fuzzy in nature and it depends on 
nature of robotic task and speed of robot motion. 

In one simple form, membership degree may be im-
plemented as a decreasing function of angular deviation 
(14). This is justified by the expectation that far features 
would display low deviations whereas the near features 
would be characterized by larger deviations. In the ex-
perimental implementation that is outlined in the next 
section, the following function has been employed: 

 
 

2

0

1

1
i

i

w
 




 (16) 

Here, the threshold 0  is a value of deviation for which 

the membership function attains value ½. Features with 
deviations lower than the threshold would have increased 
values of membership. On the other side, with increase of 
the deviation, the membership degree gets lowered, so 

that it becomes practically negligible at 03i  . 

Initial tests have shown that operation of the tracker 
did not depend much on the actual shape of membership 
function, as long as the function was continuous and with 
a significant change in slope around a threshold point. 

However, results were sensitive to the choice of threshold 

angles
w and

0 .  

V. EXPERIMENTAL IMPLEMENTATION 

To verify the approach, an experimental implementa-
tion of the tracker has been made. The implementation has 
been done in OpenCV environment [21] using its 2D 
Features Framework [22]. The operation of the tracker 
closely follows description given in Sect. IV. Feature ex-
traction has been performed using the state of the art 
FAST detector [23], whereas SIFT descriptor [24] was 
employed for feature matching. Although far from being 
the fastest, SIFT descriptor was chosen because it was 
demonstrated to outperform other descriptors in terms of 
rate of outliers [18]. 

The tracker was applied to several open-air video se-
quences obtained by a low-cost camera built in a cellular 
phone. The camera provided a low-resolution MPEG-4 
compressed CIF video with 352×288 pixels in images at 
the frame rate of 15fps. Aside from noise introduced by 
the compression, output images were additionally blurred 
due to lag induced by its CMOS sensor. 

Fig. 1 shows excerpts from three typical sequences. 
The displayed images were taken in one second intervals 
and they are overlaid with small circles marking detected 
far features with membership degrees equal or larger than 
0.5; additionally, to provide an illustration of obtained 
rotation estimates, coordinate axes of a frame corre-
sponding to initial orientation of the camera are drawn in 
the center of each image (x-axis is shown in red, y-axis in 
blue, and z-axis in yellow). 

The results have been obtained by selecting FAST de-
tector parameters so that the number of tracked features is 
maintained between 200 and 500. After initial matching of 
features obtained using SIFT descriptors, matches for 

which angular deviations 
i  were larger than 2   were 

marked as outliers. Values of threshold angles w and 0  

were practically found by trial-and-error. The results 

shown in Fig. 1 were obtained by 
w  set to 10% of the 

viewing angle of the camera, whereas 
0  was set to 2w .  

The obtained results seem satisfactory in spite of sig-
nificant camera noise. However, closer inspection reveals 
an instability in tracked features that is outside the scope 
of the basic tracking mechanism of the proposed back-
ground tracker. The instability is an outcome of inability 
of employed pure descriptor-based matcher to recognize 
correct matches in the presence of noise. As a conse-
quence, a chain to earlier detected keypoints is lost and it 
further leads to drifts in orientation as it is visible in se-
cond and third video sequence. 

VI. CONCLUSION 

The approach presented in this paper seems promising. 
However, further work is necessary to make the proposed 
tracker operational. First, feature matching has to be made 
more robust. Here, the readily available estimate of orien-
tation of the camera may be of help. To this end, the ori-
entation estimate provided by the tracker should be more 



tightly integrated into matching algorithm, instead of 
serving as a simple external criterion to get rid of outlier 
matches. This could also result in decreased dependency 
on complex feature descriptors and lead to computation-
ally more efficient implementation. The second direction 
would be in development of more sophisticated back-
ground membership criteria that would result in more ac-
curate estimates and better covering of background re-
gions. 
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Figure 1.  Detected far background points in three sample video sequences 
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