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Abstract 
Iron oxide, in the form of magnetite (MG), functionalized porous wollastonite (WL) was used as 

an adsorbent for heavy metal ions (cadmium and nickel) and oxyanions (chromate and 

phosphate) removal from water. The porous WL was synthesized from calcium carbonate and 

siloxane by controlled sintering process using low molecular weight submicro-sized poly(methyl 

methacrylate) as a pore-forming agent. The precipitation of MG nanoparticles was carried out 

directly by a polyol-medium solvothermal method or via branched amino/carboxylic acid cross-

linker by solvent/nonsolvent method producing WL/MG and WL-γ-APS/MG adsorbents, 

respectively. The structure/properties of MG functionalized WL was confirmed by applying 

FTIR, Raman, XRD, Mössbauer, and SEM analysis. Higher adsorption capacities of 73.126, 

66.144, 64.168 and 63.456 mg g−1 for WL-γ-APS/MG in relation to WL/MG: 55.450, 52.019, 

48.132 and 47.382 mg g−1 for Cd2+, Ni2+, phosphate and chromate, respectively, were obtained 

using non-linear Langmuir model fitting. Adsorption phenomena were analyzed using monolayer 

statistical physics model for single adsorption with one energy. Kinetic study showed 

exceptionally higher pseudo second-order rate constants for WL-γ-APS/MG, e.g. 1.17 – 13.4 

times, with respect to WL/MG indicating importance of both WL surface modification and 

controllable precipitation of MG on WL-γ-APS. 

 

Keywords Calcium metasilicates ceramic; Magnetite functionalization; Solvent/nonsolvent 

method; Polyol-thermal method; Heavy metals; Adsorption; Fe3O4. 
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Introduction 
 

Rapid global industrialization increases the amount of effluent consisted of chemical wastes such 

as volatile organic compounds (industrial solvents), heavy metals and oxyions, pharmaceutical 

drugs and their metabolites, etc. Industrial effluents are one of the prime sources of 

environmental toxicity that deteriorates water quality(Paul 2017). Long-term exposure to heavy 

metals, such as cadmium, nickel and chromium (Cd2+, Ni2+ and Cr(VI)), by ingestion/inhalation 

leads to a buildup in kidneys and possible kidney disease, lung damage, cancer, and fragile bones 

(Karthikeyan et al. 2005; Martin and Griswold 2009). Due to that, Environmental Protection 

Agency (EPA) limits concentration of Cd2+ to 0.005 ppm and of Ni2+ and Cr(VI) to 0.1 ppm in  

water (EPA 2014). As an essential nutrient required for critical biological reactions maintaining 

the normal homoeostatic control of the cell, and growth of algae phosphorus is an important 

component of different cellular structures (Mezenner and Bensmaili 2009; Razzaque 2011). The 

phosphorus concentration has to be limited in order to control algal blooming (Mezenner and 

Bensmaili 2009).The phosphate discharge standard of wastewater is averaged on 1–2 ppm in 

order to satisfy the stringent EPAs limit of phosphorous concentration in natural water 

(0.02 ppm) (Rout et al. 2015, 2016). With the aim to maintain the pollutant concentration within 

the permissible limits, purification/pollutant removal from industrial water becomes imposed as a 

solution for susceptibility environmental toxicity. 

In recent years, a great attention was directed in development of physically and chemically 

removing of heavy metals from contaminated water by a variety of methods, including 

membrane separation, flocculation, adsorption, ion-exchange, precipitation, evaporation, and 

electrolysis (D’Halluin et al. 2017; Iannazzo et al. 2017; Han et al. 2018). Due to low operational 

cost and high efficient in the removal of many heavy metal ions, as well as possibility of using 

natural materials as adsorbents, the adsorption stands out as one of the most efficient and widely 

used techniques for removing of metal ions (Zeng et al. 2015). Development of the more 

effective and cheaper adsorbents, that may be of mineral, organic or biological origin has been 

studied in the recent decade (Abdel-Halim and Al-Deyab 2011; Zeng et al. 2015). Calcium 

silicates have received considerable attention as adsorbent for heavy metal adsorption due to 

their excellent bioactivity and biocompatibility (Chen et al. 2008; Zhao et al. 2014). Wollastonite 

(WL) is a naturally occurring and cheap α-calcium metasilicate (α-CaSiO3) that is commonly 

used in preparing ceramic bodies and other materials, but lately have used as an adsorbent in 

water pollution control (Sharma et al. 1990b, a, 2007; Sharma 2001; Obradović et al. 2017a). 

Calcium oxide (CaO) and silicon dioxide (SiO2) are the main constituents of WL 

(CaO/SiO2=48.18%/48.52% by weight) that can be responsible for heavy metals 

adsorption(Sharma 2001). Sharma et al. were investigated ability of natural WL to remove Cd2+, 

Ni2+ and Cr(VI) ions from water and found maximum removal of 93.6% and 69.5% for Cd2+ and 

Cr(VI) ions, respectively, and maximum adsorption capacity of 6.52 mg g-1 for Ni2+ ions 

(Sharma et al. 1990b, a, 2007). The main disadvantage of WL for use as an adsorbent for the 

removal of pollutants from aquatic systems is the hydrophilicity of its surface. Surface 

modification, as a key process in functional WL preparation, renders hydrophilic WL surface 

hydrophobic (Ding et al. 2011). In order to reduce the hydrophilicity of the WL surface and, 

therefore, increase the heavy metals ions adsorption capacity, it is necessary to functionalize its 

surface. 
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Iron oxides and oxidehydroxides based adsorbents have been widely used in water treatment 

systems for the removal of ionic pollutants (Markovski et al. 2014b, a, Taleb et al. 2015, 2016a; 

Lin et al. 2017; Zeng et al. 2017). Due to expressed electrostatic attraction and ligand exchange 

with heavy metal ions, magnetite (MG – Fe3O4) nanoparticles were shown to be highly efficient 

materials for heavy metal ion removal by adsorption (Kalantari et al. 2014). Besides, using of 

MG in production hybrid adsorbents resolve separation problems because, due to their magnetic 

property, MG particles can be easily separated from aqueous solutions using an external 

magnetic field(Kalantari et al. 2014). Moreover, amination of MG surface helps in formation of 

uniform Fe3O4 deposit without appreciable nanoparticle aggregation. In that way, improvement 

of two benefit was achieved: controllable MG precipitation due to the strong metal chelation of 

amine groups and improved adsorption performances of the obtained adsorbent (Qi et al. 2017). 

To the best of our knowledge, there are no examples in the literature dealing with the removal of 

Cd2+, Ni2+, chromate and phosphate ions by WL based adsorbent with impregnated MG particles. 

Besides the adsorbent morphology and surface properties, the operating conditions play an 

important role in achieved high adsorption capacities. Many theoretic studies (isothermal, 

kinetic, statistical-physic models) are carried out to understand the behavior of single-compound 

adsorption systems since the operating conditions can be potentially infinite in terms of 

combination of pollutant concentration, temperature and time of the pollutant/adsorbent 

contact(Sellaoui et al. 2016a, b, 2017a, b). Freundlich and Langmuir models are mostly used to 

analyze the adsorption equilibrium of heavy metal removal using WL or MG based adsorbents in 

a single component system(Sharma et al. 1990b, a, 2007; Taleb et al. 2016b; Obradović et al. 

2017b, a). More precise interpretation of single adsorption isotherms can be obtained using 

statistical physic theory, etc. monolayer models with one or two energies. The obtained 

theoretical results connect experimental result with successfulness of the applied adsorbent 

synthesis process and operation conditions.     

In the present work, the ability of a hybrid material consisting of the WL as a support of MG 

particles, for removal of Cd2+, Ni2+, chromate and phosphate ions from aqueous solutions was 

studied. The ions adsorption capacity of the WL impregnated with MG can be controlled either 

by directly precipitation of MG particles or polyol-medium solvothermal method and via (3-

aminopropyl)trimethoxy-silane cross-linker by solvent/nonsolvent system method. The 

adsorption experiments were performed in order to analyze the influence of the MG precipitation 

method, adsorbent amount, adsorption temperature and contact time on achieved capacities. 

Moreover, the present work is a modeling study of heavy metals ion/oxyanions removal and 

provides useful information about the adsorption mechanisms in single-compound system.   

 

Experimental section 
 

Materials  

All reagents were of analytical grade and used without purification. Deionized water (DW), of 

resistivity of 18 MΩcm, was used. Ultra-pure HNO3 acid and diethylene-triaminepentaacetic 

acid (DETAPAA) were supplied from Fluka. Iron(III) chloride hexahydrate (FeCl3·6H2O), 

iron(II) sulphateheptahydrate (FeSO4·7H2O), sodium hydrogen carbonate (NaHCO3), sodium 

acetate (NaAc), polyethylene glycol 6000 (PEG-6000), (3-aminopropyl)triethoxysilane, 
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methanol, methyl methacrylate (MMA), potassium persulphate, calcium carbonate (CaCO3), 

N,N-dimethylformamide (DMF), toluene andisopropyl alcohol were supplied from Sigma-

Aldrich. Methylhydro-cyclosiloxane was supplied from abcr GmbH. Standard solutions of 

nickel(II) nitrate hexahydrate (1000 ppm) was supplied from Accustandard. Cadmium(II) nitrate 

tetrahydrate (1000 ppm) was supplied from Panreac. Chromium(VI) standard for ICP 

(1000 ppm) was supplied from Sigma-Aldrich. Phosphate standard solution (1000 pm) was 

supplied from Merck KGaA. 

Synthesis of submicropoly(methyl methacrylate) spheres  

Synthesis of submicro poly(methyl methacrylate) spheres (PMMA) was done according to the 

procedure described elsewhere (Shim et al. 2004). Polymerization was carried out in a 250 ml 

three-necked glass reactor equipped with a magnetic stirrer (stirring rate 100 rpm), reflux 

condenser, nitrogen inlet tube and an oil bath. Mixture of 100 ml of methanol and 50 ml water 

was added in the glass reactor and followed by addition of 5 g of MMA and the temperature was 

raised up to 70 oC. Thereafter, the aqueous potassium persulphate (KPS) solution (0.0375 g of 

KPS in 10 ml of water) was added and the polymerization was initiated under nitrogen (inert) 

atmosphere at 70 oC. After 1 h, the mixture was cooled down using an ice-bath and PMMA was 

washed three times with a cold methanol/water mixure (90/10 v/v) by applying repeated 

centrifugation/ultrasound treatment.  

Synthesis of diethylenetriaminepentaacetic acid dianhydride 

Synthesis of diethylenetriaminepentaacetic acid dianhydride (DETAPADA) was done according 

to the procedure described elsewhere(Capretta et al. 1995). In a dry three-necked glass reactor 

equipped with a magnetic stirrer, reflux condenser, nitrogen inlet tube and calcium chloride 

protection tube, immersed in an oil bath, 23.6 g of DETAPAA (60.0 mmol) was suspended in 

31 ml of dry pyridine followed by addition of 24 ml of acetic anhydride. The mixture was heated 

at 65 °C for 24 h under intensive mixing, cooled down and filtered under vacuum and inert 

atmosphere. The obtained product, white solid, was collected and washed with 200 ml of acetic 

anhydride and 200 ml of diethyl ether and dried under vacuum at 50 °C for 6 h. 

Synthesis of wollastonite based adsorbent 

Wollastonite-based adsorbents were synthesized in a two-step pressureless sintering process 

described in the previous research (Obradović et al. 2017a). In the first step 7.79 g methylhydro-

cyclosiloxane was dissolved in 100 ml of isopropyl alcohol under magnetic stirring at ambient 

temperature. Thereafter, 9.00 g of micro-sized CaCO3 was added and mixed for 10 min, followed 

by ultrasound treatment (Bandelin electronic ultrasonic bath, Berlin, Germany, power 120 W, 

frequency 35 kHz) for 20 min and dried overnight at 80 oC. The obtained paste was calcined in a 

furnace at 250 oC during 30 min, with a 5 oC/min heating rate. In the second step, the as-prepared 

wollastonite powder (0.80 g) was carefully homogenized with a pore-forming agent (0.20 g 

submicro PMMA spheres), molded in a cylinder pallet (dimension 5 mm∙ϕ10) and sintered at 

900 oC during 1 h, with a 5 oC/min heating rate. 

Direct attaching of MG spheres on wollastonite  

The generation of MG nanoparticles was carried out by a polyol-medium solvothermal method 

according to the literature description (Wang et al. 2011). In single necked glass reactor of 50 ml, 

0.405 g of FeCl3·6H2O was dissolved into 20 ml ethylene glycol, producing an orange solution. 

1.0 g of sintered wollastonite was homogeneously dispersed applying sonication for 3 h. 

Addition of NaAc (1.8 g) and PEG-6000 (0.5 g), keeping a constant mechanical stirring at 800 
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rpm for 30 min, provided pH and viscosity adjustment of the dispersion. The obtained viscous 

product was transferred in a Teflon-lined stainless steel autoclave of a 80 ml capacity followed 

by heating at 200 °C for 8 h. The black precipitates, obtained after cooling the reaction mixture, 

were washed with water and ethanol three times and dried in a vacuum oven at 60 °C. The final 

product was labeled WL/MG. 

Attachment of MG nanoparticles on branched carboxyl functionalized 

wollastonite 

Stepwise synthesis of amino-functionalized and subsequently carboxy terminal functionalization 

of WL was performed by applying the modified literature method (Taleb et al. 2015). Amino 

group functionalization of WL was achieved by a direct silanization of WL with (3-

aminopropyl)triethoxysilane (γ-APS). The product was named WL-γ-APS. In a three-necked 

glass reactor of 100 ml, equipped with a magnetic stirrer, reflux condenser, nitrogen inlet tube 

and an oil bath for heating, 1.0 g of WL was dispersed into 50 ml of toluene under continuous 

stirring, then 1.0 ml of triethylamine and 1.0 ml of γ-APS were added into the suspension, and 

followed by refluxing at 80 °C for 12 h under a nitrogen atmosphere. WL-γ-APS was purified by 

washing in ethanol, dried under vacuum at 60 °C and then used for carboxylic acid modification 

in order to obtain more reactive centers for MG precipitation. The quantitative Kaiser test(Sarin 

et al. 1981) predicted the concentration of terminal amino functions present on the WL-γ-APS 

material to be 2.50 mmol g−1. Modified WL-γ-APS (1.2 g) was dispersed in 10 ml of DMF under 

stirring, and after 10 ml of 0.1 mol l−1 solution of DETAPADA was added into the suspension, 

and mixed at room temperature for 24 hrs. Finally, the product (WL/DA) was dried under 

vacuum at 60 °C and used for attaching of MG spheres according to the procedure described 

elsewhere in the literature (Taleb et al. 2015). The acidic site concentrations were determined 

using the Boehm titration method (Boehm 1994), and the determined acid value for WL/DA was 

found to be 4.3 mmol g−1.  

In the last step, WL/DA (1.3 g) was sonicated in 30 ml of toluene with simultaneous introduction 

of nitrogen for 30 min, and after pH of dispersion was adjusted at ~6. The reaction was 

continued by drop-wise addition of 1.0 ml of 0.125 mol l-1 FeSO4·7H2O solution for 15 min 

under magnetic stirring and inert atmosphere. Neutralization of the reaction mixture with a 1 mol 

l-1 NaHCO3 buffer solution cause precipitation of iron oxide in the MG form. The reaction took 

place by heating at 90 oC for 48 h while a black product was obtained. The obtained product was 

filtered, washed with 200 ml DW and dried applying vacuum/drying treatment at 60 °C/2000 Pa 

for 6 hours. The final product was named WL-γ-APS/MG. Schematic illustration of WL 

modification methods is shown in Fig. 1.  

 

Fig. 1. 

 

Adsorption and kinetic experiments  

Batch adsorption experiments of Cd2+, Ni2+, Cr(VI) and phosphate ions removal, under mixing 

using a laboratory shaker (Digital Heating Shaking Drybath by Thermo SCIENTIFIC), were 

applied to determine adsorption capacities and investigate effects of diffusional processes on the 

performance of synthesized adsorbents. An appropriate adsorbent mass (m = 1.0, 1.5, 2.5, 5.0, 

7.5 and 10 mg), was placed in glass vials containing 10 ml of the standard solutions of ions of 

interest (Cd2+, Ni2+, Cr(VI) and phosphate ions) at initial concentrations, Ci, of 10 ppm. 
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According to the determined values of the point of zero charge of the WL based adsorbents and 

the ion distribution, the pH values of the solutions of Cd2+ and Ni2+ ions were set at 7.5 and for 

the solutions of Cr(VI) and phosphate ions were set at 6.5. The adsorption and kinetic 

experiments were performed at 298, 308 and 318 K. The adsorption kinetic was studied by 

varying the adsorbent/ion contact time in the range 5-90 min at Ci=10 ppm. The adsorption 

capacities of Cd2+, Ni2+, Cr(VI) and phosphate ions removal using WL based adsorbents were 

calculated according to the following Eq. (1):  

V
m

CC
q fi








 


)(
          (1) 

Where q is the adsorption capacity in mg g–1, Ci and Cf are the initial and final concentrations of 

ions in ppm, V is the volume of solution in l, and m is the mass of the adsorbent in g. After 

adsorption experiments, WL/MG and WL-γ-APS/MG adsorbents were washed with DW. 

Further, in order to evaluate the adsorbent regeneration capabilities, wet adsorbents were 

redispersed in 20 ml of solution for regeneration (NaOH/NaCl, 0.5/0.5 mol l-1) (Taleb et al. 

2016b). The amount of desorbed ions in effluent water was measured after mixing by the 

laboratory shaker for 3 h in a batch system. Three consecutive adsorption/desorption cycles were 

performed. 

Characterization method 

Fourier transforms infrared spectroscopy (FTIR) spectra of the WL based adsorbents were 

recorded in the absorbance mode using a Nicolet™ iS™10 FT-IR Spectrometer (Thermo Fisher 

SCIENTIFIC) with Smart iTR™ Attenuated Total Reflectance (ATR) Sampling accessories, 

within the range of 400-4000 cm–1, at a resolution of 4 cm–1 and in 32 scan mode.  

The X-ray powder diffraction patterns were obtained using a Philips PW-1050 diffractometer 

with  Cu–K radiation and a step/time scan mode of 0.05 º s-1. The measurements were taken at 

room temperature in air. 

The morphology of the sintered powders was characterized by the scanning electron microscopy 

(JEOL JSM-6390 LV). The pallets were crushed and covered with gold in order to perform these 

measurements. 

Raman spectra of the WL-based adsorbent, recorded in the range 200–1200 cm-1, were collected 

with a Horiba JobinYvon Aramis Raman/PL System. The system employed a 633 nm laser 

(output power 4 mW, on sample 1 mW). All the measurements were realized using a 

spectrometer equipped with 1800 lines mm-1, microscope objective of x100 and acquisition of 

10s per 30 cycles. 

The 57Fe-Mössbauer spectra were obtained at room temperature in the standard transmission 

geometry in the constant acceleration mode using a 57Co(Rh) radioactive source. The velocity 

scale was calibrated by the spectrum of alpha iron foil. The Mössbauer spectra were fitted by 

WinNormos software package(Brand 2008). The isomer shift values (δ) are given relative to α-

Fe (δ = 0). 
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The Cd2+, Ni2+, Cr(VI) and phosphate ions concentrations in the solutions after the adsorption 

and kinetic experiments were analyzed by a PinAAcle 900T Atomic Absorption Spectrometer. 

The mean value from three adsorption experiments was used for processing of experimental data. 

 

Results and discussion  
 

ATR-FTIR analysis 

ATR-FTIR spectra of the unmodified and MG modified WL-based adsorbents are shown in Fig. 

2. The bands characteristic for WL containing ceramics observed at 994 cm-1, 1110 cm-1 

originate from stretching bridging Si–O(Si) vibrations, while bands at 897 cm-1, 874 cm-1, and 

846 cm-1 originates from stretching non-bridging Si–O vibrations (Obradović et al. 2017a). The 

low intensity band at 714 cm-1 originates from stretching vibration of Si–O(Si) bridging bond, 

which is characteristic for the presence of a 3-membered ring in WL ceramics. The intense band 

at 1410 cm-1 is assigned to the carbonate ion vibrational modes in bulk calcite. Broad band 

around 3300-3500 cm-1, observed in ATR-FTIR spectra of WL/DA, originates from hydroxyl 

group (OH) stretching vibration. The bands at 2930 cm-1 and 2870 cm-1 originate from symmetric 

and asymmetric stretching vibrations of methylene group. Moreover, the absorption peaks at 

1680 cm-1 and 1580 cm-1 originates from amide I stretching vibrations, and N-H deformation 

vibrations coupled with (C-N) vibrations (amide II), respectively.  

The low intensity peak around 564 cm-1 observed in the ATR-FTIR spectrum of WL/MG and 

WL-γ-APS/MG originates from vibration of the Fe2+–O2- functional group (Khalil 2015) 

overlapped with the peaks which originate from the C-C=O and C-N-C vibrations (DETAPA 

moiety in WL-γ-APS/MG sample). Raman spectroscopy and 57Fe-Mössbauer analysis are more 

suitable techniques for quantification of the amount of MG doped on WL containing ceramics, as 

well as the determination of the phase and composition of the deposit.  

 

Fig. 2. 

Raman analysis 

Raman spectra of the unmodified and modified (direct/via γ-APS/DA cross-linker) WL based 

adsorbents are shown in Fig.3. In the Raman spectrum of unmodified WL peaks that originate 

from both bare WL and β-larnite are noticed. The peak assignation is done according to the 

literature data and it is shown in Fig.3 (Swamy et al. 1997; Richet et al. 1998; Ricciardi et al. 

2009; Sokol et al. 2015). The small intensity peak at 1083 cm-1indicates that there are residual 

CaCO3 in WL structure(White 2009; Ricciardi et al. 2009). 

In the Raman spectra of both modified WL samples, i.e. WL/MG and WL-γ-APS/MG, two wide 

peaks of magnetite, followed by two low intensity peaks of maghemite, are observed(de Faria et 

al. 1997; Ovsyannikov et al. 2010; Li et al. 2012). Partial transformation of magnetite into 

maghemite is found to induced by laser excitation (de Faria et al. 1997). The WL peaks at < 

500 cm-1 can be assigned to the Ca-O stretching (the lowest frequencies in the region) and 

bending vibrations (higher frequencies in the region). On the other hand, Raman signals of WL 

observed between 500 and 600 cm-1 originate from the O-Si-O bending vibrations. Although the 
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band at 635 cm-1 can be attributed to the Si-O-Si bending vibration (Osticioli et al. 2009; Buzatu 

and Buzgar 2010; Ebbert et al. 2014), some authors point out that this peak originates from the 

Si-Obr stretching vibrations, where Obr presents bridging oxygen. The stretching Si-Obr vibrations 

induce also the occurrence of the peak between 650 and 750 cm-1, while Raman peaks between 

850 and 200 cm-1 can be assigned to the Si-O nonbridging stretching vibrations (Si-Onbr). 

 

Fig. 3. 

XRD analysis 

XRD patterns of sintered unmodified WL and modified WL samples, WL/MG and WL-γ-

APS/MG, are presented in Fig.4. All obtained intensities are identified by JCPDS cards (042-

0547 for wollastonite CaSiO3, and 077-0409 for larnite Ca2SiO4). A two-phase system is 

detected in unmodified WL samples: wollastonite and larnite (13.4 % CaSiO3 and 86.6 % 

Ca2SiO4). Peaks for magnetite, marked by their indices [(111), (220), (311), (400), (422), (511), 

(440)] (Wang et al. 2009; Huang et al. 2017), are observed in XRD curves for both WL/MG and 

WL-γ-APS/MG samples. No additional peaks are observed. 

Fig.4. 

57Fe-Mössbauer spectroscopy 

The 57Fe-Mössbauer spectra of modified WL samples, W-γ-APS/MG and W-MG, are presented 

in Fig.5. The samples were evaluated using WinNormos-DIST program. The two absorption 

lines (so called a doublet) were visible in the WL-γ-APS/MG spectrum. The spectrum was fitted 

with the distribution of the quadrupole splitting. The distribution was described using histogram 

distribution of 30 doublets of Lorentzian lines with the same FWHM (0.3 mms-1) in steps of 

0.1 mms-1. The linear correlation between the quadrupole splitting and the isomer shift was 

applied. Isomer shifts for the quadrupole distribution covered range from ~0.33 to ~0.34 mms-1. 

The quadrupole splitting distribution P(Δ) of the WL-γ-APS/MG sample is presented in Fig.6. In 

the WL/MG spectrum, besides the dominant central doublet, a broad six-lines absorption feature 

(so called a sextet) representing the magnetic contribution to the spectrum was also visible. The 

spectrum was fitted with one discrete doublet and one distribution of the hyperfine magnetic 

field (distribution of the magnetic splitting). The distribution of the magnetic splitting was 

described using a histogram distribution of 35 sextets of Lorentzian lines with the same FWHM 

(0.5 mms-1) from 15 T in steps of 1 T. The linear correlation between the hyperfine magnetic 

field and the isomer shift was applied. Isomer shifts for the magnetic distribution covered the 

range from ~0.32 to ~0.64 mms-1. The quadrupole shift was fixed to zero. The hyperfine 

magnetic field distribution P(Bhf) of the magnetic part of the WL/MG sample is presented in Fig. 

7. In the same DIST program, one discrete doublet was combined with the magnetic distribution. 

The 57Fe-Mössbauer parameters of the WL/MG and WL-γ-APS/MG samples are presented in 

Table 1. Under the assumption that f-factors of Fe atoms at various sites in the particular sample 

are identical, the area of the corresponding Mössbauer subspectrum was used to access the 

relative fractions of iron atoms at different sites. 

 

Fig. 5. 

 

Fig. 6. 
 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 9 

Fig. 7. 
 

The stoichiometric magnetite has an inverse spinel crystal structure. The tetrahedral sites (A-

sites) are occupied by Fe3+ ions and the octahedral sites (B-sites) by the Fe3+ and Fe2+ ions. The 

site distribution in the MG structure is usually presented by the formula (Fe3+)A (Fe3+ Fe2+)B O2-
4. 

At the temperatures above the Verwey transition temperature (~ 119 K), a rapid electron 

exchange exist between the Fe2+ and Fe3+ ions at the B-sites which leads to the effective Fe2.5+ 

valence (Kündig and Steven Hargrove 1969, and references therein). Depending on the amount 

of the Fe2+ in the MG structure, the so called non-stoichiometric Fe3-xO4 or partially oxidized MG 

can have a range of oxidation states (Gorski and Scherer 2010; Kalska-Szostko et al. 2015). 

Vacancies are formed in the MG structure (presumably on the octahedral sites) to account for the 

charge balance. The structure of the completely oxidized MG (x = 1/3) is the crystal structure of 

the maghemite, γ-Fe2O3. At the room temperature (RT), only two magnetic sextets are observed 

in the Mössbauer spectrum of pure bulk MG (Kündig and Steven Hargrove 1969; da Costa 1995; 

Stevens et al. 2005; Dyar et al. 2006). The first sextet that belong to the A-site has the hyperfine 

magnetic field Bhf ~ 49 T and the isomer shift value characteristic for the Fe3+ ions δ ~ 0.27 mms-

1. The second sextet comprises all the iron B-sites and, due to the electron hopping between iron 

B-sites, exhibit the hyperfine magnetic field Bhf ~ 46 T with lines broadened and shows an 

isomer shift of around δ ~ 0.67 mms-1 - an averaged value of the isomer shift values for the Fe2+ 

and Fe3+ ions at B-sublattice. The ratio of the A to B sextets is 1:2. For the maghemite, the two 

sextets have very close values of the hyperfine magnetic fields, so only one sextet of Bhf ~ 50 T 

and isomer shift around δ ~ 0.32 mms-1 is seen in the bulk maghemite Mössbauer spectrum at RT 

(Stevens et al. 2005; Dyar et al. 2006). For a partially oxidized MG or for the mixture of MG and 

maghemite, the relative intensities of the two sextets change, but the parameters remain 

essentially the same (Joos et al. 2016; Fock et al. 2017). The well-defined magnetic splitting for 

MG and maghemite is seen at RT only for particles with the grain size larger than 15 nm and can 

serve as a basis for their phase differentiation. For smaller particle grains, the magnetic splitting 

may collapse to a singlet or doublet due to the superparamagnetic relaxation or sextet may be 

severely broadened (Roggwiller and Kundig 1973; daCosta et al. 1998; Dézsi et al. 2008; 

Suzdalev et al. 2012; Carvalho et al. 2013; Kalska-Szostko et al. 2015; Joos et al. 2016; Oshtrakh 

et al. 2016). Also, in the RT-Mössbauer spectrum, superparamagnetic (SPM)-magnetite 

nanoparticles are hard to be distinguished from the other SPM-iron-oxide/iron-hydroxide 

nanoparticles (Joos et al. 2016).  

 

Table 1.Room temperature 57Fe-Mössbauer hyperfine parameters for the WL/MG and WL-γ-

APS/MG samples 

A – relative area of the Mössbauer subspectrum; Γ - line width (FWHM); δ – isomer shift; Δ - the quadrupole 

splitting. In the case of the distribution of the quadrupole splitting: 〈𝛿〉 – average isomer shift; 〈∆(𝜎)〉 - average 

quadrupole splitting and standard deviation of the distribution of the quadrupole splitting. In case of the distribution 

of the magnetic splitting: 〈𝛿〉 – average isomer shift; 〈𝐵hf(𝜎)〉 – average hyperfine magnetic field and standard 

deviation of the distribution of magnetic splitting. The fitting errors are presented in the parenthesis. 

Sample Mössbauer 

subspectrum 

A 

(%) 

Γ 

(mms-1) 

δ / 〈𝜹〉 
(mms-1) 

Δ /〈∆(𝝈)〉 
(mms-1) 

〈𝑩𝐡𝐟(𝝈)〉 
(T) 

WL/MG D 59 0.572(8) 0.344(3) 0.827(5)  

B-distrib. 41 0.5 0.42(9) 0 39.1(7.6) 

WL-γ-APS/MG Q-distrib. 100 0.3 0.339(5) 0.76(0.38)  
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The calcium-based silicates may be also represented by the various doublets in the Mössbauer 

spectra at RT (Dowty and Lindsley 1973; Stevens et al. 2005; Dyar et al. 2006). The doublets 

with the isomer shift values of around 1 mms-1 or higher that may represent Fe2+ ions 

incorporated in the calcium-silicates or silicates (Dowty and Lindsley 1973; Murad and Wagner 

1998; Stevens et al. 2005; Dyar et al. 2006) could not be fitted to the WL-γ-APS/MG spectrum. 

In the case of the WL/MG, the Fe2+ doublet originated from calcium-silicates and silicates would 

be covered by the broadened sextet. On the other hand, the presence of the Fe3+ ions in silicates 

in the two investigated samples could not be excluded, since their Mössbauer parameters are in 

most cases overlapping with the ones of the SPM-iron-oxide/hydroxide nanoparticles (Murad 

and Wagner 1998; Stevens et al. 2005; Dyar et al. 2006). Nevertheless, despite the difficulties 

stated above, the most probably scenario for the two samples is that the majority of Fe is 

incorporated in the iron-oxide nanophase. The calcium-silicate phases present in the samples 

should exhibit an Fe2+ ion - Mössbauer signature as mentioned above, which could not be 

detected in significant amount for both samples. For the WL-γ-APS/MG spectrum, the fit that 

may distinguish between different phases in the WL-γ-APS/MG sample, i.e. the fit with two or 

more doublets could not provide a unique set of Mössbauer parameters. Therefore, we decided to 

fit the spectrum with one quadrupole splitting distribution. The average value of the quadrupole 

splitting distribution was ~0.76 mms-1. Under assumptions that the majority of iron is 

incorporated into the iron-oxide nanoparticles, for the WL-γ-APS/MG sample, the waste 

majority of the ultra-fine iron-oxide nanoparticles are in the superparamagnetic state. Similar 

reasons apply for the RT WL/MG - 57Fe-Mössbauer spectrum. The dominant doublet could be 

fitted to the WL/MG spectrum satisfactory with only one doublet and therefore may also 

incorporate both, the SPM-iron-oxides/hydroxides and/or the silicate phases. The WL/MG - 
57Fe-Mössbauer spectrum differs from the WL-γ-APS/MG spectrum in the presence of the 

magnetic contribution visible as the broadened asymmetrical sextet. The fits of the magnetic part 

of the WL/MG spectrum with the two magnetic field distributions for A- and B-site in MG phase 

were not satisfactory. Also the fits with one discrete sextet for the A-site and one magnetic field 

distribution for the B-site also failed to describe the spectrum reasonably. The magnetic 

component correlated with the A-site in the MG with Bhf ~ 49 T was not present in the spectrum. 

Finally, the magnetic part was fitted with one hyperfine magnetic field distribution (Fig. 7). 

Several peaks are present in the magnetic distribution for the WL/MG sample. An attempt to fit 

the probability distribution P(Bhf) with five Gaussian was made (Fig. 7): the most prominent 

peak is located at ~ 44.9 T (δ ~ 0.36 mms-1), followed by smaller maxima at 40.7 T (δ ~ 

0.40 mms-1), 35.8 T (δ ~ 0.45 mms-1), 28.5 T (δ ~ 0.51 mms-1) and 21.7 T (δ ~ 0.58 mms-1). The 

peaks parameters do not indicate clearly to the specific iron-oxide/iron-hydroxide phase. Besides 

the above mentioned reasons associated with the reducing of the particle size, there may be 

several other reasons for the lowering of the hyperfine magnetic field at various Fe sites in the 

iron-oxide nanoparticles and broadening of the spectrum lines: significant distribution in the 

particles size, poorly crystallized nanoparticles, inclusion of various impurities/phases into the 

grains, etc.  

Scanning electron microscopy (SEM) 

The SEM micrographs of the synthesized PMMA microspheres, used as a pore-forming agent, 

and calcined unmodified and modified WL powders are shown in Fig. 8. From Fig. 8a) it can be 

observed that the soap-free emulsion polymerization produce PMMA microspheres with high 

uniform dimensions (≈700-800 nm). During the calcination of the WL powder, PMMA 
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microspheres are subjected to degradation and evaporation which undergoes swelling and cause 

forming of non-uniform porous structure (Fig. 8b)). Inside WL structures, noticed pores are 

connected, as presented in Fig. 8b). Submicro-size PMMA particles, approximately 0.1-1.50 

microns (Sreekanth Chakradhar et al. 2006; Obradović et al. 2017a), caused micro-porosity in 

obtained material. A comparative morphology study of direct and indirect MG modified WL 

shows that smaller MG agglomerates (Fig. 8d)) were precipitated using MG spheres attaching 

method via γ-APS/DA cross-linker. Clearly visible MG agglomerates with higher dimensions 

were obtained using the polyol-medium solvothermal method (Fig. 8c)).  

These results were confirmed by EDS mapping and EDS image. The obtained results are shown 

in Fig.9 and Table S1. The EDS image proves the presence of the starting elements O, Si, Ca and 

Fe (Fig. 9 a) and b)). Moreover, the elemental mapping (O and Fe elements) shows clearly that 

direct attaching of MG spheres on WL led to the precipitation of MG agglomerates of higher 

dimensions, while attaching of MG spheres via γ-APS/DA cross-linker led to a more uniform 

precipitation of MG particles of smaller dimensions. This can be attributed to numerous 

nucleation/crystallization centers (carboxylic groups/carboxylate anions) suitable for iron 

complexation in the initial stage, while in the course of adsorbent synthesis MG precipitation 

take place by MG crystal growth producing a large number of more uniformly distributed 

smaller particle size on WL/DA surface (Fig.1). Numerous crystallization centers affect the MG 

loading. Hence, as shown in the results of the EDS analysis (Table S1), a higher loading of MG 

was bounded by precipitation via γ-APS/DA cross-linker (11.36%), while only 4.37% were 

bounded by direct MG precipitation. These results were corroborated by acidic dissolution in 

nitric acid and determination of iron content (10.66% for WL/γ-APS/DA and 4.76% for 

WL/MG).  

 

Fig. 8. 
 

Fig.9. 
 

Determination of the point of zero charge (pH PZC) of wollastonite-based 

adsorbent and effect of pH on adsorption efficiency 

The pH influences the state of equilibrium of ionic species and protonation/deprotonation of 

sorbent functional groups. The pH of the point of zero charge, pHPZC for the magnetite modified 

WL based adsorbents was measured by the pH drift method. In aqueous systems, the surface of 

iron oxides is covered with FeOH groups that can be protonated or deprotonated and generate 

surface charge FeOH2
+ or FeO− at pH values below or above the point of zero charge for 

magnetite (pHPZC), respectively(Rajput et al. 2016). Electrostatic forces between metal ion 

species and surface charges are responsible for adsorption (Ahmed et al. 2013; Rajput et al. 

2016). The point of zero charge for magnetite is the pH value at which the surface concentrations 

of FeOH2+ and FeO− groups are equal. The measured pHPZC of unmodified WL was 2.7, while 

pHPZC of both MG modified WL based adsorbents was ~7.0. In the next step, the removal degree 

of Ni2+ and Cd2+
 versus the initial pH (pHi) was studied, and the obtained results are presented in 

Fig.S1. At low pH (lower than pHPZC of MG modified WL), sorbent surface is covered mostly 

with FeOH2+ and positively charged surface functionalities. Therefore, the positively charged 

metal ions, Ni2+ and Cd2+, showed low adsorption efficiency due to both the repulsive forces and 

the adsorption of H3O
+ which hinders/competitively occupy adsorptive sites (Ahmed et al. 2013). 
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It can be noticed from Fig.S1 that, with an increase in pH from 3 to 9, the Cd2+ and Ni2+ 

percentage uptake increased too. In the pH range between 7 and 9 the maximum of Ni2+ and Cd2+ 

percentages uptake was observed (72 % and 97 % Cd2+ uptake on WL/MG and WL-γ-APS/MG, 

receptively, and 84 % and 85 % Ni2+ uptake on WL/MG and WL-γ-APS/MG, receptively). 

Subsequently gradual decrease of Cd2+ and Ni2+ uptake on was WL/MG and WL-γ-APS/MG 

observed at pH>8. The variation in the effectiveness of metal removal at different pH values 

could be explained by metal speciation as shown in Fig. S2. From the speciation diagram of Cd2+ 

and Ni2+ ion (Fig.S2), obtained by using MINTEQ. 3.0 software (Gustafsson 2011), high 

removal efficiencies would be expected in the pH region 7-8 for both Cd2+ and Ni2+, while 

adsorption capabilities at pH>8 could originate from additional contribution of the precipitation 

of insoluble metal hydroxides (Drah et al. 2017). Thus adsorption curves for studied cations 

represent only adsorption with excluded precipitation at pH>8. According to this, at pH<8, it was 

certain that removals of Cd2+ and Ni2+ were not affected by hydroxide/salt precipitation, and 

obtained results were considered without any misleading conclusions (Drah et al. 2017). In this 

sense, the selection of pH 7.5 for Cd2+ and Ni2+ removal and pH 6.5 for both Cr(VI), considering 

equilibrium of HCrO4
-/CrO4

2- ions, and phosphate, equilibrium of H2PO4
-/HPO4

2- ions,was an 

adequate choice to achieve high adsorption capacities.  

 

Adsorption/desorption study of Cd2+, Ni2+, HCrO4
-/CrO4

2- and H2PO4
-/HPO4

2- 

on WL/MG and WL-γ-APS/MG adsorbents 

According to the previous adsorptions studies, it was confirmed that heavy metals undergo 

complexation and hydrolysis during adsorption (Kumari et al. 2015). Surface complexation of 

heavy metals occurs via exchange of metal ions Mm+ with H+ ions at the surface hydroxyl groups 

–MˈOH. M(OH)n
(m-n)+ ions, that occurs during the hydrolysis, can electrostatically interact with 

the iron-oxide (MG) surfaces forming a specific type of adsorbed ion/surface interaction (Petrova 

et al. 2011). It was found that metals hydrolysis causes weakening of the interaction between the 

metal ion and water in hydration shell that facilitates the approach of the metal ions to the 

surface (Petrova et al. 2011).  

However, analysis/description of adsorption mechanism of oxyanions is complex/extensive task  

and needs more reliable results, and most of them are based on spectroscopic evidence (Kumari 

et al. 2015). Multiple adsorption mechanisms occur during the phosphate ions up-taking. The 

cationic species (M(OH)n
(m-n)+) takes part in uptaking of phosphate ions via electrostatic 

interaction (Rout et al. 2015, 2016). However, it is proved that complexation of oxyanions on 

MG surface was achieved by formation of monodentate and bidentate complexes through 

covalent bonding between the surface oxide’s oxygen and the adsorbing metal ion (Kumari et al. 

2015). Three main forms of phosphate complexes on iron oxide surface were defined: protonated 

((FeO)2(OH)PO), nonprotonated bridging bidentate ((FeO)2PO2) and a nonprotonated 

monodentate ((FeO)PO3) (Tejedor-Tejedor and Anderson 1990). In a similar manner due to 

similar chemistry chromate, schematic illustration of formation of monodentate and bidentate 

complexes between MG modified WL and HCrO4
-/CrO4

2- ions is presented on Fig. S3. 

The state of interaction/bonding at solutes/sorbent surface can be described by fitting 

experimental data with various adsorption isotherms (Markovski et al. 2014b). Analysis of 

adsorption data was performed by using various isotherm models, and statistical criteria used to 

evaluate the quality of model fitting of adsorption data. The Langmuir isotherm model is given 
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by Eq. (2), while thermodynamic parameters for studied ions were first estimated using the 

Gibbs free energy equation and the linearized van′t Hoff Equation (i.e., the van′t Hoff plot) as 

follows (Liu et al. 2015): 

)1()( max eee KCCKqq           (2) 

∆𝐺𝑜 = −𝑅𝑇𝑙𝑛𝐾𝐿          (3) 

𝑙𝑛𝐾𝐿 = −
∆𝐻𝑜

𝑅𝑇
+

∆𝑆𝑜

𝑅
          (4) 

where: Ce is the equilibrium concentration of ion at equilibrium (mol l–1), qe is the amount of ions 

adsorbed per weight unit of solid at equilibrium (mol g–1), K and KL are Langmuir constants 

related to sorption affinity in l mg-1 and l mol-1, respectively, and qmax is maximum sorption 

capacity (mol g–1), ΔG° (kJ mol−1) is the change of free energy, ΔH° (kJ mol−1) is the change of 

enthalpy, ΔS° (kJ mol−1) is the change of entropy, T (K) is the absolute temperature and R is the 

ideal gas constant (0.008314 kJ mol−1 K−1). The values of non-linear Langmuir adsorption 

isotherm and thermodynamic parameters at 298, 308 and 318 K for Cd2+, Ni2+, HCrO4
-/CrO4

2-

and H2PO4
-/HPO4

2-ions adsorption, using WL/MG and WL-γ-APS/MG adsorbents, are presented 

in Tables 2 and 3, and Fig. S4. Linear Langmuir adsorption isotherms, as well as values of the qe, 

K and KL are presented in Fig. S5, and Tables S2 and S3. 

According to the Langmuir isotherm, mechanism of Cd2+, Ni2+, HCrO4
-/CrO4

2- and phosphate 

ions adsorption onto WL/MG and WL-γ-APS/MG sorbents can be described by monolayer 

adsorption with equal energy and enthalpy for all adsorption sites. Langmuir isotherm assumed 

that the energy of adsorption is generally considerably larger than for the second and higher 

layers, and therefore multilayer formation is less possible (Rouquerol et al. 1999).  

The results presented in Table 2 show high predicted adsorption capacity for both WL/MG and 

WL-γ-APS/MG adsorbents, and increase of adsorption capacity with the temperature increase. 

Moreover, adsorption results significantly support better adsorption performances of WL-γ-

APS/MG (26.7 – 33.0 % higher qe) due to developed surface formed by size- and distribution 

controllable deposition of MG on WL/DA.  

The higher values of the Langmuir constant, that reflect the sorption affinity, were obtained for 

adsorption of all ions on WL-γ-APS/MG adsorbents at all temperatures. Higher temperature 

dependence was obtained for H2PO4
-/HPO4

2- and HCrO4
-/CrO4

2- oxyanions, which means higher 

probability of surface complexation at higher temperature. Comparing obtained values of the 

Langmuir constant it can be concluded that WL/MG and WL-γ-APS/MG adsorbents have higher 

sorption affinity for Ni2+ and Cd2+ as a results of their bonding mechanism. It can be explained by 

complex formation of monodentate mononuclear and bidentate binuclear complexes of HCrO4
-

/CrO4
2- and H2PO4

-/HPO4
2- ions with MG surface hydroxylic groups, while Ni2+ and Cd2+ ions 

easily create electrostatic interactions with MG centers. Moreover, the complexation of all 

investigated pollutant is easier with developed surface of W-γ-APS/MG adsorbent. 
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Table 2. Non-linear Langmuir isotherm parameters for Cd2+, Ni2+,H2PO4
-/HPO4

2- and HCrO4
-

/CrO4
2- ions obtained at 298, 308 and 318 K using WL/MG and WL-γ-APS/MG adsorbents 

Cd2+ Ni2+ 

WL/MG 

T(K) 
qe 

(mg g−1) 

K 

(l mg−1) 
R2 

qe 

(mg g−1) 

K 

(l mg−1) 
R2 

298 50.543 24.313 0.960 47.889 23.330 0.936 

308 53.429 22.389 0.922 50.216 22.856 0.909 

318 55.450 25.867 0.969 52.019 26.911 0.969 

WL-γ-

APS/MG 

298 69.289 19.096 0.876 61.412 24.638 0.989 

308 69.724 44.152 0.986 63.076 28.920 0.979 

318 73.126 61.886 0.986 66.144 37.083 0.988 

H2PO4
-/HPO4

2- HCrO4
-/CrO4

2- 

 
T 

(K) 

qe 

(mg g−1) 

K 

(l mg−1) 
R2 

qe 

(mg g−1) 

K 

(l mg−1) 
R2 

WL/MG 

298 44.529 17.021 0.943 42.824 14.940 0.844 

308 46.262 19.060 0.947 44.447 13.262 0.808 

318 48.132 19.637 0.962 47.382 14.477 0.829 

WL-γ-

APS/MG 

298 60.019 35.202 0.957 62.133 12.071 0.903 

308 62.702 35.921 0.981 63.632 19.354 0.917 

318 64.168 38.153 0.965 63.456 37.923 0.973 

Table 3.Thermodynamic parameters Cd2+, Ni2+,H2PO4
-/HPO4

2- and HCrO4
-/CrO4

2- ionsobtained 

at 298, 308 and 318 K using WL/MG and WL-γ-APS/MG adsorbents 

Cd2+ Ni2+ 

 
T 

(K) 

ΔGo 

(kJ mol-1) 

ΔHo 

(kJ mol-1) 

ΔSo 

(J mol-1 K-1) 

ΔGo 

(kJ mol-1) 

ΔHo 

(kJ mol-1) 

ΔSo 

(J mol-1 K-1) 

WL/MG 

298 -45.23 

2.15 159.10 

-45.20 

2.01 158.75 308 -47.01 -47.01 

318 -48.40 -48.36 

WL-γ-

APS/MG 

298 -46.21 

12.64 198.04 

-45.19 

9.32 183.33 308 -48.80 -47.48 

318 -50.14 -48.83 

H2PO4
-/HPO4

2- HCrO4
-/CrO4

2- 

 
T 

(K) 

ΔGo 

(kJ mol-1) 

ΔHo 

(kJ mol-1) 

ΔSo 

(J mol-1 K-1) 

ΔGo 

(kJ mol-1) 

ΔHo 

(kJ mol-1) 

ΔSo 

(J mol-1 K-1) 

WL/MG 

298 -39.61 

8.69 161.88 

-41.34 

5.36 156.65 308 -41.11 -42.92 

318 -42.86 -44.48 

WL-γ-

APS/MG 

298 -40.09 

29.10 231.46 

-40.69 

21.50 208.95 308 -41.89 -43.13 

318 -44.79 -44.85 

 

The negative ΔG° values indicate that adsorption occurs via spontaneous reactions (Veličković et 

al. 2012). Structure and stability of multilayered hydrated ions, charged or neutral, depend on pH 

and temperature. Changes in pH value dictate presence of ionic species which in turn affect 

structure/extent of interaction in hydration shell. Desolvation and diffusion at higher 
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temperatures are more feasible processes, which are noticed as slight ΔG° increase with 

temperature increase. According to general rules, the change of ΔG° for physisorption lies 

between -20 and 0 kJ mol-1, both physisorption and chemisorption in the range from -20 to -

80 kJ mol-1, while the chemisorption between -80 and -200 kJ mol-1. Obtained results indicate 

contribution of both physisorption and chemisorption (Vuković et al. 2010, 2011; Budimirović et 

al. 2017). 

The positive ΔH° also indicates the endothermic nature of adsorption for all studied ions(Liu et 

al. 2015) (Table 3). The ΔH° does not significantly vary between cations adsorption on WL/MG, 

while slightly increases for Cd2+ adsorption on WL-γ-APS/MG. The highest ΔH° values are 

obtained for WL-γ-APS/MG for oxyanions. Low endothermic nature reflect low energy 

released/consumed by desolvation of cation and formation of an M2+/surface interactions, which 

could at appropriate balance. Higher ΔH° for oxyanions adsorption indicates higher energetic 

contribution of surface reaction, and diffusional processes at lower extent. All of these 

contributing elementary processes are individually low to significant, and could be either 

exothermic or endothermic, and their summary effect was found to be low endothermic. 

The positive ΔS° relates to desolvation of structurally ordered hydronium ion and subsequent 

increase in randomness with increased concentration of adsorbed ions on the solid surface(Liu et 

al. 2015). Water molecules in surrounding solvation shell of metal ion form ordered structure, 

which after disruption of hydrogen-bonding increase system disorder. Positive values of entropy 

change (ΔS°) indicate the increase in disorder (randomness) on boundary solid-liquid surface. 

The M2+/surface interactions and oxyanions complexes formation means decrease in 

translational, rotational and vibrational motion which contributes to entropy decrease. 

Simultaneously, ΔS° increases due to both liberation of water due to adsorption and from cation 

hydration shell.  

Except for this, results of reusability study showed low decrease of adsorption efficiency after three 

adsorptions/desorption cycles. An adsorption efficiency decrease of 22 %, 20 %, 25 % and 18 % 

for Cd2+, Ni2+, HCrO4
-/CrO4

2- and H2PO4
-/HPO4

2- ions, respectively, was obtained after the third 

adsorption/desorption cycle using WL/MG adsorbent. Hence, lower decrease of adsorption 

efficiency of 18 %, 17 %, 19 % and 13 % for Cd2+, Ni2+, HCrO4
-/CrO4

2- and H2PO4
-/HPO4

2- ions, 

respectively, was obtained after the third adsorption/desorption cycle using WL-γ-APS/MG 

adsorbent. According to this, it can be concluded that modification of WL based ceramic (support) 

with magnetic iron-oxide form (magnetite) via γ-APS/DA cross-linker gave adsorbent with higher 

stability of MG deposit. Moreover, with proper selection of technology for treatment of spent 

waste alkali concentrated Cd2+, Ni2+, HCrO4
-/CrO4

2- and H2PO4
-/HPO4

2- ions provide safe 

technology for their removal.  

Competitive adsorption study of Cd2+, Ni2+, HCrO4
-/CrO4

2- and H2PO4
-/HPO4

2- 

ions removal from real water sample 

 

Evaluation of WL/MG and WL-γ-APS/MG adsorbents potential use for Cd2+, Ni2+, HCrO4
-

/CrO4
2- and H2PO4

-/HPO4
2- ions removal from real water samples, contaminated natural water 

from the area of the city of Zrenjanin (located in Vojvodina, Serbia), was used for sorption 

experiment before any purification treatment. Other anions of interest presents in water sample 

are SO4
2- (42.5ppm) and Cl- (1.2 ppm) (Taleb et al. 2016b). Kinetic experiments performed with 
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100 ppm of WL/MG and WL-γ-APS/MG adsorbents were carried out to find out the level of the 

efficiency of total Cd2+, Ni2+, HCrO4
-/CrO4

2- and H2PO4
-/HPO4

2- ions removal in natural water 

sample. It was found that competition of SO4
2- and Cl- ions was negligible (Petrova et al. 2011).  

 

Adsorption kinetic study 

 

Effect of time on pollutant adsorption was studied in a batch system containing m/V 125 mg l−1 

of adsorbent at pH of 6.5±0.10 for Cd2+ and Ni2+ and of 7.5±0.10 for HCrO4
-/CrO4

2- and H2PO4
-

/HPO4
2- ions. The ions concentration was determined after 5, 10, 15, 30, 60, and 90 min. In order 

to properly describe adsorption kinetic, the obtained experimental data was fitted using different 

kinetic rate equations (Bizerea Spiridon and Pitulice 2014). According to the highest values of 

correlation coefficient, R2, which is a measure of conformity between experimental data and 

calculated ones, it was proved that pseudo-second-order (PSO), i.e. Eq. (5), was the most 

appropriate model for description of kinetic processes for both WL/MG and WL-γ-APS/MG 

adsorbents (Tables 4 and S4, Fig. S6 (linear) and S7 (non-linear fit)): 
𝑑𝑞𝑡

𝑑𝑡
= 𝑘2(𝑞𝑒 − 𝑞𝑡)

2          (5) 

The adsorption capacities at equilibrium and at time t (min) are defined by qe and qt (mg g−1) 

respectively, k2 is the PSO rate constant (g mg−1 min−1). The kinetic parameters, presented in 

Table 4, showed that both sorbents, and preferentially WL-γ-APS/MG, possess high affinity with 

respect to studied ions, and satisfactory rate at which system attain its equilibrium. According to 

pseudo second-order kinetic law, the rate limiting step may be chemical adsorption involving 

valent forces through sharing or the exchange of electrons between the sorbents and divalent 

metal ions (Qiu et al. 2009). The analysis of kinetic data, using PSO kinetic method, resulted in 

significantly higher rate constant (1.17 to 13.4 times higher) and relatively balanced values of 

adsorption capacity of studied ions using WL-γ-APS/MG adsorbent at all temperatures. The k2 

values increase with the increasing the temperature and the highest values are obtained at 318 K. 

These results indicate more efficient diffusional transport/adsorbate complexation at adsorbent 

surface versus temperature increase. Determination of activation parameters could give 

information on both energetic requirements to overcome slowest adsorption step and adsorption 

mechanism. The energy of activation (Ea) was calculated from the linear plot of the values of 

logarithms of rate constants (k2) versus 1/T obtained by linearization of Arrhenius equation (Eq. 

6) (results obtained in kinetic study at 298 K using the Eq. (5) (March 1985): 
 

𝑘2 = 𝐴𝑒−(𝐸𝑎/𝑅𝑇)          (6) 
 

Adsorption kinetics is generally controlled by diffusive mass transfer, thus rates of approaching 

to equilibrium usually increase with increasing of temperature. For the cations adsorption on 

both adsorbents, the results show that the intra-particle diffusion is a rate-controlling step since 

the activation energy is low and within the range of 6–17.5 kJ mol−1 characteristic for diffusion-

controlled processes (Haring 1942). The higher activation energies for the adsorption of 

oxyanions reflect significance of morphological/porosity factor to improved adsorption kinetic. 
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Table 4. Kinetic and activation parameters obtained by the use of non-linear PSO kinetic model for the 

Cd2+, Ni2+, HCrO4
-/CrO4

2- and H2PO4
-/HPO4

2- removal using WL/MG and WL-γ-APS/MG adsorbents 

298 K 

 Pseudo-second order Cd2+ Ni2+ 

WL/MG k2x102 (g mg−1 min−1) 0.193±0.029 0.208±0.009 

qe (mg g−1) 55.878±1.003 54.618±1.125 

R2 0.960 0.973 

Ea (kJ mol-1) 11.43 17.38 

WL-γ-APS/MG k2x102 (g mg−1 min−1) 1.222±0.021 1.187±0.005 

qe (mg g−1) 70.027±1.112 62.563±1.082 

R2 0.992 0.991 

Ea (kJ mol-1) 20.78 24.20 

 Pseudo-second order H2PO4
-/HPO4

2- HCrO4
-/CrO4

2- 

WL/MG k2x102 (g mg−1 min−1) 0.594±0.012 0.248±0.017 

qe (mg g−1) 42.819±1.124 46.982±1.115 

R2 0.927 0.972 

Ea (kJ mol-1) 13.91 27.12 

WL-γ-APS/MG k2x102 (g mg−1 min−1) 1.018±0.010 1.215±0.020 

qe (mg g−1) 60.638±0.719 59.574±1.108 

R2 0.947 0.952 

Ea (kJ mol-1) 28.92 25.02 

308 K 

 Pseudo-second order Cd2+ Ni2+ 

WL/MG k2x102 (g mg−1 min−1) 0.223±0.012 0.238±0.001 

qe (mg g−1) 59.445±0.748 58.931±1.197 

R2 0.988 0.975 

WL-γ-APS/MG k2x102 (g mg−1 min−1) 2.075±0.007 2.030±0.007 

qe (mg g−1) 69.883±1.221 62.411±1.223 

R2 0.999 0.998 

 Pseudo-second order H2PO4
-/HPO4

2- HCrO4
-/CrO4

2- 

WL/MG k2x102 (g mg−1 min−1) 0.785±0.003 0.282±0.001 

qe (mg g−1) 45.300±1.022 47.734±1.690 

R2 0.994 0.995 

WL-γ-APS/MG k2x102 (g mg−1 min−1) 2.452±0.008 2.402±0.003 

qe (mg g−1) 61.336±1.103 62.494±0.426 

R2 0.973 0.947 

318 K 

 Pseudo-second order Cd2+ Ni2+ 

WL/MG k2x102 (g mg−1 min−1) 0.258±0.007 0.324±0.001 

qe (mg g−1) 54.621±2.686 55.410±1.303 

R2 0.997 0.986 

WL-γ-APS/MG k2x102 (g mg−1 min−1) 2.068±0.002 2.183±0.008 

qe (mg g−1) 73.092±0.299 65.730±0.987 

R2 0.992 0.979 

 Pseudo-second order H2PO4
-/HPO4

2- HCrO4
-/CrO4

2- 

WL/MG k2x102 (g mg−1 min−1) 0.851±0.004 0.496±0.001 

qe (mg g−1) 46.939±1.001 47.402±1.112 

R2 0.966 0.939 

WL-γ-APS/MG k2x102 (g mg−1 min−1) 2.097±0.004 2.332±0.004 

qe (mg g−1) 63.999±0.682 63.184±0.636 

R2 0.899 0.993 
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The kinetic data results (Table S5) obtained by applying Weber–Morris (W-M) kinetic model 

were useful in evaluation of rate limiting step of overall process (Vuković et al. 2011). High 

values of W-M constant C1 for both cations and oxyanions (Table S5) indicate that intra-particle 

diffusion is not the only rate-limiting step; complex influence of the other factors determine 

effectiveness of overall pollutant transport. At the initial stage of the process, the diffusion from 

bulk phase to the exterior surface takes place at high rate, while second linear part, which 

depends on material porosity, relate to the diffusion inside mesopores/micropores. 

Various adsorbents for Cd2+, Ni2+, HCrO4
-/CrO4

2- and H2PO4
-/HPO4

2- ions removal, including 

unmodified and iron-oxide modified materials such as activated carbon, clays, cellulose based 

materials and WL based sorbents were reported in literature (Vuković et al. 2010; Karnib et al. 

2014; Taleb et al. 2016b). Cd2+, Ni2+, HCrO4
-/CrO4

2- and H2PO4
-/HPO4

2-ions adsorption capacities 

(value of qe derived from Langmuir equation) of various WL and magnetite based adsorbents are 

summarized in Table S6. According to the presented Cd2+, Ni2+, HCrO4
-/CrO4

2- and H2PO4
-

/HPO4
2-ions adsorption capacities on WL and MG based adsorbents, with regard to other 

equilibrium contact times, the applied adsorbent in the present study could potentially be used as 

efficient adsorbent to remove Cd2+, Ni2+, HCrO4
-/CrO4

2- and H2PO4
-/HPO4

2-ions from aqueous 

solutions in a short time period. Both, bare WL and MG nanoparticles showed moderate adsorption 

capacities (6.5 – 13.5 mg g-1) for Cd2+, Ni2+, HCrO4
-/CrO4

2- and H2PO4
-/HPO4

2- ions removal. 

Moreover, hybrid adsorbents obtained by MG precipitation on porous WL support showed higher 

adsorption capacities (52.41 – 73.15 mg g-1) due to availability of more active sites for heavy 

metals removal and oxyions complexation.  

Monolayer model for single-compound adsorption 
 

For the monolayer model for single-compound adsorption it is assumed that heavy metal 

ions/oxyanions are adsorbed with one energy (-ε) (Sellaoui et al. 2017a). The –ε describes the 

interaction of ions with the surface of the MG-modified WL-based sorbents. Adsorption energy is 

calculated according to the following equation (Sellaoui et al. 2017b): 

𝜀 = 𝑘𝐵𝑇𝑙𝑛 (
𝑐𝑠

𝑐1
2⁄

)            (7) 

where kB Boltzmann constant, cs  is the solubility of the heavy metal and c1/2 is the concentration 

at half saturation (Sellaoui et al. 2016b, a). According to the general Langmuir model 

interpretation, each adsorption site accommodates one ion, as following chemical pseudo-

reactions describe (Sellaoui et al. 2017b, a): 

 

nA2+ + S ↔ A2+nS          (8) 

 

nB- + S ↔ B-nS          (9) 

 

nB2- + S ↔ B2-nS          (10) 

 

where A2+ represents the adsorbed Cd2+ or Ni2+ ions, S is the adsorbent receptor site, A2+nS 

represents formed complex of cations with MG-modified WL-based sorbents, n represents 

number of the bonded ions per one receptor site, B- and B2- represent the mono- and divalent 

chromate or phosphate oxyanions, and B-nS and B2-nS represent formed complexes of oxyanions 
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with MG-modified WL-based sorbents. The partition function of one identical site and the 

monolayer model for single-compound adsorption are described by following equations: 

 

𝑍𝑔𝑐 = 1 + 𝑒𝛽(𝜀+𝜇)          (11) 

 

𝑍𝑔𝑐 = 𝑒𝛽(𝜀+𝜇)𝑁𝑀          (12) 

 

𝑄 =
𝑛𝑁𝑀

1+(
𝑐1/2

𝑐
)
𝑛           (13) 

 

In these expressions, ε represents the adsorption energy of the receptor site, μ is the chemical 

potential of the adsorbed state determined from the Gibbs free energy, β is the Boltzmann factor, 

defined as 1/(kBT), Q is the adsorption capacity, n is the number of ions per site, NM is the 

density of receptor site, and c is the heavy metal ion/oxyanion equilibrium concentration 

(Sellaoui et al. 2016b, a). Different values for the parameters for single-compound adsorption of 

heavy metal ions/oxyanions on MG-modified WL-based sorbents are presented in Table 5.  

 

Table 5. Values of adjustable parameters in single-compound system for adsorption of Cd2+, 

Ni2+, HCrO4
-/CrO4

2- and H2PO4
-/HPO4

2-ions 

Cd2+ Ni2+ 

 
T 

(K) 

ε,  

(KJ mol-1) 

Qsat 

(mg g-1) 

NM 

(mg g-1) 
n 

ε,  

(KJ mol-1) 

Qsat 

(mg g-1) 

NM 

(mg g-1) 
n 

WL/MG 

298 7.624 55.878 45 0.66 6.781 54.618 44 1.21 

308 7.967 59.445 45 0.85 7.108 58.931 44 0.91 

318 7.388 54.621 45 1.11 7.411 55.410 44 0.88 

WL-γ-

APS/MG 

298 7.698 70.027 45 0.82 6.822 62.563 44 0.70 

308 8.024 69.883 43 0.96 7.126 62.411 43 0.99 

318 8.491 73.092 43 1.21 8.388 65.730 44 1.25 

HCrO4
-/CrO4

2-  H2PO4
-/HPO4

2- 

 
T 

(K) 

ε,  

(KJ mol-1) 

Qsat 

(mg g-1) 

NM 

(mg g-1) 
n 

ε,  

(KJ mol-1) 

Qsat 

(mg g-1) 

NM 

(mg g-1) 
n 

WL/MG 
298 6.310 46.982 49 0.65 6.059 42.819 53 0.58 

308 6.715 47.734 49 0.66 6.364 45.300 53 0.59 

318 7.097 47.402 49 0.73 8.649 46.939 52 0.59 

WL-γ-

APS/MG 

298 6.397 59.574 50 0.57 6.181 60.638 52 0.67 

308 6.364 62.494 48 0.57 6.479 61.336 55 0.68 

318 6.650 63.184 48 0.59 6.779 63.999 50 0.69 

 

The determination of the number of ions that interact with one receptor site offers reliable 

information complementing the conclusions for adsorption phenomena obtained from the 

isothermal adsorption study. If the number of the bonded/complexed ions/oxyanions per site is 

lower than 1, the ions interact with at least two receptor sites (multi-link). Opposite, if the n is 

higher than 1, the receptor site is occupied minimum by one ion (Sellaoui et al. 2017b, a). For all 

of the investigated single-compound systems (adsorption of Cd2+, Ni2+, HCrO4
-/CrO4

2- and 

H2PO4
-/HPO4

2- on WL based adsorbents), the lowest values of the n are obtained at 298 K. It 

confirms that the main mechanism of the Cd2+ and Ni2+ ions adsorption occurs via exchange of 

metal ions Cd2+/Ni2+ with H+ ions at the surface hydroxyl groups –FeOH (receptor site) 
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producing Cd2+/Ni2+(OH)+ ions that are bonded with another MG modified WL receptor site. 

Also, electrostatic interactions of ion positive charge with electron pair of hydroxyl groups could 

be of appropriate significance. By changing the adsorption operational conditions (increasing 

temperature) the values of the n increase as well. For the Cd2+ ions adsorption on both WL-MG 

and WL-γ-APS/MG adsorbents the highest values of n (higher than 1) are obtained at 318 K. 

This indicates appropriate change of metal binding mechanism, i.e. higher number of ions per 

one site, with concomitant increase of adsorption capacity (Table 2). Opposite is found for Ni2+ 

ions adsorption on WL-MG adsorbent where the highest values of n is obtained at 298 K. Lower 

values of n parameters are found for the HCrO4
-/CrO4

2- and H2PO4
-/HPO4

2- ions (Table 5) 

indicating different adsorption mechanism in relation to cations. The n values in the range 0.57-

0.73 for HCrO4
-/CrO4

2- and 0.59-0.69 for H2PO4
-/HPO4

2- indicates that main mechanism 

represent interaction one ion per two active surface sites which is in good accordance with 

creation of bidentate mononuclear and binuclear surface complexes of both ions (Zach-Maor et 

al. 2011; Johnston and Chrysochoou 2014). The parameter n also increases with temperature 

increase.  

Conclusion  
 

Magnetite modified porous wollastonite-based ceramics were synthesized using ultra-fine 

PMMA as a pore-forming agent in order to obtain hybrid adsorbents with high adsorption 

performances for heavy metals and oxyanions. FTIR, Raman, XRD and Mössbauer 

measurements confirmed wollastonite and larnite phases at pure WL support and successfulness 

of magnetite precipitation. SEM analysis confirmed macro and micro porosity of pure WL 

support and formation of MG aggregates on WL. Synthesized MG-modified WL-based sorbent 

was used for Cd2+, Ni2+, HCrO4
-/CrO4

2- and H2PO4
-/HPO4

2- ions removal. Results showed that 

pH is an important parameter that controls the effectiveness of pollutant removal. 

The quality of the isotherm modeling of adsorption data was estimated by the correlation 

coefficients. The best adsorption model was found to be the Langmuir isotherm. The kinetic data 

of the sorption were well fitted with the pseudo-second-order kinetic model. A significantly 

higher second-order rate constant of Cd2+, Ni2+, HCrO4
-/CrO4

2- and H2PO4
-/HPO4

2- ions 

adsorption was obtained using WL-γ-APS/MG as adsorbent. Higher activation energies were 

obtained for oxyanion adsorption. 

Statistical physic theory was used for interpretation of single adsorption isotherms and 

adsorption phenomena. The absorption parameters in a single-compound system deducted by the 

monolayer model with one energy confirmed that the adsorption of Cd2+ and Ni2+ ions occurred 

via mostly one ion with two receptor sites interactions. For the HCrO4
-/CrO4

2- and H2PO4
-

/HPO4
2- ions adsorption, the statistical physic model confirmed that multiple adsorption 

mechanisms electrostatic interaction/complexation occurred. 
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Figure Caption 

 

Fig. 1. Schematic illustration of 1) direct attaching of MG spheres on WL and 2) attaching of 

MG spheres on amino/carboxylic acid functionalized WL 

Fig. 2. ATR-FTIR spectra of modified wollastonite based adsorbents 

Fig. 3. Raman spectra of W-MG and W-γ-APS/MG adsorbents 

Fig. 4. XRD patterns of unmodified WL, WL/MG and WL-γ-APS/MG samples 

Fig. 5.Room temperature Mössbauer spectrum of the a) WL/MG and b) WL-γ-APS/MG. (On each 

individual plot, experimental data are presented by solid circles and the fit is given by the red solid line. Vertical 

arrow denotes relative position of the lowermost peak with respect to the basal line. Red solid line in the lower part 

of the plot represents the error calculated as the difference (Th-Exp). a) The fitted lines of the Mössbauersubspectra 

are plotted above the main spectrum fit: D-subspectrum (blue) and B-subspectrum (orange). The largest value of the 

absolute difference is less than 0.2 %. b) The largest value of the absolute difference is less than 0.09 %.) 

Fig. 6.The quadrupole splitting distributionP(Δ) of the WL-γ-APS/MG sample 

Fig. 7.Black line – hyperfine magnetic field distributionP(Bhf) of the magnetic part of the 

WL/MG spectra. Red line - fit of the P(Bhf) distribution with five Gaussian (five blue lines) 

Fig. 8. SEM micrograph of synthesized a) PMMA microsphere, b) unmodified WL, c) WL/MG 

and d) WL-γ-APS/MG 

Fig. 9. EDS mapping of modified WL based adsorbents a) WL/MG and d) WL-γ-APS/MG 
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