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ABSTRACT 

 

In this study the influence of graphene addition on the microstructure, phase composition, 

mechanical, and electrical properties of 3Y-TZP ceramics was investigated. Blends of pure 3Y-

TZP and with addition of 14 vol. % graphene were prepared by mixing and milling, and they 

were consolidated by spark plasma sintering (SPS).  

Addition of 3 vol. % graphene is necessary to overcome the percolation threshold and 

obtain electrically conductive composites. However, rising the graphene contents obstructs 

sinterability. Hence, flexural strength, Young’s modulus, and hardness decrease with increasing 

the graphene content, and the fracture resistance reaches an intermediate maximum at 2 vol. % 

graphene. Graphene lamellae are oriented orthogonally to the pressing direction. They evidently 

provide some energy dissipation by crack deflection. TZP-graphene interfaces are very weak. 

Thus, crack bridging can be neglected.  

Keywords: Zirconia, Graphene, XRD, SEM, Mechanical properties, SPS 

 

1. Introduction 

 

Yttrium stabilized zirconia ceramics with high strength and toughness are today applied 

in machine elements and in biomedical applications such as dental implants, crowns, and bridges 

[1]. The basis of the excellent mechanical properties is the transformation toughening  a stress 

induced phase transformation from metastable tetragonal to the stable monoclinic phase. As this 

transformation is associated with volume expansion and shear, it puts a proceeding crack under 

compression and slows or stops its growth [2].  

*Corresponding author: Dr. Nina Obradović (nina.obradovic@itn.sanu.ac.rs) 
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Among other isovalent or aliovalent stabilizers added to retain the tetragonal phase at the 

room temperature, yttrium is the most important today. Trivalent Y
3+

 incorporated as a solid 

solution into the lattice of zirconia introduces one oxygen vacancy per 2Y
3+

 cations for charge 

neutrality [1]. Besides these stabilizer derived vacancies, vacancies can be introduced by 

changing sintering conditions. Vacancies in general contribute to stabilizing the high temperature 

phases (tetragonal and cubic) [3]. 3Y-TZP has also been used as a matrix material for various 

composite ceramics. TZP-alumina composites (alumina toughened zirconia, ATZ) show 

enhanced strength and hardness compared to plain Y-TZP [4, 5]. Incorporation of electrically 

conductive non-oxides such as transition metal carbides, borides, and nitrides (e.g., TiN, WC, 

TiB2) in fractions above the percolation threshold makes TZP composite ceramics electrically 

conductive and electric discharge machinable [610]. 3Y-TZP-(3040 vol. %)TiN and 3Y-TZP-

(3040 vol. %)NbC are commercially applied in manufacturing of customized complex-shape 

ceramic components.  

Recently, carbon materials, such as nano-carbon nanotubes or graphene platelets, have 

attracted considerable scientific interest to make materials electrically conductive. Nanotubes or 

platelets, due to their high aspect ratio, can be expected to lead to conductive materials at volume 

contents lower than for isometric particles [11]. The concept was successfully applied to polymer 

matrix composites [12]. Recently, the addition of carbon nanostructures in ceramics has become 

an interesting research topic. A single layered graphene possesses outstanding electrical, thermal, 

and mechanical properties. Due to a high electron mobility at room temperature (2.5 × 

105 cm
2
V

−1
s

−1
), exceptional thermal conductivity (5000 Wm

−1
K

−1
), and superior mechanical 

properties with a Young's modulus of 1 TPa, its presence may greatly enhance the electrical 

conductivity of composites when added to an insulating ceramic matrix [13]. In materials with 

brittle matrix, such as silicon carbide and alumina, some results indicate the presence of 

toughening effects [14, 15]. Most toughness values documented – probably due to the small size 

of samples made by SPS – are, however, obtained by direct crack length measurements, which 

may lead to misleading values [16]. Others use SEPB tests with blunt notches, which are also not 

suitable to determine the fracture resistance of ultrafine grain materials [17, 18]. Furthermore, it 

is known that attention must be paid to the source of graphene used and processing technology, 

in order to obtain a homogeneous dispersion of graphene in the parent matrix. A good overview 

of existing technologies is given by Markandan [19]. Graphene may be introduced by 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

3 

 

mechanical alloying, colloidal mixing, or by more sophisticated chemical routes such as polymer 

derived ceramics or sol-gel. Publications on Y-TZP-graphene are not very frequent and most of 

them cover a graphene or graphene oxide content range which is far too low for ED-machining 

target applications [17].  

Graphene may influence the tetragonal to monoclinic and cubic phase ratios in the 

matrix, which could affect the fracture toughness. Moreover, the high ratio of graphene 

compared to matrix grains may induce texture effects occurring during shaping/sintering, which 

have to be considered. Therefore, the understanding of interfacial structures and properties is 

crucial in order to obtain high performance ceramic/graphene composites. 

The crucial questions for the development of ED-machinable TZP-graphene composites 

are: how much graphene has to be added to obtain the required electrical conductivity and what 

is the effect on mechanical properties and possible applications. The basic conductivity threshold 

is at 1 S/m (in commercially available performing ED-machinable ceramics several orders of 

magnitude higher is required) [6, 20]. In this study, a commercially available high strength 

alumina doped 3Y-TZP material with a proven track record in dental applications was blended 

without and with the addition of 1–4 vol. % of graphene, consolidated by spark plasma sintering 

(SPS), and subsequently tested, in order to obtain electrical conductive ceramic and to 

investigate the influence of graphene addition on sinterability and mechanical properties of 

zirconia-based ceramics. 

 

2. Experimental procedure 

 

For this study a standard 3Y-TZP zirconia powder (TZ 3Y-SE, SBET = 7 m²/g Tosoh, 

Japan) was used as matrix material. Graphene nanoplatelet aggregates (SBET = 7 m²/g, ABCR, 

Germany) were added in fractions in the range 14 vol. % in 1 vol. % increments. (Assuming a 

bulk density of ~ 2.2 g/cm³ for graphene and ~ 6.1 g/cm³ for 3Y-TZP, this corresponds to 

volume contents of 010.2 vol. % provided the full density is achieved.) 

The individual batches of 100 g powder mixture were attrition milled for 4 h at 400 rpm 

in 250 ml 2-propanol, with 3Y-TZP milling balls of 2 mm diameter. The grinding media were 

then separated and the resulting slurry was dried at 45 °C overnight. The dry residue was 

screened through a 100 μm mesh to provide the press ready feedstock.  
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Discs of 45 mm diameter were spark plasma sintered (FCT Anlagenbau, Germany) at a 

final temperature of 1350 °C at 60 MPa axial pressure and 5 min dwell in graphite paper clad 

graphite dies. An initial load of 2 MPa was applied at the start of the SPS, it was elevated to 

60 MPa after the sintering temperature of 1100 °C was reached, and kept during further heating 

to the final temperature and dwell. Sintering was carried out in a vacuum using a heating rate of 

20 K/min. Two discs of approx. 30 g of each composition were SPS sintered. 

Samples were lapped with 15 μm diamond suspension and afterwards polished using 

15 μm, 3 μm, and 1 μm diamond suspensions until a mirror-like surface was achieved (Struers 

Rotopol, Denmark). Young’s modulus and Poisson’s ratio were measured on entire discs by 

using the acoustic method (IMCE, Belgium). Densities were determined according to the 

Archimedes principle (Kern ABS, Germany) in distilled water. Furthermore, Vickers hardness 

HV10 and indentation fracture resistance by direct crack length measurement (DCM) were 

carried out on polished discs. DCM (five HV10 indents each) tests were evaluated according to 

the models of Evans, Anstis, and Niihara [2123]. For the bending strength tests and fracture 

resistance determination by indentation strength in bending (ISB), the two thinner discs were cut 

into bars of 4 mm width using a diamond wheel (Struers Accutom 50, Denmark). Sides of the 

bars were lapped using 15 μm diamond suspension and edges were beveled using a 20 μm 

diamond disc to avoid any influence of cutting defects on the measurements. Bending strength 

(10 specimens each) was determined in a 4-pt setup with 20/10 mm outer/inner span. Crosshead 

speed was set to 0.5 mm/min (Z100, Zwick Ulm, Germany). ISB tests were performed with the 

same setup using a crosshead speed of 2.5 mm/min to avoid subcritical crack growth. Notching 

was carried by placing a HV10 indent in the middle axis of the tensile side of the bars with 

cracks parallel and perpendicular to the sides. The residual strength was measured immediately 

after notching and KIC,ISB calculated according to the model of Chantikul [24]. 

Electrical conductivities of the materials were determined by using the 4 point 

measurement method and using polished bending bars of minimum 40 mm length, 3.9 mm width 

and  2 mm thickness. The microstructure of polished and thermally etched samples (Hydrogen 

at 1300 °C for 5 min), as well as the fracture surface, were studied by SEM (Zeiss Gemini, 

Germany, secondary electrons, 10 kV, in lens technology). The phase composition of the 

samples was investigated by XRD (Bruker D8, Germany, CuKα, Bragg Brentano setup, 2-theta 

27–33 °, and integration of (111)-m, (111)-m, and (101)-t reflections). 
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A basic ED-machining test was carried out by die sinking with copper electrodes in an 

oil-based dielectric fluid (AEG Elotherm, Germany). 

 

 

3. Results and discussion 

3.1. Mechanical and electrical properties 

 

All samples showed relative theoretical densities (TD) higher than 97.5 % (based on the 

rule of mixture, assuming the tetragonal phase for zirconia, and ρTD(3Y-TZP) = 6.08 gcm
–3

, 

ρTD(graphene) = 2.23 gcm
–3

). Samples with up to 1 vol. % graphene showed densities higher than 

99.2 % TD.  

 

Figure 1. Young’s modulus and relative density of sintered samples. 

 

A further increase of the graphene contents seems to impede the densification. In line 

with the density data, the Young‘s modulus decreases almost linearly from 212.9 GPa for 3Y-

ZTA to 159.7 GPa for 3Y-ZTA-4G (see Figure 1), and follows the trend of the density behavior. 

An increase of Young’s modulus, as may be expected from the rule of mixture considering that 

the high in-plane stiffness of graphene, was not observed.  

Figure 2 shows the hardness and bending strength of the TZP-graphene composites. Both 

values decline with increasing the graphene content, whereas the hardness shows a linear decline 

and the strength shows an exponential decline. Both curves reflect the trend to lower the density 

and increase the porosity and, thereby, the amount of structural defects.  

Figure 2. Vickers hardness HV10 and 4pt bending strength of sintered samples. 

 

Figure 3 shows the fracture resistance determined by the DCM method using the 

Palmquist crack model by Niihara [23] and by the ISB method. The ISB test leads to a trend with 

an intermediate toughness maximum at 12 vol. % graphene and a progressive decline at 

elevated graphene contents. The DCM test shows no clear trend. The ISB test seems more 

reliable as it involves no subjective errors in measuring the crack length. Still, the different 
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values may hint at a different ratio between the intrinsic toughness and the R-curve behavior in 

both materials. 

Figure 3. Fracture resistance values KDCM and KISB of sintered samples. 

 

The DCM toughness values according to Evans and Anstis are not shown. They show 

identical trends, either on a reduced level (Anstis) or on an almost identical level (Evans).  

The electrical conductivity of the investigated materials showed values of 58.31 S/m for 

3Y-ZTA-3G and 291.55 S/m for 3Y-ZTA-4G. This strong increase in conductivity with the 

fraction of the added graphene reflects the behavior at the edge of the percolation threshold. The 

conductivity of materials with lower graphene content was not measurable.  

 

3.2. Microstructure 

 

SEM micrographs obtained on polished and thermally etched sintered samples are 

presented in Figure 4. A homogenous fully dense microstructure with no porosity is present 

within the reference sample 3Y-TZP. Grains have a size of < 500 nm. Small graphene platelets in 

the sample with 1 vol. % graphene are isolated and homogenously distributed in the matrix. The 

shape, size, and size distribution of graphene change with increasing the graphene fraction. In 

samples with 2 vol. % graphene, much longer graphene lamellae of up to 1 µm length appear 

besides smaller fragments. This trend is amplified in samples with 3 vol. %. Here an increasing 

number of multilayer inclusions can be observed. In samples with 4 vol. %, the preferred 

orientation of platelets orthogonal to the pressing direction breaks down some larger curled. 

Folded graphene structures are observed, which strongly obstruct the structure. With increasing 

the volume fraction of graphene, a decrease in density of the material and the occurrence of 

pores is observed. Pores are only present in the vicinity of graphene platelets. This observation is 

in line with measured densities and Young’s moduli. 

 

Figure 4. SEM micrographs of sintered samples obtained on thermally etched surface:  

a) 3Y-ZTA, b) 3Y-ZTA-1G, c) 3Y-ZTA-2G, d) 3Y-ZTA-3G, and e) 3Y-ZTA-4G. 
    

Figure 5. SEM micrographs of sintered samples obtained on fractured surface:  

a) 3Y-ZTA, b) 3Y-ZTA-1G, c) 3Y-ZTA-2G, d) 3Y-ZTA-3G, and e) 3Y-ZTA-4G. 
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Figure 5 presents SEM micrographs obtained on fractured surfaces of all sintered 

samples. The plain 3Y-ZTA sample shows a mixed fracture behavior with predominant 

intergranular fracture. With graphene addition, the fracture mode is slightly shifted exhibiting 

some more transgranular fractures. In samples with only 1 vol. % graphene, a very homogeneous 

distribution of graphene in the TZP matrix is observed, platelets are well embedded, and the 

porosity in the vicinity of the graphene structures is not detected. The fracture surfaces of 

samples with 23 vol. % graphene look very similar: larger platelets form typical pullout 

structures, fragments either stick in one of the fracture faces or leave slot-shaped voids in the 

counterpart. Areas previously covered with graphene are very smooth, indicating very poor 

interfacial strength. The graphene platelets as such seem to have a very high strength as they are 

never fractured. This is in line with expectations. The fracture surfaces in these composites are 

much rougher than in case of plain 3Y-TZP, which indicates the presence of toughening effects 

by crack deflection.  

 

3.3. Phase composition 

 

Figure 6. XRD patterns of all sintered samples obtained on polished surface. 

    

The XRD patterns obtained on the surface as well as on the fracture phase in the range 

27–33 
o 
2, reveal only the presence of the tetragonal (101) reflection at 30.18 

o
 in all the sintered 

composites (see Figure 6). There is no observation of appearance of the monoclinic phase in 

ZrO2 with the addition of graphene, indicating that in this observed region the addition of 

graphene does not induce t → m ZrO2 phase transformation. Fracture surfaces (not shown) were 

checked. The monoclinic phase was not found. This shows that there is no measurable 

contribution to toughness by the transformation toughening. The presence of the cubic ZrO2 

phase was not observed. In the range 70–75 ° 2 only the tetragonal (004) and (400) peaks were 

detected.  

 

3.4. ED-machinability 
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Samples containing 3 and 4 vol. % graphene were checked for ED machinability on a die 

sinking machine. The basic test showed that the materials can be electrically contacted. Some 

sparks were observed, but a controlled material removal process, which would be necessary for 

technical exploitation, was not possible. 

 

4. Discussion 

 

In this work a mixing and milling approach was tested to manufacture Y-TZP/graphene 

composites. It can be stated that the chosen milling procedure (4 h attrition milling in 2-

propanol) efficiently deagglomerates the Y-TZP. The ability of this procedure to break up the 

graphene aggregates of the graphene fraction is low. At 1 vol. % graphene, only small fragments 

are produced, which are well embedded into the TZP matrix, and do not cause any severe defects 

of pores. At an increasing fraction of graphene, the milling efficiency is visibly reduced. Larger 

fragments of multilamellar graphene platelets are left besides smaller fragments. It may be 

speculated that when higher fractions of graphene are added, some lubrication effects appear that 

reduce the milling efficiency. 

These large fragments align orthogonally to the direction of loading and lead to a strong 

anisotropy. Moreover, it can be seen that the stress transfer between the matrix and graphene 

reinforcement is not very efficient. Cracks are easily deflected along TZP graphene interfaces, 

which should a priori lead to improved toughness. Very smooth interfaces and the ease of 

pullout indicate that the interlocking between the matrix and reinforcement is very weak. This 

observations were also found in the literature, but interpreted in a different manner [17, 25, 26]. 

At very high graphene contents, curled multlayer inclusions are formed. Larger fractions of 

graphene introduce pores and microstructural defects, which lead to deteriorated strength, 

hardness, and Young’s modulus. Fracture resistance values determined by ISB test using sharp 

notches and measuring residual strength show only an incremental increase in toughness up to 

2 vol. % graphene, and a subsequent embrittlement. DCM test show much higher non-

systematical fluctuations and give rise to the suggestion that enhanced toughness values reported 

in earlier studies could be artifacts of the measuring technology (too low load [27]), and 

anisotropic microstructure [17, 26]. 
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Another fact supporting the statement of weak grain boundaries is the phase composition. 

Graphene has a negative in-plane CTE, whereas CTE of TZP is positive. It was expected that 

during cooling strong residual stress should evolve between graphene and TZP, leaving TZP 

under tension and graphene under compression. This effect may cause phase transformation of 

zirconia during cooling or during fracture due to the superposition of the residual and applied 

stress. However, a phase transformation was not observed, neither in bulk material, nor in the 

fractured specimen. This fact further supports the statement that the interface is weak. Most 

probably the graphene platelets under compression are just clamped between very smooth 

zirconia surfaces and slide relative to the surrounding TZP. Thereby, a relaxation of the stress 

occurs and possibly also a microscopic in situ delamination during cooling. As this effect should 

scale with size of graphene inclusions, it was not observed in the material containing 1 vol. % 

graphene. The results are in line with results of Chen who succeeded in introducing very small 

graphene platelets [26]. In multilayer structures, such as at higher graphene contents, this is even 

more facile. Sintering conditions were chosen correctly. The TZP made from coprecipitated 

mixture is super-saturated with yttrium, at the sintering temperature of 1350 °C tetragonal and 

cubic phase coexist in a ratio of ~ 85/15 [28]. There was, however, no cubic phase detected. 

Supersaturation of the stabilizer prevails and the phase segregation is not observed [29]. As the 

graphene containing materials also show no indications of the cubic phase, the presence of 

carbon did not lead to incorporation of carbon into the anionic lattice of zirconia. The formation 

of reduction-induced vacancies further contributes to stabilization. The negative side-effect is, 

however, a very moderate toughness of the material as transformation toughening effects are 

completely absent. This, however, allowed the establishment of the – apparently not existing – 

toughening effect of graphene without superposition of transformation toughening effects. As 

expected, the graphene addition leads to a certain electrical conductivity in the composites, 

which is higher that the required minimum threshold for ED-machinability [20]. Compared to 

commercially ED-machinable ceramics made conductive by the addition of transition metal 

carbides or nitrides, the measured conductivity is lower by a factor of 100-1000, which may be 

(together with the anisotropy of the materials) the cause for the failure of the ED-machining test 

[30]. However, the obtained conductive ceramic materials can be used in technical applications 

where removal of electrostatic buildup is required, in devices where an electric contact is 
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required for sensing and measurements, and as absorbing materials for radiofrequency and 

microwave applications. 

Graphene has two basic roles. The first one is to improve the electrical conductivity. In 

that sense, small, randomly oriented fragments are more efficient. The second role is to boost the 

strength and toughness. For this role, larger single lamella able to bridge cracks and bear high 

stress would be favored. The axial pressing technology, however, always leads to laminate 

structures with a strong anisotropy and low coherence between the matrix and dispersion.  

  

5. Conclusion 

 

Composites 3Y-TZP-graphene were made electrically conductive by addition of 

graphene in fractions ≥ 3 vol. %. The addition of graphene leads to a progressive decline in 

hardness, strength, and Young’s modulus. Any significant increase of toughness was not 

observed. 

The analysis of the fracture surface shows indications of strong pullout effects. It also 

shows that the bonding of the matrix and reinforcement is relatively weak as contact areas are 

perfectly smooth. Crack deflection is facilitated, but stress transfer to the reinforcement is not 

strong enough.  

Results indicate that mixing and milling approach seems to give convenient 

microstructures for composites with 1 vol. % – 2 vol. % graphene. Higher graphene fractions 

(≥ 3 vol. %) result in a broad graphene size distribution and the appearance of multilayer 

lamellae. Consolidation by spark plasma sintering leads to highly anisotropic materials. Further 

studies will be necessary to achieve the target of producing technically relevant ED-machinable 

composites. However, the obtained conductive ceramic materials can find various applications in 

electrical engineering, e.g., for draining static electricity, providing contacts for sensing and 

measurements, and as absorbing materials for radiofrequency and microwave applications. 
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