Serbian Ceramic Society Conference ADVANCED CERAMICS AND APPLICATION II New Frontiers in Multifunctional Material Science and Processing

Serbian Ceramic Society
Institute of Chemistry Technology and Metallurgy
Institute for Technology of Nuclear and Other Raw Mineral Materials
Institute for Testing of Materials
Archeological Institute of SASA

PROGRAM AND THE BOOK OF ABSTRACTS

Book title: Serbian Ceramic Society Conference - ADVANCED CERAMICS AND

APPLICATION II: Program and the Book of Abstracts

Publisher:

Serbian Ceramic Society

Editors:

Prof.dr Voja Mitić Dr Nina Obradovic Dr Lidija Mančić

Technical Editor:

Dr Lidija Mačić

Printing:

Serbian Academy of Sciences and Arts, Knez Mihailova 35, Belgrade Format Pop Lukina 15, Belgrade

Edition:

100 copies

Mosaics: Original Format 30x40 cm

Mirjana Milić, Vladimir Skerlić, Maja Opačić, Maša Nicić, Nina Nicić, Milica Konstantinović, Marjan Vesić - Academy od SOC for Fine Arts and Conservation

CIP - Каталогизација у публикацији Народна библиотека Србије, Београд

666.3/.7(048) 66.017/.018(048)

SERBIAN Ceramic Society. Conference (2; 2013; Beograd)

Advanced Ceramics and Application: new frontiers in multifunctional material science and processing: program and the book of abstracts / II Serbian Ceramic Society Conference, Sep 30th-Oct 1st, 2013, Belgrade, Serbia; organized by Serbian Ceramic Society... [et al.]; [editors Vojislav Mitić, Nina Obradović, Lidija Mančić]. - Belgrade: Serbian Ceramic Society, 2013 (Belgrade: Serbian Academy of Sciences and Arts). - XVI, 61 str.; 30 cm

Tiraž 100.

ISBN 978-86-915627-1-7

- 1. Serbian Ceramic Society (Beograd)
- а) Керамика Апстракти b) Наука о материјалима Апстракти
- с) Наноматеријали Апстракти

COBISS.SR-ID 201203212

P14

Influence of MoO₃ on sintering temperature of mechanically activated MgO-Al₂O₃-SiO₂ system

N. Đorđević¹, N. Obradović², A. Radosavljević-Mihajlović³, B. Jokić⁴, S. Filipović², M. Mitrić³, S. Marković²

¹Institute for Technology of Nuclear and Other Mineral Raw Materials, Belgrade, Serbia ²Institute of Technical Sciences of SASA, Knez Mihailova 35/IV, Belgrade, Serbia ³Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia ⁴University of Belgrade, Faculty of Technology and Metallurgy, Belgrade

Cordierite, 2MgO·2Al₂O₃·5SiO₂, is a very attractive high-temperature ceramic material, due to its outstanding electrical characteristics, such as the low temperature expansion coefficient, low dielectric constant and good mechanical properties. In order to accelerate the process of sintering, 5.00 mass% MoO₃ has been added to the starting mixtures. The mechanical activation of the starting mixtures was performed in a high energy ball mill during 0-80 minutes. The particle size analysis (PSA) was employed in order to determine the changes in the particle size of the mechanically treated powders. The phase composition of the starting powders and sintered samples was analyzed by the X-ray diffraction method. Furthermore, differential thermal analysis (DTA) was used in order to determine characteristic temperatures within the system during heating. Based on the obtained DTA results, it was established that mechanical activation has some influence on temperatures of phase transitions. Sintering process was performed in air at 1200°C for 2h.

P15

Structural characterization of mechanically activated MgO-TiO₂ system

S. Filipović¹, N. Obradović¹, J. Krstić², M. Šćepanović³, V. Pavlović¹ and M. M. Ristić⁴

¹Institute of Technical Sciences-SASA, Knez Mihajlova 35/IV, 11000 Belgrade, Serbia ²University of Belgrade, Institute of Chemistry, Technology and Metallurgy, Department of Catalysis and Chemical Engineering, Njegoševa 12, 11000 Belgrade, Serbia ³Institute of Physics, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia ⁴Serbian Academy of Sciences and Arts, Knez Mihajlova 35, 11000 Belgrade, Serbia

In this article the influence of ball miling process on structure of MgO-TiO₂ system was investigated. The mixtures of MgO-TiO₂ powders were mechanically activated in a planetary ball mill for the time period from 0 to 120 minutes. The influence of mechanical activation on the lattice vibrational spectra was studied by Raman spectroscopy at room temperature. Structural investigations have been performed on produced powders. Nitrogen adsorption method was used to determine the BET specific surface area and pore size distribution. Unusual results have been obtained: specific surface area continuosly decreased up to 40 minutes of activation and increased after that, reaching its minimun value of 5.5 m²/g. The Raman spectra of activated powders have shown that anatase modes have been decreasing in intensity and broadening as the time of