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Abstract
There have been significant attempts previously to use the equations of quantum 
mechanics for generating sound, and to sonify simulated quantum processes. For 
new forms of computation to be utilized in computer music, eventually hardware 
must be utilized. This has rarely happened with quantum computer music. One 
reason for this is that it is currently not easy to get access to such hardware. A second 
is that the hardware available requires some understanding of quantum computing 
theory. This paper moves forward the process by utilizing two hardware quantum 
computation systems: IBMQASM v1.1 and a D-Wave 2X. It also introduces the ideas 
behind the gate-based IBM system, in a way hopefully more accessible to computer-
literate readers. This is a presentation of the first hybrid quantum computer algorithm, 
involving two hardware machines. Although neither of these algorithms explicitly 
utilize the promised quantum speed-ups, they are a vital first step in introducing QC to 
the musical field.  The article also introduces some key quantum computer algorithms 
and discusses their possible future contribution to computer music.

Keywords: quantum computer music, algorithms, D-Wave

Introduction: Quantum Computing

Why Quantum Computing? The typical answer is speed. Quantum mechanics 
models the world by considering a physical state as a sum of all its possible configu-
rations. For example, the physical state of an electron is modeled as a weighted sum 
of a large number of vectors (called eigenvectors), each of which represents somet-
hing that could possibly happen in the physical world. This sum of vectors varies over 
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time as the electron’s state changes. When the electron’s state is measured at a parti-
cular time in the lab, the result will be one of the vectors. Performing an operation 
on a physical state in quantum mechanics thus means operating on a large number 
of configurations simultaneously. This natural parallelism, when combined with a 
property known as entanglement, provides the potential for calculations whose speed 
far exceed those of classical computers. Certain quantum algorithms have been shown 
to be orders of magnitude faster than their classical versions (Shor 2006).

Another feature of quantum mechanics is its probabilistic nature. The results of 
measurements on an electron in general cannot be predicted with certainty. Quantum 
mechanics simply provides a means to calculate the probability of the electron being 
in a certain state. Surprising results emerge from this. In classical physics if an electron 
is fired at a sufficiently strong electromagnetic barrier, it will fail to penetrate it. In 
quantum mechanics, there is a small probability that it will be observed on the other 
side of the barrier. This is known as quantum tunneling. In quantum computing this 
tunnelling becomes relevant when building quantum annealers. Annealers can be 
thought of as traversing a fitness landscape looking for the global minimum. One 
main weakness is that the solver can get trapped in a local valley – i.e. it thinks it’s at 
the bottom of a valley, but in fact just over the hill is a much deeper valley. However 
the solver can not “see“ it, because of the hill. In the quantum version of this algo-
rithm, the quantum solver can tunnel through the mountain to the lower valley, 
leading to potential speed-ups in solving (Neven 2016). 

The non-deterministic nature of quantum computing is another reason to 
examine it from an artistic point of view. Artistic algorithms have utilized pseudo-
random algorithms since the first computer arts up to some of the most recent. This 
is because randomness helps to prevent the algorithm getting stuck in an attractor 
or producing repeated uninteresting output. Many computer artists prefer to use 
complexity algorithms rather than randomness, to avoid these pitfalls – for example 
cellular automata. However, at the heart of many of these systems is a pseudo-random 
choice still. The same parameters will create the same result. So the parameters of the 
complex algorithm are sometimes pseudo-randomized. It has been argued that the 
human brain itself is at many levels non-deterministic as well as complex. Quantum 
computing is not pseudo-random. It is random. Like the brain may have, and many 
of the complexity arts algorithms, it has randomness at its heart. A quantum algo-
rithm for which there is an expected deterministic result needs to be run multiple 
times to get a final output. The final output is some averaging of all the intermediate 
outputs. Such a form of computation provides a new way of thinking about computer 
arts. Rather than trying to create complexity and randomness from determinism – 
as in classical computing, quantum computing requires us to build determinism and 
complexity from randomness. The implications of this reversal of thinking for the 
arts are hard to imagine at this stage, but must be investigated.

It is the concept of hard-to-imagine implications that further drives research in 
quantum computer arts and quantum computer music. Quantum computing is, to 
a degree, a solution looking for a problem. Three main potentially useful algorithms 
have been identified, but have only been implemented in a limited sense. Develo-
ping quantum algorithms requires a new way of thinking: rotations in complex vector 
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spaces, probabilistic results, entanglement and superposition. But it must be asked: 
what are the implications of this way of thinking for the arts? We can only begin to 
answer these question by starting to apply basic quantum algorithms to the arts.

The structure of this article will be to provide an overview of related work. Then 
gate-based quantum computing will be introduced, and the algorithm GATEMEL. 
Finally this system will be combined with a D-WAVE quantum annealer to create the 
system qGEN: the first hybrid hardware quantum computer music system. 

Related Work

Most previous designs for performances and music involving quantum mechanical 
processes have either been metaphorical, based on simulations (online or offline), 
or – in the case of actual real-time physics performances – not directly concerned 
with quantum effects. 

In terms of offline simulations, the most closely related to this chapter is the web 
page Listen to Quantum Computer Music (Weimer 2010). Two pieces of music are 
playable online through MIDI simulations. Each is a sonification of two key quantum 
computation algorithms. The offline sonification of quantum mechanics equations 
have also been investigated by Sturm (2000; 2001) and O’Flaherty (2009), with the 
third being an attempt to create a musical signature for the Higgs Boson at CERN 
before its discovery. Another paper defines what it calls Quantum Music (Putz 
and Svozil 2017), though once again this is by analogy to the equations of quantum 
mechanics, rather than directly concerned with quantum physics. Certain equations 
of quantum mechanics have also been used to synthesize new sounds (Cadiz and 
Ramos 2014). The orchestral piece Music of the Quantum (Coleman 2003) was written 
as an outreach tool for a physics research group, and has been performed multiple 
times. The melody is carried between violin and accordion. The aim of this was as 
a metaphor for the wave particle duality of quantum mechanics, using two contra-
sting instruments. 

The most impressive quantum simulation performance has been Danceroom 
Spectroscopy (Glowacki et al. 2012) in which quantum molecular models generate 
live visuals. Dancers are tracked by camera and their movements treated as the move-
ment of active particles in the real-time molecular model. Thus the dancers act as a 
mathematically accurate force field on the particles, and these results are seen in large 
scale animations around the dancers.

There have been performances and music that use real-world quantum-related 
data. However most of these have been done offline, rather than using physics occu-
rring during the performance. These include the piece Background Count: a pre-
recorded electroacoustic composition that incorporates historical Geiger counter 
data into its creation (Brody 1997). Another sonification of real physics data done 
offline was the LHChamber Music project (Anon. 2014). It was instrumented for a 
harp, a guitar, two violins, a keyboard, a clarinet and a flute. Different instruments 
played data from different experiments. Flute and guitar were CMS, Clarinet and 
Violin I were ATLAS, Violin II was LHCb, Piano was ALICE, and harp was CCC. 
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The first real-time use of subatomic physics for a public performance was Cloud 
Chamber (Kirke 2011). In Cloud Chamber physical cosmic rays are made visible in real-
time, and some of them are tracked by visual recognition and turned in to sound. A 
violin plays along with this, and in some versions of the performance, the violin trig-
gered a continuous electric voltage that change the subatomic particle tracks, and 
thus the sounds (creating a form of duet). Cloud Chamber was followed a few years 
later by a CERN-created system which worked directly, without the need to use a 
camera. Called the Cosmic Piano it detects cosmic rays using metal plates and turns 
them into sound (Culpan 2015). The previous two discussed performances were live, 
and the data was not quantum as such. It was quantum-related in that the cosmic rays 
and cloud chambers are  subatomic quantum processes. But they do not incorporate 
actual quantum computation in their music.  

The first use of hardware quantum computers to make music was the algorithm 
qHARMONY (Kirke 2016) which was implemented on an adiabatic quantum 
computer and also utilized in a live music performance with a mezzo-soprano.2 

In this paper I will present qGEN which is the first designed from the ground-
up QC music algorithm using both adiabatic and gate-based quantum computers.

Music and Gate-based Quantum Computers

Gate-based quantum computers are the most well-known, but least commercially 
developed quantum computers. One gate-based quantum computer is available 
commercially, a 17 qubit machine by IBM. But even this is a commercial proof-of-
concept rather than retail quantum computing. In this section some results of music 
generation with a hardware gate-based QC are presented. The promise of gate-based 
quantum computers is, although they are not yet available, they have been theoreti-
cally demonstrated to be incredibly powerful. Gate-based QCs utilize many of the 
elements familiar to those who know about traditional computation – for example 
NOT-type logic gates. However they are also more complex in that the advantages 
of the gate-based approach over the classical requires some mathematical understan-
ding of complex vector spaces and linear algebra. This article will endeavor to intro-
duce the concepts to a broader audience using the simplest possible music genera-
tion system.

I will start by introducing the quantum gates that will be used. The system 
GATEMEL will be implemented in IBMQASM. This language can be used by expert 
users to access a small hardware quantum computer.

Five Qubit Computer

The equivalent to the basic unit of classical computation – the bit – in quantum 
computing is the qubit. A qubit is a quantum bit. As was mentioned the quantum 

2  Alexis Kirke and Juliette Pochin, “Superposition“ https://www.youtube.com/watch?v=-
S5hU4oMWag 
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electron is a sum of all its possible states, and only a  measurement shows which state 
it is in. Similarly a qubit is a weighted combination of both possible bit values: 0 and 
1. The precise value of a qubit is not know until measured by something outside of 
the quantum system. 

The IBM quantum computer used in this paper is a 5 qubit system. It is housed 
in a large dilution refrigerator, supported by multiple racks of electronic pulse-gene-
rating equipment. The qubits used are known as fixed-frequency superconducting 
transmon qubit, and are Josephson-junction based to reduce noise effects. They use 
fixed-frequency qubits to minimize sensitivity to external magnetic field fluctuations 
that could corrupt the quantum information.

The superconducting qubits are made on silicon wafers with superconducting 
metals such as aluminium and niobium. The processor is contained in a printed 
circuit board package shielded within a light-tight, magnetic-field shielding can. The 
dilution refrigerator cools the device down to around 15 miliKelvin. It works by circu-
lating a mixture of two Helium isotopes. Electromagnetic impulses at microwave 
frequencies are sent to the qubits through coaxial cables with a particular phase, dura-
tion, and frequency. These enact the quantum gates.

To measure the qubits, each is coupled to a microwave resonator. A microwave 
tone is sent to the resonators, and the qubits state can be retrievied from the phase 
and amplitude of this reflected signal. Signals in the resonator are amplified within 
the dilution refrigeration layers: a quantum-limited amplifier at 15 mK, and a high-
electron mobility transistor amplifier at 4K. The system is re-tuned three times a day, 
which takes up to an hour.

The IBM gate-based computer has topological limitations. Specifically the only 
controllable connectivity between qubits is via qubit 4. So qubit 4 is connected to 
qubits 0, 1, 2 and 3; but none of 0,1,2,3 are connected to each other. This also needs 
to be taken into account when designing GATEMEL. The gates which make up 
GATEMEL are now introduced, which also provides an introduction to gate-based 
QC.

Despite the simplicity of the IBMQASM 1.1 system, it has been used for prac-
tical quantum computing research, for example Google’s post-quantum cryptography 
(Malloy et al 2016).

Quantum States and Gates

The general form of a simple qubit, the weighted sum of states, is written in the form:

q = a|0> + b|1>

where a and b are the weights. |0> and |1> are known as ‘kets’ and represent vectors 
in a complex vector space. This is called a superposition of a 0 and a 1 state. The 
axioms of quantum mechanics say that the probability of measuring the qubit as 
0 is |a|2 and the probability of measuring the qubit as 1 is |b|2. This is as much as 
we can know about this qubit. So QC is essentially non-deterministic. In fact the 
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non-determinism is deeper than that. It has been shown that this non-determi-
nism is not because there are hidden factors we are not taking into account. For 
example, the bizarre orbits of the planets around the earth were eventually expla-
ined and simplified by the knowledge that they were orbiting around the sun not 
the earth. There are no properties of the qubit or its surrounding system (usually 
called ’hidden variables’) which would enable us to 100% determine the qubit’s 
measured value before measuring.

A quantum computing system with two qubits would actually be represented by:

Q = a|00> + b|01> + c|10> + d|11>

Quantum mechanics once again says that the probability of measuring |00> (both 
qubits 0) is |a|2 and of |01> is |b|2 and so forth. Quantum “gates“ act on qubits. One 
of the fundamental quantum gates is the CNOT gate, where:

CNOT(Q) = a|00> + b|01> + c|11> + d|10>

Comparing the weights, it can be seen that CNOT swaps around the c and d coeffi-
cients. To understand this more clearly, look at the truth table in Table 1 below for a 
classical CNOT gate. A classical CNOT gate is similar to an exclusive-or gate (XOR) 
but unlike the XOR is reversible. This reversibility is achieved by having two outputs 
(which can be used to reconstruct the input) and is key to all quantum gates, the 
reasons for which are outside the scope of this article. A CNOT can also be viewed 
as the A input controlling the B output: if the A input is one is switches on a NOT 
gate acting on B, otherwise the B signal just passes through unchanged. 

In essence all rows of the truth table are acting simultaneously in the quantum 
version, with the first digit in each ket is A and the second digit in each key is B. It is 
the CNOT gate that allows two qubits to be entangled. The concept of entanglement 
is beyond the scope of this article, but has been discussed in detail in relation to soni-
fication and computation (Kirke and Miranda 2017).

In A In B Out A Out B

0 0 0 0
0 1 0 1
1 0 0 1
1 1 0 0

Table 1. Classical CNOT truth table

A convenient way of writing qubits and gates is in vector / matrix notation. This 
will simplify our discussion moving fowards, as the key elements that matter in the 
gate processing are how the coefficients a, b, c, etc of the qubits change. q = a|0> + 
b|1> is written as the vector:
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and Q = a|00> + b|01> + c|10> + d|11> as the vector:

     
Then the CNOT gate can be written as:

for the following reason. By standard matrix multiplication, if CNOT multiples Q, 
the result gives the same weightings as the CNOT definition from earlier. The coeffi-
cients c and d are swapped around:

Another fundamental gate is the Hadamard gate. Unlike CNOT – it has no classical 
equivalent because it can result in qubits which have two values simultaneously. In 
matrix form it is:

 

It can be thought of as a gate that transforms a single qubit into a superposition of 
qubits because:
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This reason for the sqrt(2) is to ensure that putting a qubit through a Hadamard gate 
and then another Hadamard gate will output the original qubit. This is useful and 
important for further development. As an aside, it is interesting to note that if another 
quantum gate, the Rotational R gate, is added to the set of the CNOT and the Hada-
mard, then the three make a universal quantum gate set. In the same way that NAND 
gates can be used to build any classical function, these three gates can be used to build 
any quantum function. An R gate has an exponential term as one of its matrix entries. 
This R-gate is not used in GATEMEL, the algorithm introduced here. However the 
Hadamard and the CNOT are. However there is one final gate that needs to be added 
to create GATEMEL. It is called the Pauli X gate:

It is the quantum equivalent of a NOT gate because: 

The commands for these gates in the IBMQASM language are x (NOT), cx (CNOT) 
and h (Hadamard), and qubits in IBMQASM are referenced as q[0], q[1], etc. for 
qubits 0 and 2 up to 4. Another key command is “measure“, which returns the result 
of physically measuring a qubit. All qubit inputs are set to |0> by default. Thus the 
IBMQASM:

measure q[0]
will return the value 0 from q[0] with high probability. In 1024 runs of this code on 
the hardware QC it returned 0 with 0.976 probability, and 1 with 0.024 probability. 
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The program:

x q[0]
measure q[0]

will return value 1 with high probability, since the input is always 0 and the x 
command is the bit-flipping Pauli X-gate. In 1024 runs of this code on the hardware 
QC it returned 1 with 0.962 probability, and 0 with 0.038 probability. In this case, 
the non-pure probabilities are a result of an imperfect quantum computer hardware 
implementation, due to what is known as decoherence. However, this implementa-
tion is state-of-the-art as of this writing.  

Finally:

cx q[1], q[2]
measure q[1]
measure q[2]

will return the result of a CNOT of q[1] on q[2]. Since the input state is |00> to start, 
the measured output will be |00> with a high degree of probability. One run of 1024 
examples lead to 00 with probability 0.979, 01 with probability 0.005, 10 with proba-
bility 0.007, and 11 with probability 0.009.

Quantum Annealing

As of the time of writing this article, there is only one company making quantum 
computers available for purchase. (Though IBM has made a commercial gate-based 
machine available on a timeshare basis.) These computers are based on adiabatic 
quantum computing (Albash et al. 2015). An adiabatic quantum computer implements 
a form of computation reminiscent of connectionist computing: what is known as an 
Ising model (Lucas 2014). Ising models were originally used to describe the physics of 
a magnetic material based on the molecules within it. As well as electrical charge, each 
of these molecules has a property known as spin; their spin can be +1 or -1. An adia-
batic quantum computer attempts to find spin values to minimize the total energy. The 
user sets the values of the connections between the simulated molecules so as to define 
the problem to be solved. Such a minimizer can be implemented using non-quantum 
hardware. However significant speedups are expected through the use of quantum 
hardware. Such hardware is now being sold by the Canadian company D-Wave. 

On the face of it, it may not seem significant that quantum computers can be 
built to solve only this problem type. However over a period of 28 years, more than 
10,000 publications came out in areas as wide as zoology and artificial intelligence on 
applications of the Ising model (Bian et al. 2010). Any problem that can be modeled 
using elements interacting pairwise with each other, and involves minimizing some 
measure of the interaction, has the potential for being modeled as an Ising problem.

ALEXIS KIRKE
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There is an ongoing debate about how the D-Wave adiabatic computer truly func-
tions and what speedup it can provide; but results indicated quantum effects occu-
rring in subgroups of nodes in the computer and results by Google have claimed large 
speed increases for quantum hardware. As has been mentioned, this is thought by 
some to be due to quantum tunnelling (Katzgraber 2015). When searching for low 
energy states, a quantum system can tunnel into nearby states. 

Figure 1. qGen architecture

qGEN

qGEN is a hybrid quantum algorithm using both hardware gate-based and adiabatic 
quantum computers.  The gate-based algorithm is GATEMEL – the simplest possible 
gate-base quantum music algorithm. It has been used to generate simple melodies for 
media demonstration purposes.3 The adiabatic algorithm is qHarmony which, given 
a note, attempts to harmonize it (Kirke and Miranda 2017).

qGen on D-Wave – qHarmony

A basic harmony tool called qHarmony has been developed on a D-Wave 2X. It gene-
rates options for a set of white piano notes that can be constructed as a “reasonably“ 

3  Alexis Kirke, “Futureproofing.“ BBC Radio 4, https://soundcloud.com/alexiskirke/alexis-kirke-
talks-quantum-on-futureproofing-bbc-radio-4 
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assonant chord, and which can harmonize a user-provided white piano note. The 
problem is approached by mapping the notes of the scale of C Major to qubits. The 
qubits connections in the D-Wave are designed so that qubits representing notes that 
are closer together on the keyboard, contribute to a higher energy than qubits repre-
senting notes that are further away from each other on the keyboard qHarmony is 
described in detail in (Kirke and Miranda 2017).

qGen on IBM 5Q – qHarmony

When thinking about the simplest quantum computer music algorithm, it is useful 
to imagine a logic electronics engineer designing a melody generator back at the 
dawn of classical computers. For the simplest classical computation based melody 
algorithm, we can look back into computer music history where systems actually use 
pseudo-random number generators to “create music“, for example. A pseudo-random 
number generator is in effect a function of classical logical gates, memory and a timer.  
Anything simpler will only produce the same notes or the same pattern repeatedly. 
Constraints might be added, for example, by saying that tunes can’t have too long a 
rest, or too long a run of notes without a rest. This requires a more complex set of 
logic gates. But it is expressible. 

When working with a small number of bits, it is simplest to encode relative up and 
down movement, rather than use multiple bits to encode larger numeric note values. To 
allow more interesting note movements, a two bit register can be used where the first 
bit is up or down, and the second bit is the size of the jump: 1 or 2 pitch degrees. Thus 
00 would be down 1 degree, 01 down 2 degrees, 10 up 1 degree and 11 up two degrees. As 
already mentioned, melodies also have rests, there are not notes every metronome beat. 
So the system can have another bit to indicate play or don’t play a note. 

The up or down and play note flags in classical computing would be based on 
a pseudo-random number generator. To repeat the above simplistic compositional 
constraint, it will be required that if the melody note played for the last two metro-
nome beats, then there should be a rest for the next beat; whereas if the melody rested 
for the last two beats, it must play for the next beat. In classical computation the equa-
tions could be written as below. The first 3 are random number generators, the last 
three are the play note constraint:

Play_note_flag = PSEUDORANDOM_BIT
Pitch_direction = PSEUDORANDOM_BIT
Pitch_size = PSEUDORANDOM_BIT
Last_two_play_note_flags_equal = NOT(XOR(prev_play_note_flag , 
       prev_prev_play_note_flag))
Current_and last_play_note_flags_equal = NOT(XOR(play_note_flag , 
       prev_play_note_flag))
Play_note_flag = CNOT(Play_note_flag , AND(Last_two_play_note_flags_equal,
       Current_and last_play_note_flags_equal))

ALEXIS KIRKE
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So the last line flips the play_note_flag bit if it is the same as the last two flag 
values. Looking now at a quantum version, the non-deterministic element is given, 
without the need for pseudo-random number generation. It is truly random with 
no underlying hidden process. What is more complex is implementing constraints 
and memory. In GATEMEL the memory is implemented outside of the quantum 
computer. The gates can be implemented using those already introduced. To convert 
to a quantum system, the following needs to be observed. A NOT gate can be imple-
mented using a Pauli X gate. An XOR and a CNOT gate are equivalent. And that 
randomness can be generated by creating a superposition of any input using a Hada-
mard and then observing it.

So the written version of GATEMEL has two input qubits labelled prev_play_
note_flag and prev_prev_play_note_flag, and three output qubits labeled pitch_
change_direction, pitch_change_size and play_note_flag. Note that the function 
CNOT(a, AND(b,c)) is called a Toffoli gate. The equations are written in words as:

Pitch_change_direction = Hadamard(|0>)
Pitch_change_size = Hadamard(|0>)
Note_play_flag = Hadamard(|0>)
Note_play_flag = Toffoli(Note_play_flat, X(CNOT(prev_play_note_flag , 
       prev_prev_play_note_flag)), X(CNOT(play_note_flag , prev_play_note_flag)))

The three hadamard statements are essentially random number generators. prev_
play_flag is the whether the previous pitch was played or not, 1 for player, 0 for not. 
prev_prev_play_flag is whether the note before that was played. Thus these equa-
tions have the effect that if the last two play note instructions were the same (both 0 
or both 1) then the current note play flag is set to the opposite. 

Simplifying these equations to make them more IBMQASM, and assuming the 
previous two play_note flags have been input on q[2] and q[3] we have:

q[0] = H(q[0])
q[1] = H(q[1])
q[4] = H(q[4])
q[4] = Toffoli(q[4], X(CNOT(q[3],q[2])), X(CNOT(q[3],q[4])))

Making this circuit useable in hardware IBMQASM requires a number of adjus-
tments. In particular, the topology means that CNOTs can only be performed of the 
form cx q[i], q[4]. In other words all CNOTs must have q[4] as their second para-
meter. In fact, CNOT(|q[i]q[j]>) can be calculated as a function of CNOT(|q[j]
q[i]>) using what is known as a change of basis. In essence the whole input is rotated 
around a complex vector space, CNOTed, and then rotated back. The Hadamard 
gate can be used to transform the state |xy> so that when it is put through a CNOT 
gate, and then Hadamard transformed again, it behaves as though it were|yx> in the 
CNOT gate. Hence the final hardware IBMQASM code for GATEMEL is in Table 
2. It includes the Toffoli gate build, and the various change of bases:
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include “qelib1.inc“;
qreg q[5];
creg c[5];
//move up or down?
//q[0] = 0 means move down
//q[0] = 1 means move  up
//q[1] = 0 move one degree
//q[1] = 1 move two degrees
//randomly select q[0]q[1]
h q[0];    
h q[1];  
//q[4] = 1 means play note
//q[4] = 0 means don’t
//select q[4] randomly 
h q[4];   
//check if q[2] = q[4]   
h q[2];
h q[4];      
cx q[2],q[4];
h q[2];
h q[4];
//check if q[3] = q[4]
h q[4];
h q[3];
cx q[3],q[4];
h q[4];
h q[3];

//check rest or play flag not
the same for last two
notes (Toffoli/AND gate)
x q[2];
x q[3];h q[4];
cx q[2],q[4];
tdg q[4];
cx q[3],q[4];
t q[4];
cx q[2],q[4];
tdg q[4];
cx q[3],q[4];
t q[2];
t q[4];
h q[4];
cx q[2],q[4];
h q[2];
h q[4];
cx q[2],q[4];
h q[2];
h q[4];
cx q[2],q[4];
cx q[3],q[4];
t q[3];
tdg q[4];
cx q[3],q[4];
//end of Toffoli/AND

//switch the “move“ flag
//back to q[4] output
//for consistency
cx q[2],q[4];
h q[2];
h q[4];
cx q[2],q[4];
h q[2];
h q[4];
cx q[2],q[4];
//collapse the quantum
//bits to classical bits
measure q[4] -> c[4];
measure q[1] -> c[1];
measure q[0] -> c[0];

//output q[0]q[1] is two bit number 
defining move up or down
//output q[4] is whether to play a note 
this beat or not

Table 2. The final hardware IBMQASM code for GATEMEL

Comments have been added just for readability here, but they are not included in 
IBMQASM1.1. The gate diagram version is shown in Figure 2.

Figure 2. Gate diagram for GATEMEL
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qGEN Example

The D-Wave 2X processor will now be used to generate a harmony for a simple note 
sequence generated by the ibmqx2. qHarmony is called at the start of each bar of a 
GATEMEL tune. Figure 3 shows an example output. An audio version can be heard 
on Soundcloud.4 The GATEMEL start note is middle C, and each beat is an eighth 
note. So if GATEMEL says not to play a note for 2 beats after a note has been played, 
then that last note played will go on for a dotted quarter. If GATEMEL says not to 
play a note for 1 beat after a note has been played, then that last note will go on for a 
quarter. Note that the half note in bar 1 of Figure 3 highlights the probabilistic nature 
of quantum computation. For a half-note to appear means that a new note is not being 
triggered for 3 beats in a row. This should be very low probability, as recall the circuit 
is designed to stop this happening, but it does occur this once.

Figure 3. Example qGen output

4  https://soundcloud.com/alexiskirke/quantummelharm2
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The quality of music produced by qGen is not particularly high. There are two main 
reasons for this. The first is that only a 5 qubit and an 8 qubit system are used - to 
simplfy this introduction to quantum programming (Kirke and Miranda 2017). For 
example - this limits the harmonies from the D-Wave to the 8 white notes. Such 
a constraint is rare in most mainstream composition. However, using more than 8 
qubits on a D-Wave would have required much concentration on qubit connectivity 
issues in the D-Wave, rather than the quantum-related issues. The connectivity of the 
D-Wave 2X outside of 8 qubit segments is fairly complex. 

The second reason – once again used for simplification purposes in an introduc-
tory paper – is that qGen takes no account of its previous harmonies and melodies 
when generating its next ones. For example if a composer uses an Am/C chord to 
harmonize a melody segment, then that choice of chord will affect the next chord. 
Not so in qGen. 

qGen only takes advantage of one aspect of QC: its non-deterministic nature 
and ability to return multiple results. However the quantum part of the algorithm 
is so simple that it does not require the potential speed-ups available from quantum 
computers. The D-Wave 2X has over 1000 qubits available, and enters states of super-
position and entanglement during its calculations. Even the simple 8 qubit algorithm 
above will have utilized these quantum states in coming to the results. In fact, despite 
the debates about how quantum effects occur in the D-Wave, it has been shown that 
entanglement does occur at least within the 8 qubit groups.

However a much more complex and constrained problem would be required to 
utilize all advantages of QC. Constraint-based and spectral composition, together 
with musical/sonic pattern matching algorithms are areas which may benefit from 
QC, due to their potential computational complexity. In essence, any complex musical 
problem that involves a database search, or can be fully or partially modelled as an 
Ising system, could benefit from quantum computation.
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Алексис Кирк

Програмирање квантних рачунара базираних на употреби логичких 
кола за потребе рада са музиком

(Сажетак)

Досад су забележени значајни покушаји да се једначине квантне механике 
користе за генерисање звука и да се озвуче симулирани квантни процеси. Али, 
за нове облике рачунања који би се користили у компјутерској музици, мора се 
употребити одговарајући хардвер. Ово се досад ретко дешавало са квантном 
компјутерском музиком, најпре зато што такав хардвер није широко доступан. 
Други разлог јесте околност да овакав хардвер захтева извесно познавање 
теорије квантног рачунарства. Овим чланком померамо овај процес унапред 
помоћу два хардверска квантна рачунарска система: IBMQASM v1.1 и 
D-Wave 2X. Такође уводимо неке идеје из IBM-овог система заснованог 
на логичким колима, на начин доступан рачунарски писменим читаоцима. 
Ово је презентација првог хибридног квантног компјутерског алгоритма, 
који укључује две хардверске машине. Иако ниједан од ових алгоритама 
експлицитно не користи обећана квантна убрзања, они представљају виталан 
први корак у увођењу квантног рачунарства у поље музике.

Чланак започињемо кратким прегледом квантног рачунарства и указујемо 
како се оно може применити на подручју уметности. Следи истраживање 
претходних пројеката у којима су коришћени стварни или симулирани 
квантни процеси у музичким делима или извођењима. У следећем одељку се 
говори о најпознатијој врсти квантних рачунара, заснованих на логичким 
колима, и описује се хардвер једног од мањих квантних рачунара компаније 
IBM. Следи кратак увод у теорију квантног рачунарства; ове идеје су потом 
пројектоване на језик који користе IBM рачунари: IBMQASM.

Следећи одељак доноси кратак преглед друге врсте квантног рачунара који 
се користи: D-Wave. Детаљнији описи мог алгоритма доступни су у другим 
чланцима на које се позивам. На крају је описан qGen: IBM генерише 
мелодију, а D-Wave је хармонизује. Фокус је на мелодијском алгоритму, пошто 
је алгоритам D-Wave описан у поглављу из књиге на коју реферирам. Развијен 
је “најједноставнији могући“ мелодијски алгоритам, уз који је приложен и 
одговарајући пример.

Кључне речи: квантна компјутерска музика, алгоритми, D-Wave
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