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Integer codes correcting burst asymmetric
within a byte and double asymmetric errors

Aleksandar Radonjic1 Vladimir Vujicic1

Abstract
This paper presents a class of integer codes capable of correcting l-bit burst asymmetric
errors within a b-bit byte (1 ≤ l < b) and double asymmetric errors within a codeword.
The presented codes are constructed with the help of a computer and have the potential to
be used in unamplified optical networks. In addition, the paper derives the upper bound
on code length and shows that the proposed codes are efficient in terms of redundancy.
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1 Introduction

In most communication networks, it is impossible to predict the error behaviour. More
precisely, one cannot know in advance which type of errors will be more frequent (1→
0 or 0→ 1 errors) nor whether they will dominantly affect individual bits or several
adjacent bytes.

However, there are networks where error types are known in advance. The best-
known example are unamplified optical networks (UONs) (e.g. local and storage area
networks) [1]. In these networks, photons (represented by binary 1’s) may fade or fail to
be detected, but new photons cannot be generated. So, if the receiver operates correctly,
only asymmetric (1→ 0) errors may occur [2, 3]. An additional characteristic of these
errors is that they always affect a small number of bits. This was first observed in [4]
and then confirmed in [5–9]. In all these studies it was shown that 99.99% of all errors
are either random errors (single or double errors) or bursts of length up to eight bits.
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Aware of this fact, researchers have developed a few classes of codes capable of
correcting asymmetric errors [10–13]. Compared to their symmetric counterparts, these
codes had simpler structure and lower redundancy. For this reason, they were more
suitable for implementation in dedicated hardware. However, it is interesting to men-
tion that none of these codes was ever considered to be used in UONs. The reason for
this probably lies in the inability of [10–13] to correct both burst and random asym-
metric errors. The mixtures of these errors are not rare, especially in cases when the
error rate is high. So, if the codes from [10–13] were used, it would be impossible to
provide high throughput and high reliability simultaneously.

Bearing this in mind, in this paper, we present a new class of integer codes called
integer Bl/bAEC–DAEC codes. The proposed codes, like those in [14–20], have several
desirable properties, including the capability to be interleaved without delay. However,
unlike [14–20], the proposed codes can correct two types of errors: l-bit burst asym-
metric errors within a b-bit byte (l/b BA errors) (1 ≤ l < b) and double asymmetric (DA)
errors within a codeword. Owing to this, they are better suited for protection of data in
modern UONs.

The organization of this paper is as follows: Section 2 deals with the construction of
integer Bl/bAEC–DAEC codes. The error correction procedure and theoretical decoding
throughputs for these codes are described and evaluated in Section 3, while Section 4
concludes the paper.

2 Codes construction

Definition 1 [20] Let Z2b−1={0, 1,…, 2b – 2} be the ring of integers modulo 2b – 1 and
let Bi ¼ ∑b−1

n¼0 an⋅ 2
n be the integer representation of a b-bit byte, where an ∈ {0, 1} and

1 ≤ i ≤ k. Then, the code C (b, k, c), defined as

C b; k; cð Þ ¼ B1;B2; :::;Bk ;Bkþ1ð Þ ∈ Zkþ1
2b−1 : ∑

k

i¼1
Ci ⋅ Bi ≡ Bkþ1 mod 2b−1

� �� �
ð1Þ

is an (kb + b, kb) integer code, where c = (C1, C2, ..., Ck, 1) ∈ Zkþ1
2b−1 is the coefficient

vector and Bk + 1 ∈ Z2b−1 is an integer.
The first step to construct integer Bl/bAEC–DAEC codes is to determine the integer

values of l/b BA and DA errors. When it comes to an l/b BA error, its integer value is
already known [19]: it is equal to e' = − 2r·(2m – 1), where 0 ≤ r ≤ b – l, 1 ≤m ≤ 2v-1 and
1 ≤ v ≤ l. On the other hand, it is known that a DA error may corrupt one or two b-bit
bytes. In the first scenario, its integer value will be equal to e'' = − 2s – 2r = − 2r · (2s-r +
1), where 0 ≤ r < s ≤ b – 1. In contrast, if a DA error corrupts two b-bit bytes, it will
change their integer values by e'''= − 2u, where 0 ≤ u ≤ b – 1. On the basis of this and
previous conclusions, we can give the following definitions.

Definition 2 Let x = (B1, B2,…, Bk, Bk + 1) ∈ Zkþ1
2b−1, y = (B1, B2,…, Bk, Bk + 1) ∈ Zkþ1

2b−1 and
e = y – x = (B1 – B1, B2 – B2,…, Bk – Bk, Bk + 1 – Bk + 1) = (e1, e2,..., ek, ek + 1) ∈ Zkþ1

2b−1 be
respectively, the sent codeword, the received codeword and the error vector. Then, an



(kb + b, kb) integer code is said to be a (BlAEC)b–DAEC code if it can correct error
vectors from the set E = {(e', 0, ..., 0, 0),..., (0, 0, ..., e', 0), (0, 0, ..., 0, − e'), (e'', 0, ..., 0,
0),..., (0, 0, ..., e'', 0), (0, 0, ..., 0, − e''), (e''', e''', ..., 0, 0), ..., (e''', 0, ..., e''', 0), (e''', 0, ..., 0,
− e'''),..., (0, e''', ..., e''', 0), (0, e''', ..., 0, − e'''), ..., (0, 0, ..., e''', − e''')}, where e' ∈ {− 2r ·
(2m – 1): 0 ≤ r ≤ b – l, 1 ≤m ≤ 2v-1, 1 ≤ v ≤ l}, e'' ∈ {− 2r·(2s-r + 1): 0 ≤ r < s ≤ b – 1} and
e''' ∈ {− 2u: 0 ≤ u ≤ b – 1}.

Definition 3 The error set corresponding to l/b BA errors is defined as

ε1 ¼ s1∪ s2 ð2Þ

where

s1 ¼ – 2r⋅ 2m − 1ð Þ ⋅ Ci mod 2b−1
� �

: 0 ≤ r ≤ b – l; 1≤ m ≤ 2v−1; 1≤ v ≤ l; 1≤ i ≤ k
� � ð3Þ

s2 ¼ 2r ⋅ 2m − 1ð Þ mod 2b−1
� �

: 0 ≤ r ≤ b – l; 1≤ m ≤ 2v−1; 1≤ v ≤ l
� � ð4Þ

Definition 4 The error set corresponding to DA errors corrupting one b-bit byte (DA1

errors) is defined as

ε2 ¼ s3∪ s4 ð5Þ

where

s3 ¼ – 2r ⋅ 2s−r þ 1ð Þ ⋅ Ci mod 2b − 1
� �

: 0 ≤ r < s ≤ b – 1; 1≤ i ≤ k
� � ð6Þ

s4 ¼ 2r⋅ 2s−r þ 1ð Þ mod 2b − 1
� �

: 0 ≤ r < s ≤ b – 1
� � ð7Þ

Definition 5 The error set corresponding to DA errors corrupting two b-bit bytes (DA2

errors) is defined as

ε3 ¼ s5∪ s6 ð8Þ

where

s5 ¼ − 2r⋅ Ci − 2s⋅ C j mod 2b − 1
� �

: 0 ≤ r; s ≤ b – 1; 1≤ i < j ≤ k
� � ð9Þ

s6 ¼ − 2r⋅ Ci þ 2s mod 2b − 1
� �

: 0 ≤ r; s ≤ b–1; 1≤ i ≤ k
� � ð10Þ

If we compare the sets ε1 and ε2, we will note that they have some common
elements. The reason for this is that DA1 errors spaced less than l bits can be treated
as l/b BA errors. Hence, to avoid confusion, we will define the following set of
syndromes.



Definition 6 The set of syndromes corresponding to DA1 errors excluding l/b BA errors
is defined as

ε4 ¼ s7 ∪ s8 ð11Þ

where

s7 ¼ – 2r⋅ 2s−r þ 1ð Þ ⋅ Ci mod 2b − 1
� �

: l ≤ r þ l ≤ s ≤ b – 1; 1 ≤ i ≤ k
� � ð12Þ

s8 ¼ 2r⋅ 2s−r þ 1ð Þ mod 2b − 1
� �

: l ≤ r þ l ≤ s ≤ b – 1
� � ð13Þ

Now we can prove the next theorem.

Theorem 1 The codes defined by (1) can correct l/b BA errors and DA errors iff there
exist k mutually different coefficients Ci ∈ Z2b−1n 0; 1f g such that

1: jε1j ¼ 2l−1 ⋅ b − l þ 2ð Þ − 1
� 	

⋅ k þ 1ð Þ

2: jε3j ¼ b2⋅k
2

⋅ k þ 1ð Þ

3: jε4j ¼ b – l þ 1ð Þ⋅ b – lð Þ
2

⋅ k þ 1ð Þ
4: ε1 ∩ ε3 ∩ ε4 ¼ ∅

where |A| denotes the cardinality of A.

Proof The proof for Condition 1 is the same as that given in [19]. Hence, it will be
omitted. As far as Condition 2 is concerned, it states that DA2 errors generate (b2 ⋅ k/2)
⋅ (k − 1) nonzero syndromes. To prove this, observe that the set ε3 can be expressed as

ε3 ¼ ∪2k
x¼1

X x

where

X 1 ¼ – 2r ⋅ C1 – 2
s ⋅ C j mod 2b − 1

� �
: 0 ≤ r; s ≤ b – 1; 2 ≤ j ≤ k

� �
X 2 ¼ – 2r ⋅ C1 þ 2s mod 2b − 1

� �
: 0 ≤ r; s ≤ b – 1

� �
X 3 ¼ – 2r ⋅ C2 – 2

s ⋅ C j mod 2b − 1
� �

: 0 ≤ r; s ≤ b – 1; 3 ≤ j ≤ k
� �

X 4 ¼ – 2r ⋅ C2 þ 2s mod 2b − 1
� �

: 0 ≤ r; s ≤ b –1
� �

⋮
X 2k−3 ¼ – 2r ⋅ Ck−2 – 2

s ⋅ C j mod 2b − 1
� �

: 0 ≤ r; s ≤ b – 1; k – 1 ≤ j ≤ k
� �

X 2k−2 ¼ – 2r ⋅ Ck−1 þ 2s mod 2b − 1
� �

: 0 ≤ r; s ≤ b – 1
� �

X 2k−1 ¼ – 2r ⋅ Ck−1 – 2
s ⋅ C j mod 2b − 1

� �
: 0 ≤ r; s ≤ b – 1; j ¼ k

� �
X 2k ¼ – 2r ⋅ Ck þ 2s mod 2b − 1

� �
: 0 ≤ r; s ≤ b – 1

� �



The elements of the above sets will be nonzero and mutually different only if there exist
k coefficients Ci ∈ Z2b−1n 0; 1f g such that

∩
2k

x¼1
X x ¼ ∅

jX 1j ¼ b2⋅ k – 1ð Þ
jX 2j ¼ b2

jX 3j ¼ b2⋅ k – 2ð Þ
jX 4j ¼ b2

⋮
jX 2k−3j ¼ b2⋅ 2
jX 2k−2j ¼ b2

jX 2k−1j ¼ b2⋅ 1
jX 2k j ¼ b2

As a result, it follows that

jε3j ¼ ∑
2k

x¼1
jX xj ¼ b2 ⋅ k þ b2⋅ ∑

k−1

n¼1
n ¼ b2 ⋅ k

2
⋅ k þ 1ð Þ:

In a similar way, Condition 3 says that DA1 errors excluding l/b BA errors
generate ( b – l + 1 ) ⋅ ( b – l ) ⋅ (k + 1 ) /2 syndromes that are nonzero. To prove this,
note that the set ε4 can be expressed as

ε4 ¼ ∪
2 b−l−1ð Þ

y¼0
Yy

where

Y 0 ¼ – 2r ⋅ 2l þ 1
� �

⋅Ci mod 2b − 1
� �

: 0 ≤ r ≤ b – l – 1; 1≤ i ≤ k
� �

Y 1 ¼ 2r ⋅ 2l þ 1
� �

mod 2b − 1
� �

: 0 ≤ r ≤ b – l – 1
� �

Y 2 ¼ – 2r ⋅ 2lþ1 þ 1
� �

⋅ Ci mod 2b − 1
� �

: 0 ≤ r ≤ b – l – 2; 1 ≤ i ≤ k
� �

Y 3 ¼ 2r ⋅ 2lþ1 þ 1
� �

mod 2b − 1
� �

: 0 ≤ r ≤ b – l – 2
� �

⋮
Y 2 b–l–1ð Þ−3 ¼ – 2r ⋅ 2b–2 þ 1

� �
⋅ Ci mod 2b − 1

� �
: 0 ≤ r ≤ 1; 1 ≤ i ≤ k

� �
Y 2 b–l–1ð Þ−2 ¼ 2r ⋅ 2b–2 þ 1

� �
mod 2b − 1
� �

: 0 ≤ r ≤ 1
� �

:

Y 2 b–l–1ð Þ−1 ¼ – 2r ⋅ 2b–1 þ 1
� �

⋅ Ci mod 2b − 1
� �

: r ¼ 0; 1 ≤ i ≤ k
� �

Y 2 b–l–1ð Þ ¼ 2r ⋅ 2b–1 þ 1
� �

mod 2b − 1
� �

: r ¼ 0
� �

:

Obviously, if the coefficients Ci ∈ Z2b−1n 0; 1f g have values such that

∩
2 b−l−1ð Þ

y¼0
Yy ¼ ∅

jY 0j ¼ b – lð Þ ⋅ k
jY 1j ¼ b – l
jY 2j ¼ b – l – 1ð Þ ⋅ k
jY 3j ¼ b – l – 1
⋮
j Y 2 b–l–1ð Þ−3j ¼ 2 ⋅ k
jY 2 b–l–1ð Þ−2j ¼ 2
jY 2 b–l–1ð Þ−1j ¼ 1 ⋅ k
jY 2 b–l–1ð Þj ¼ 1:



then

jε4j ¼ ∑
2 b−l−1ð Þ

y¼0
jYyj ¼ k þ 1ð Þ ⋅ ∑

b−l−1

y¼0
b – l – yð Þ ¼ b – l þ 1ð Þ ⋅ b – lð Þ

2
⋅ k þ 1ð Þ:

Finally, Condition 4 is a necessary condition for distinguishing l/b BA errors from DA
errors. So, (kb + b, kb) integer Bl/bAEC–DAEC codes must satisfy all the conditions 1
to 4. Conversely, the codes satisfying conditions 1 to 4 allow us to distinguish l/b BA
errors from DA errors. Then we can correct all l/b BA errors and all DA errors.
Therefore, these codes are (kb + b, kb) integer Bl/bAEC–DAEC codes. □

Theorem 2 Let ξ = ε1 ∪ ε3 ∪ ε4 be the error set for (kb + b, kb) integer Bl/bAEC–DAEC
codes. Then,

jξ j ¼ jε1j þ jε3j þ jε4j

¼ 2l⋅ b − l þ 2ð Þ þ b2⋅ k þ b – l þ 1ð Þ ⋅ b – lð Þ −2
2


 �
⋅ k þ 1ð Þ:

Proof This theorem follows directly from Theorem 1. □
Now, by knowing the cardinality of ξ, we can derive the upper bound on code

length.

Theorem 3 For any (kb + b, kb) integer Bl/bAEC–DAEC code it holds that

k ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2bþ1 − z − 4
� �

⋅ 4b2 þ b2þ z
� �2q

− b2 − z

2b2

6664
7775;

where z = 2l ⋅ (b − l + 2) + (b – l + 1) ⋅ ( b – l) − 2.

Proof From Definition 1 we know that the total number of nonzero syndromes is 2b – 2.
On the other hand, from Theorem 2we know that the set ξ has ∣ξ∣ = (z + b2 ⋅ k) ⋅ (k + 1)/2
nonzero elements. Consequently, we have the inequality

zþ b2⋅k
� �

⋅ k þ 1ð Þ
2

≤ 2b − 2

from where it follows that

k ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2bþ1− z − 4
� �

⋅4b2 þ b2þ z
� �2q

− b2− z

2b2

6664
7775:□

From the above it is obvious that the coefficients Ci cannot be generated without using
a computer. For this reason, it was necessary to perform computer-based searches. For
the purpose of this paper, we have restricted ourselves to the codes with parameters 8 ≤



l ≤ 9, b = 32 and k ≤ 32 (Table 1). Besides this, we have partially investigated how the
number of Ci’s depends on the values of b and l. Although the obtained results are far
from the theoretical maximum (Table 2), the proposed codes are very efficient in terms
of redundancy. This can be seen from the fact that two integer Bl/bAEC–DAEC codes
have b = 2l check bits (the (32, 16) integer B8/16AEC–DAEC code and the (36, 18)
integer B9/18AEC–DAEC code), while l-bit burst error correcting Fire codes use at least
3l + 1 check bits [21].

3 Error control procedure and theoretical decoding throughput

The error correction procedure for the proposed codes is similar to that described in
[15]. In short, it consists of two steps: obtaining the error correction data from the
syndrome table and executing one of the following operations:

& for l/b BA and DA1 errors

Bi ¼ B�i þ E1 mod 2b − 1
� �

; 1 ≤ i ≤ k þ 1; ð14Þ
E1 ∈ {2r·(2m – 1): 0 ≤ r ≤ b – l, 1 ≤m ≤ 2v-1, 1 ≤ v ≤ l}∪{2r·(2s-r + 1): 0 ≤ r < s ≤ b – 1}

& for DA2 errors

Bi ¼ B�i þ E1 mod 2b − 1
� �

; 1 ≤ i ≤ k; ð15Þ
Bj ¼ B� j þ E2 mod 2b − 1

� �
; i < j ≤ k þ 1; ð16Þ

E1, E2 ∈ {2u: 0 ≤ u ≤ b – 1}.

To generate the syndome table it is necessary to substitute the values of l, b and Ci

into (2)–(4) and (8)–(13). In this way, exactly |ξ| relationships (Theorem 2) between
the syndrome (element of the set ξ), error location (i, j) and error vector (E1, E2) will be

Table 1 First 32 coefficients for some integer Bl/32AEC-DAEC codes

l = 8

515 533 553 603 719 1153 1263 1317

4159 4747 5811 7557 9121 13679 18557 19741

23951 30511 31223 44615 45017 49263 52075 54421

56299 69621 80371 102001 105277 112425 114387 144093

l = 9

1027 1037 1081 1167 1217 1385 1483 2213

2551 3339 5295 7411 10997 11365 13233 16795

18617 26351 27609 30417 39257 43611 46701 55825

64389 77159 89799 99699 104851 107481 115583 122463



established (Fig. 1). So, when S ≠ 0, the decoder’s task is to find the entry with the first b
bits as that of the syndrome S. If the syndrome table is sorted (according to the elements
of ξ), this task will be completed after nTL table lookups (1 ≤ nTL ≤ ⌊log2|ξ|⌋ + 2) [22].

To illustrate the effectiveness of this approach, suppose that the network nodes
(computers, servers, routers, etc.) are equipped with four-core processors having the
same specifications as in [19]. In that case, each node will require one second to decode

G ¼ 3:5 ⋅109
� �

⋅128 ⋅k
9 � k þ 29 � nTL þ 4

ð17Þ

data bits [19]. In addition, in [19] it was shown that each core uses the operation.

St ¼ ∑
k

i¼1
Ci ⋅ B�4⋅ i−1ð Þþt− B�4⋅kþt mod 232−1

� �
; t ¼ 1; 2; :::; 4: ð18Þ

to calculate the syndrome St. Applying these results to the presented theory, we can
easily assure that, for smaller values of k, all considered codes have the potential to be
used in 10G networks (Fig. 2) [1]. In addition, from Fig. 2 we also see that the codes
with code rate 1024/1056 have theoretical throughput of 15.91 Gbps. Hence, they
could be candidates for use in 16G Fibre Channel networks [1]. Finally, from (18) it is
evident that all analyzed codes are interleaved at the byte level. Thanks to this, they are
able to correct various types of errors, including t DA errors and t BA errors less than
l + 1 bits (1 ≤ t ≤ 4).

4 Conclusion

In this paper, we have presented a new class of integer error control codes. We have
shown that the presented codes have three characteristics: first, they can correct l-bit
burst asymmetric errors within a b-bit byte and double asymmetric errors within a
codeword, second, they use processor-friendly operations, and third, they can be
interleaved without delay and without using dedicated hardware. Owing to these

Table 2 Number of coefficients for some integer Bl/bAEC-DAEC codes

b = 16 b = 17 b = 18 b = 19 b = 20 b = 21 b = 22 b = 23 b = 24

Theoretical bound l = 8 17 24 35 48 67 92 126 173 236

l = 9 14 21 31 45 63 89 123 169 233

Computer-search result l = 8 1 2 3 5 7 11 14 17 22

l = 9 0 0 1 3 4 6 9 14 19

Fig. 1 Bit-width of one syndrome table entry



features, the presented codes can be transformed into codes capable of correcting
various mixtures of asymmetric errors. Such constructed codes could have great
potential for practical use, especially in optical networks for short-haul applications.
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