
Programming Gate-based Hardware
Quantum Computers for Music

Alexis Kirke1

University of Plymouth, School of Humanities and Performing Arts

Received: 17 April 2018
Accepted: 7 May 2018

Original scientific paper

Abstract
There have been significant attempts previously to use the equations of quantum
mechanics for generating sound, and to sonify simulated quantum processes. For
new forms of computation to be utilized in computer music, eventually hardware
must be utilized. This has rarely happened with quantum computer music. One
reason for this is that it is currently not easy to get access to such hardware. A second
is that the hardware available requires some understanding of quantum computing
theory. This paper moves forward the process by utilizing two hardware quantum
computation systems: IBMQASM v1.1 and a D-Wave 2X. It also introduces the ideas
behind the gate-based IBM system, in a way hopefully more accessible to computer-
literate readers. This is a presentation of the first hybrid quantum computer algorithm,
involving two hardware machines. Although neither of these algorithms explicitly
utilize the promised quantum speed-ups, they are a vital first step in introducing QC to
the musical field. The article also introduces some key quantum computer algorithms
and discusses their possible future contribution to computer music.

Keywords: quantum computer music, algorithms, D-Wave

Introduction: Quantum Computing

Why Quantum Computing? The typical answer is speed. Quantum mechanics
models the world by considering a physical state as a sum of all its possible configu-
rations. For example, the physical state of an electron is modeled as a weighted sum
of a large number of vectors (called eigenvectors), each of which represents somet-
hing that could possibly happen in the physical world. This sum of vectors varies over

1 alexis.kirke@plymouth.ac.uk

D O I https://doi.org/10.2298/MUZ1824021K
U D C 789.983

004.9:78

22

МУЗИКОЛОГИЈА / MUSICOLOGY 24-2018

time as the electron’s state changes. When the electron’s state is measured at a parti-
cular time in the lab, the result will be one of the vectors. Performing an operation
on a physical state in quantum mechanics thus means operating on a large number
of configurations simultaneously. This natural parallelism, when combined with a
property known as entanglement, provides the potential for calculations whose speed
far exceed those of classical computers. Certain quantum algorithms have been shown
to be orders of magnitude faster than their classical versions (Shor 2006).

Another feature of quantum mechanics is its probabilistic nature. The results of
measurements on an electron in general cannot be predicted with certainty. Quantum
mechanics simply provides a means to calculate the probability of the electron being
in a certain state. Surprising results emerge from this. In classical physics if an electron
is fired at a sufficiently strong electromagnetic barrier, it will fail to penetrate it. In
quantum mechanics, there is a small probability that it will be observed on the other
side of the barrier. This is known as quantum tunneling. In quantum computing this
tunnelling becomes relevant when building quantum annealers. Annealers can be
thought of as traversing a fitness landscape looking for the global minimum. One
main weakness is that the solver can get trapped in a local valley – i.e. it thinks it’s at
the bottom of a valley, but in fact just over the hill is a much deeper valley. However
the solver can not “see“ it, because of the hill. In the quantum version of this algo-
rithm, the quantum solver can tunnel through the mountain to the lower valley,
leading to potential speed-ups in solving (Neven 2016).

The non-deterministic nature of quantum computing is another reason to
examine it from an artistic point of view. Artistic algorithms have utilized pseudo-
random algorithms since the first computer arts up to some of the most recent. This
is because randomness helps to prevent the algorithm getting stuck in an attractor
or producing repeated uninteresting output. Many computer artists prefer to use
complexity algorithms rather than randomness, to avoid these pitfalls – for example
cellular automata. However, at the heart of many of these systems is a pseudo-random
choice still. The same parameters will create the same result. So the parameters of the
complex algorithm are sometimes pseudo-randomized. It has been argued that the
human brain itself is at many levels non-deterministic as well as complex. Quantum
computing is not pseudo-random. It is random. Like the brain may have, and many
of the complexity arts algorithms, it has randomness at its heart. A quantum algo-
rithm for which there is an expected deterministic result needs to be run multiple
times to get a final output. The final output is some averaging of all the intermediate
outputs. Such a form of computation provides a new way of thinking about computer
arts. Rather than trying to create complexity and randomness from determinism –
as in classical computing, quantum computing requires us to build determinism and
complexity from randomness. The implications of this reversal of thinking for the
arts are hard to imagine at this stage, but must be investigated.

It is the concept of hard-to-imagine implications that further drives research in
quantum computer arts and quantum computer music. Quantum computing is, to
a degree, a solution looking for a problem. Three main potentially useful algorithms
have been identified, but have only been implemented in a limited sense. Develo-
ping quantum algorithms requires a new way of thinking: rotations in complex vector

23

spaces, probabilistic results, entanglement and superposition. But it must be asked:
what are the implications of this way of thinking for the arts? We can only begin to
answer these question by starting to apply basic quantum algorithms to the arts.

The structure of this article will be to provide an overview of related work. Then
gate-based quantum computing will be introduced, and the algorithm GATEMEL.
Finally this system will be combined with a D-WAVE quantum annealer to create the
system qGEN: the first hybrid hardware quantum computer music system.

Related Work

Most previous designs for performances and music involving quantum mechanical
processes have either been metaphorical, based on simulations (online or offline),
or – in the case of actual real-time physics performances – not directly concerned
with quantum effects.

In terms of offline simulations, the most closely related to this chapter is the web
page Listen to Quantum Computer Music (Weimer 2010). Two pieces of music are
playable online through MIDI simulations. Each is a sonification of two key quantum
computation algorithms. The offline sonification of quantum mechanics equations
have also been investigated by Sturm (2000; 2001) and O’Flaherty (2009), with the
third being an attempt to create a musical signature for the Higgs Boson at CERN
before its discovery. Another paper defines what it calls Quantum Music (Putz
and Svozil 2017), though once again this is by analogy to the equations of quantum
mechanics, rather than directly concerned with quantum physics. Certain equations
of quantum mechanics have also been used to synthesize new sounds (Cadiz and
Ramos 2014). The orchestral piece Music of the Quantum (Coleman 2003) was written
as an outreach tool for a physics research group, and has been performed multiple
times. The melody is carried between violin and accordion. The aim of this was as
a metaphor for the wave particle duality of quantum mechanics, using two contra-
sting instruments.

The most impressive quantum simulation performance has been Danceroom
Spectroscopy (Glowacki et al. 2012) in which quantum molecular models generate
live visuals. Dancers are tracked by camera and their movements treated as the move-
ment of active particles in the real-time molecular model. Thus the dancers act as a
mathematically accurate force field on the particles, and these results are seen in large
scale animations around the dancers.

There have been performances and music that use real-world quantum-related
data. However most of these have been done offline, rather than using physics occu-
rring during the performance. These include the piece Background Count: a pre-
recorded electroacoustic composition that incorporates historical Geiger counter
data into its creation (Brody 1997). Another sonification of real physics data done
offline was the LHChamber Music project (Anon. 2014). It was instrumented for a
harp, a guitar, two violins, a keyboard, a clarinet and a flute. Different instruments
played data from different experiments. Flute and guitar were CMS, Clarinet and
Violin I were ATLAS, Violin II was LHCb, Piano was ALICE, and harp was CCC.

ALEXIS KIRKE
PROGRAMMING GATE-BASED HARDWARE QUANTUM COMPUTERS FOR MUSIC

24

МУЗИКОЛОГИЈА / MUSICOLOGY 24-2018

The first real-time use of subatomic physics for a public performance was Cloud
Chamber (Kirke 2011). In Cloud Chamber physical cosmic rays are made visible in real-
time, and some of them are tracked by visual recognition and turned in to sound. A
violin plays along with this, and in some versions of the performance, the violin trig-
gered a continuous electric voltage that change the subatomic particle tracks, and
thus the sounds (creating a form of duet). Cloud Chamber was followed a few years
later by a CERN-created system which worked directly, without the need to use a
camera. Called the Cosmic Piano it detects cosmic rays using metal plates and turns
them into sound (Culpan 2015). The previous two discussed performances were live,
and the data was not quantum as such. It was quantum-related in that the cosmic rays
and cloud chambers are subatomic quantum processes. But they do not incorporate
actual quantum computation in their music.

The first use of hardware quantum computers to make music was the algorithm
qHARMONY (Kirke 2016) which was implemented on an adiabatic quantum
computer and also utilized in a live music performance with a mezzo-soprano.2

In this paper I will present qGEN which is the first designed from the ground-
up QC music algorithm using both adiabatic and gate-based quantum computers.

Music and Gate-based Quantum Computers

Gate-based quantum computers are the most well-known, but least commercially
developed quantum computers. One gate-based quantum computer is available
commercially, a 17 qubit machine by IBM. But even this is a commercial proof-of-
concept rather than retail quantum computing. In this section some results of music
generation with a hardware gate-based QC are presented. The promise of gate-based
quantum computers is, although they are not yet available, they have been theoreti-
cally demonstrated to be incredibly powerful. Gate-based QCs utilize many of the
elements familiar to those who know about traditional computation – for example
NOT-type logic gates. However they are also more complex in that the advantages
of the gate-based approach over the classical requires some mathematical understan-
ding of complex vector spaces and linear algebra. This article will endeavor to intro-
duce the concepts to a broader audience using the simplest possible music genera-
tion system.

I will start by introducing the quantum gates that will be used. The system
GATEMEL will be implemented in IBMQASM. This language can be used by expert
users to access a small hardware quantum computer.

Five Qubit Computer

The equivalent to the basic unit of classical computation – the bit – in quantum
computing is the qubit. A qubit is a quantum bit. As was mentioned the quantum

2 Alexis Kirke and Juliette Pochin, “Superposition“ https://www.youtube.com/watch?v=-
S5hU4oMWag

25

electron is a sum of all its possible states, and only a measurement shows which state
it is in. Similarly a qubit is a weighted combination of both possible bit values: 0 and
1. The precise value of a qubit is not know until measured by something outside of
the quantum system.

The IBM quantum computer used in this paper is a 5 qubit system. It is housed
in a large dilution refrigerator, supported by multiple racks of electronic pulse-gene-
rating equipment. The qubits used are known as fixed-frequency superconducting
transmon qubit, and are Josephson-junction based to reduce noise effects. They use
fixed-frequency qubits to minimize sensitivity to external magnetic field fluctuations
that could corrupt the quantum information.

The superconducting qubits are made on silicon wafers with superconducting
metals such as aluminium and niobium. The processor is contained in a printed
circuit board package shielded within a light-tight, magnetic-field shielding can. The
dilution refrigerator cools the device down to around 15 miliKelvin. It works by circu-
lating a mixture of two Helium isotopes. Electromagnetic impulses at microwave
frequencies are sent to the qubits through coaxial cables with a particular phase, dura-
tion, and frequency. These enact the quantum gates.

To measure the qubits, each is coupled to a microwave resonator. A microwave
tone is sent to the resonators, and the qubits state can be retrievied from the phase
and amplitude of this reflected signal. Signals in the resonator are amplified within
the dilution refrigeration layers: a quantum-limited amplifier at 15 mK, and a high-
electron mobility transistor amplifier at 4K. The system is re-tuned three times a day,
which takes up to an hour.

The IBM gate-based computer has topological limitations. Specifically the only
controllable connectivity between qubits is via qubit 4. So qubit 4 is connected to
qubits 0, 1, 2 and 3; but none of 0,1,2,3 are connected to each other. This also needs
to be taken into account when designing GATEMEL. The gates which make up
GATEMEL are now introduced, which also provides an introduction to gate-based
QC.

Despite the simplicity of the IBMQASM 1.1 system, it has been used for prac-
tical quantum computing research, for example Google’s post-quantum cryptography
(Malloy et al 2016).

Quantum States and Gates

The general form of a simple qubit, the weighted sum of states, is written in the form:

q = a|0> + b|1>

where a and b are the weights. |0> and |1> are known as ‘kets’ and represent vectors
in a complex vector space. This is called a superposition of a 0 and a 1 state. The
axioms of quantum mechanics say that the probability of measuring the qubit as
0 is |a|2 and the probability of measuring the qubit as 1 is |b|2. This is as much as
we can know about this qubit. So QC is essentially non-deterministic. In fact the

ALEXIS KIRKE
PROGRAMMING GATE-BASED HARDWARE QUANTUM COMPUTERS FOR MUSIC

26

МУЗИКОЛОГИЈА / MUSICOLOGY 24-2018

non-determinism is deeper than that. It has been shown that this non-determi-
nism is not because there are hidden factors we are not taking into account. For
example, the bizarre orbits of the planets around the earth were eventually expla-
ined and simplified by the knowledge that they were orbiting around the sun not
the earth. There are no properties of the qubit or its surrounding system (usually
called ’hidden variables’) which would enable us to 100% determine the qubit’s
measured value before measuring.

A quantum computing system with two qubits would actually be represented by:

Q = a|00> + b|01> + c|10> + d|11>

Quantum mechanics once again says that the probability of measuring |00> (both
qubits 0) is |a|2 and of |01> is |b|2 and so forth. Quantum “gates“ act on qubits. One
of the fundamental quantum gates is the CNOT gate, where:

CNOT(Q) = a|00> + b|01> + c|11> + d|10>

Comparing the weights, it can be seen that CNOT swaps around the c and d coeffi-
cients. To understand this more clearly, look at the truth table in Table 1 below for a
classical CNOT gate. A classical CNOT gate is similar to an exclusive-or gate (XOR)
but unlike the XOR is reversible. This reversibility is achieved by having two outputs
(which can be used to reconstruct the input) and is key to all quantum gates, the
reasons for which are outside the scope of this article. A CNOT can also be viewed
as the A input controlling the B output: if the A input is one is switches on a NOT
gate acting on B, otherwise the B signal just passes through unchanged.

In essence all rows of the truth table are acting simultaneously in the quantum
version, with the first digit in each ket is A and the second digit in each key is B. It is
the CNOT gate that allows two qubits to be entangled. The concept of entanglement
is beyond the scope of this article, but has been discussed in detail in relation to soni-
fication and computation (Kirke and Miranda 2017).

In A In B Out A Out B

0 0 0 0
0 1 0 1
1 0 0 1
1 1 0 0

Table 1. Classical CNOT truth table

A convenient way of writing qubits and gates is in vector / matrix notation. This
will simplify our discussion moving fowards, as the key elements that matter in the
gate processing are how the coefficients a, b, c, etc of the qubits change. q = a|0> +
b|1> is written as the vector:

27

and Q = a|00> + b|01> + c|10> + d|11> as the vector:

Then the CNOT gate can be written as:

for the following reason. By standard matrix multiplication, if CNOT multiples Q,
the result gives the same weightings as the CNOT definition from earlier. The coeffi-
cients c and d are swapped around:

Another fundamental gate is the Hadamard gate. Unlike CNOT – it has no classical
equivalent because it can result in qubits which have two values simultaneously. In
matrix form it is:

It can be thought of as a gate that transforms a single qubit into a superposition of
qubits because:

ALEXIS KIRKE
PROGRAMMING GATE-BASED HARDWARE QUANTUM COMPUTERS FOR MUSIC

28

МУЗИКОЛОГИЈА / MUSICOLOGY 24-2018

This reason for the sqrt(2) is to ensure that putting a qubit through a Hadamard gate
and then another Hadamard gate will output the original qubit. This is useful and
important for further development. As an aside, it is interesting to note that if another
quantum gate, the Rotational R gate, is added to the set of the CNOT and the Hada-
mard, then the three make a universal quantum gate set. In the same way that NAND
gates can be used to build any classical function, these three gates can be used to build
any quantum function. An R gate has an exponential term as one of its matrix entries.
This R-gate is not used in GATEMEL, the algorithm introduced here. However the
Hadamard and the CNOT are. However there is one final gate that needs to be added
to create GATEMEL. It is called the Pauli X gate:

It is the quantum equivalent of a NOT gate because:

The commands for these gates in the IBMQASM language are x (NOT), cx (CNOT)
and h (Hadamard), and qubits in IBMQASM are referenced as q[0], q[1], etc. for
qubits 0 and 2 up to 4. Another key command is “measure“, which returns the result
of physically measuring a qubit. All qubit inputs are set to |0> by default. Thus the
IBMQASM:

measure q[0]
will return the value 0 from q[0] with high probability. In 1024 runs of this code on
the hardware QC it returned 0 with 0.976 probability, and 1 with 0.024 probability.

29

The program:

x q[0]
measure q[0]

will return value 1 with high probability, since the input is always 0 and the x
command is the bit-flipping Pauli X-gate. In 1024 runs of this code on the hardware
QC it returned 1 with 0.962 probability, and 0 with 0.038 probability. In this case,
the non-pure probabilities are a result of an imperfect quantum computer hardware
implementation, due to what is known as decoherence. However, this implementa-
tion is state-of-the-art as of this writing.

Finally:

cx q[1], q[2]
measure q[1]
measure q[2]

will return the result of a CNOT of q[1] on q[2]. Since the input state is |00> to start,
the measured output will be |00> with a high degree of probability. One run of 1024
examples lead to 00 with probability 0.979, 01 with probability 0.005, 10 with proba-
bility 0.007, and 11 with probability 0.009.

Quantum Annealing

As of the time of writing this article, there is only one company making quantum
computers available for purchase. (Though IBM has made a commercial gate-based
machine available on a timeshare basis.) These computers are based on adiabatic
quantum computing (Albash et al. 2015). An adiabatic quantum computer implements
a form of computation reminiscent of connectionist computing: what is known as an
Ising model (Lucas 2014). Ising models were originally used to describe the physics of
a magnetic material based on the molecules within it. As well as electrical charge, each
of these molecules has a property known as spin; their spin can be +1 or -1. An adia-
batic quantum computer attempts to find spin values to minimize the total energy. The
user sets the values of the connections between the simulated molecules so as to define
the problem to be solved. Such a minimizer can be implemented using non-quantum
hardware. However significant speedups are expected through the use of quantum
hardware. Such hardware is now being sold by the Canadian company D-Wave.

On the face of it, it may not seem significant that quantum computers can be
built to solve only this problem type. However over a period of 28 years, more than
10,000 publications came out in areas as wide as zoology and artificial intelligence on
applications of the Ising model (Bian et al. 2010). Any problem that can be modeled
using elements interacting pairwise with each other, and involves minimizing some
measure of the interaction, has the potential for being modeled as an Ising problem.

ALEXIS KIRKE
PROGRAMMING GATE-BASED HARDWARE QUANTUM COMPUTERS FOR MUSIC

30

МУЗИКОЛОГИЈА / MUSICOLOGY 24-2018

There is an ongoing debate about how the D-Wave adiabatic computer truly func-
tions and what speedup it can provide; but results indicated quantum effects occu-
rring in subgroups of nodes in the computer and results by Google have claimed large
speed increases for quantum hardware. As has been mentioned, this is thought by
some to be due to quantum tunnelling (Katzgraber 2015). When searching for low
energy states, a quantum system can tunnel into nearby states.

Figure 1. qGen architecture

qGEN

qGEN is a hybrid quantum algorithm using both hardware gate-based and adiabatic
quantum computers. The gate-based algorithm is GATEMEL – the simplest possible
gate-base quantum music algorithm. It has been used to generate simple melodies for
media demonstration purposes.3 The adiabatic algorithm is qHarmony which, given
a note, attempts to harmonize it (Kirke and Miranda 2017).

qGen on D-Wave – qHarmony

A basic harmony tool called qHarmony has been developed on a D-Wave 2X. It gene-
rates options for a set of white piano notes that can be constructed as a “reasonably“

3 Alexis Kirke, “Futureproofing.“ BBC Radio 4, https://soundcloud.com/alexiskirke/alexis-kirke-
talks-quantum-on-futureproofing-bbc-radio-4

31

assonant chord, and which can harmonize a user-provided white piano note. The
problem is approached by mapping the notes of the scale of C Major to qubits. The
qubits connections in the D-Wave are designed so that qubits representing notes that
are closer together on the keyboard, contribute to a higher energy than qubits repre-
senting notes that are further away from each other on the keyboard qHarmony is
described in detail in (Kirke and Miranda 2017).

qGen on IBM 5Q – qHarmony

When thinking about the simplest quantum computer music algorithm, it is useful
to imagine a logic electronics engineer designing a melody generator back at the
dawn of classical computers. For the simplest classical computation based melody
algorithm, we can look back into computer music history where systems actually use
pseudo-random number generators to “create music“, for example. A pseudo-random
number generator is in effect a function of classical logical gates, memory and a timer.
Anything simpler will only produce the same notes or the same pattern repeatedly.
Constraints might be added, for example, by saying that tunes can’t have too long a
rest, or too long a run of notes without a rest. This requires a more complex set of
logic gates. But it is expressible.

When working with a small number of bits, it is simplest to encode relative up and
down movement, rather than use multiple bits to encode larger numeric note values. To
allow more interesting note movements, a two bit register can be used where the first
bit is up or down, and the second bit is the size of the jump: 1 or 2 pitch degrees. Thus
00 would be down 1 degree, 01 down 2 degrees, 10 up 1 degree and 11 up two degrees. As
already mentioned, melodies also have rests, there are not notes every metronome beat.
So the system can have another bit to indicate play or don’t play a note.

The up or down and play note flags in classical computing would be based on
a pseudo-random number generator. To repeat the above simplistic compositional
constraint, it will be required that if the melody note played for the last two metro-
nome beats, then there should be a rest for the next beat; whereas if the melody rested
for the last two beats, it must play for the next beat. In classical computation the equa-
tions could be written as below. The first 3 are random number generators, the last
three are the play note constraint:

Play_note_flag = PSEUDORANDOM_BIT
Pitch_direction = PSEUDORANDOM_BIT
Pitch_size = PSEUDORANDOM_BIT
Last_two_play_note_flags_equal = NOT(XOR(prev_play_note_flag ,
 prev_prev_play_note_flag))
Current_and last_play_note_flags_equal = NOT(XOR(play_note_flag ,
 prev_play_note_flag))
Play_note_flag = CNOT(Play_note_flag , AND(Last_two_play_note_flags_equal,
 Current_and last_play_note_flags_equal))

ALEXIS KIRKE
PROGRAMMING GATE-BASED HARDWARE QUANTUM COMPUTERS FOR MUSIC

32

МУЗИКОЛОГИЈА / MUSICOLOGY 24-2018

So the last line flips the play_note_flag bit if it is the same as the last two flag
values. Looking now at a quantum version, the non-deterministic element is given,
without the need for pseudo-random number generation. It is truly random with
no underlying hidden process. What is more complex is implementing constraints
and memory. In GATEMEL the memory is implemented outside of the quantum
computer. The gates can be implemented using those already introduced. To convert
to a quantum system, the following needs to be observed. A NOT gate can be imple-
mented using a Pauli X gate. An XOR and a CNOT gate are equivalent. And that
randomness can be generated by creating a superposition of any input using a Hada-
mard and then observing it.

So the written version of GATEMEL has two input qubits labelled prev_play_
note_flag and prev_prev_play_note_flag, and three output qubits labeled pitch_
change_direction, pitch_change_size and play_note_flag. Note that the function
CNOT(a, AND(b,c)) is called a Toffoli gate. The equations are written in words as:

Pitch_change_direction = Hadamard(|0>)
Pitch_change_size = Hadamard(|0>)
Note_play_flag = Hadamard(|0>)
Note_play_flag = Toffoli(Note_play_flat, X(CNOT(prev_play_note_flag ,
 prev_prev_play_note_flag)), X(CNOT(play_note_flag , prev_play_note_flag)))

The three hadamard statements are essentially random number generators. prev_
play_flag is the whether the previous pitch was played or not, 1 for player, 0 for not.
prev_prev_play_flag is whether the note before that was played. Thus these equa-
tions have the effect that if the last two play note instructions were the same (both 0
or both 1) then the current note play flag is set to the opposite.

Simplifying these equations to make them more IBMQASM, and assuming the
previous two play_note flags have been input on q[2] and q[3] we have:

q[0] = H(q[0])
q[1] = H(q[1])
q[4] = H(q[4])
q[4] = Toffoli(q[4], X(CNOT(q[3],q[2])), X(CNOT(q[3],q[4])))

Making this circuit useable in hardware IBMQASM requires a number of adjus-
tments. In particular, the topology means that CNOTs can only be performed of the
form cx q[i], q[4]. In other words all CNOTs must have q[4] as their second para-
meter. In fact, CNOT(|q[i]q[j]>) can be calculated as a function of CNOT(|q[j]
q[i]>) using what is known as a change of basis. In essence the whole input is rotated
around a complex vector space, CNOTed, and then rotated back. The Hadamard
gate can be used to transform the state |xy> so that when it is put through a CNOT
gate, and then Hadamard transformed again, it behaves as though it were|yx> in the
CNOT gate. Hence the final hardware IBMQASM code for GATEMEL is in Table
2. It includes the Toffoli gate build, and the various change of bases:

33

include “qelib1.inc“;
qreg q[5];
creg c[5];
//move up or down?
//q[0] = 0 means move down
//q[0] = 1 means move up
//q[1] = 0 move one degree
//q[1] = 1 move two degrees
//randomly select q[0]q[1]
h q[0];
h q[1];
//q[4] = 1 means play note
//q[4] = 0 means don’t
//select q[4] randomly
h q[4];
//check if q[2] = q[4]
h q[2];
h q[4];
cx q[2],q[4];
h q[2];
h q[4];
//check if q[3] = q[4]
h q[4];
h q[3];
cx q[3],q[4];
h q[4];
h q[3];

//check rest or play flag not
the same for last two
notes (Toffoli/AND gate)
x q[2];
x q[3];h q[4];
cx q[2],q[4];
tdg q[4];
cx q[3],q[4];
t q[4];
cx q[2],q[4];
tdg q[4];
cx q[3],q[4];
t q[2];
t q[4];
h q[4];
cx q[2],q[4];
h q[2];
h q[4];
cx q[2],q[4];
h q[2];
h q[4];
cx q[2],q[4];
cx q[3],q[4];
t q[3];
tdg q[4];
cx q[3],q[4];
//end of Toffoli/AND

//switch the “move“ flag
//back to q[4] output
//for consistency
cx q[2],q[4];
h q[2];
h q[4];
cx q[2],q[4];
h q[2];
h q[4];
cx q[2],q[4];
//collapse the quantum
//bits to classical bits
measure q[4] -> c[4];
measure q[1] -> c[1];
measure q[0] -> c[0];

//output q[0]q[1] is two bit number
defining move up or down
//output q[4] is whether to play a note
this beat or not

Table 2. The final hardware IBMQASM code for GATEMEL

Comments have been added just for readability here, but they are not included in
IBMQASM1.1. The gate diagram version is shown in Figure 2.

Figure 2. Gate diagram for GATEMEL

ALEXIS KIRKE
PROGRAMMING GATE-BASED HARDWARE QUANTUM COMPUTERS FOR MUSIC

34

МУЗИКОЛОГИЈА / MUSICOLOGY 24-2018

qGEN Example

The D-Wave 2X processor will now be used to generate a harmony for a simple note
sequence generated by the ibmqx2. qHarmony is called at the start of each bar of a
GATEMEL tune. Figure 3 shows an example output. An audio version can be heard
on Soundcloud.4 The GATEMEL start note is middle C, and each beat is an eighth
note. So if GATEMEL says not to play a note for 2 beats after a note has been played,
then that last note played will go on for a dotted quarter. If GATEMEL says not to
play a note for 1 beat after a note has been played, then that last note will go on for a
quarter. Note that the half note in bar 1 of Figure 3 highlights the probabilistic nature
of quantum computation. For a half-note to appear means that a new note is not being
triggered for 3 beats in a row. This should be very low probability, as recall the circuit
is designed to stop this happening, but it does occur this once.

Figure 3. Example qGen output

4 https://soundcloud.com/alexiskirke/quantummelharm2

35

The quality of music produced by qGen is not particularly high. There are two main
reasons for this. The first is that only a 5 qubit and an 8 qubit system are used - to
simplfy this introduction to quantum programming (Kirke and Miranda 2017). For
example - this limits the harmonies from the D-Wave to the 8 white notes. Such
a constraint is rare in most mainstream composition. However, using more than 8
qubits on a D-Wave would have required much concentration on qubit connectivity
issues in the D-Wave, rather than the quantum-related issues. The connectivity of the
D-Wave 2X outside of 8 qubit segments is fairly complex.

The second reason – once again used for simplification purposes in an introduc-
tory paper – is that qGen takes no account of its previous harmonies and melodies
when generating its next ones. For example if a composer uses an Am/C chord to
harmonize a melody segment, then that choice of chord will affect the next chord.
Not so in qGen.

qGen only takes advantage of one aspect of QC: its non-deterministic nature
and ability to return multiple results. However the quantum part of the algorithm
is so simple that it does not require the potential speed-ups available from quantum
computers. The D-Wave 2X has over 1000 qubits available, and enters states of super-
position and entanglement during its calculations. Even the simple 8 qubit algorithm
above will have utilized these quantum states in coming to the results. In fact, despite
the debates about how quantum effects occur in the D-Wave, it has been shown that
entanglement does occur at least within the 8 qubit groups.

However a much more complex and constrained problem would be required to
utilize all advantages of QC. Constraint-based and spectral composition, together
with musical/sonic pattern matching algorithms are areas which may benefit from
QC, due to their potential computational complexity. In essence, any complex musical
problem that involves a database search, or can be fully or partially modelled as an
Ising system, could benefit from quantum computation.

List of References

Albash, Tameem, Vinci, Walter, Mishra, Anurag, Warburton, Paul A. and Lidar, Daniel A. (2015)
“Consistency tests of classical and quantum models for a quantum annealer.“ Physical Review A
91(4): 042314.

Anon. (2014) “Scientists ‘sonify’ LHC data to Chamber Music.“ ALICE Matters — A Large Ion Collider
Experiment, 30 October 2014, http://alicematters.web.cern.ch/?q=content/node/776

Bian, Zhengbing, Chudak, Fabian, Macready, Willliam G. and Rose, Geordie (2010) “The Ising model:
teaching an old problem new tricks.“ D-Wave Systems, 30 August 2010, https://www.dwavesys.com/
sites/default/files/weightedmaxsat_v2.pdf

Brody, James (2003) “Background Count“, for percussion and 2 channel electroacoustic. Background
Count. Electroacoustic Music by James Brody. CD Innova 600116680624, https://www.innova.mu/
albums/james-brody/background-count

Cádiz, Rodrigo F. and Ramos, Javier (2014) “Sound Synthesis of a Gaussian Quantum Particle in an
Infinite Square Well.“ Computer Music Journal 38(4): 53–67.

ALEXIS KIRKE
PROGRAMMING GATE-BASED HARDWARE QUANTUM COMPUTERS FOR MUSIC

36

МУЗИКОЛОГИЈА / MUSICOLOGY 24-2018

Coleman, Jaz (2003) Music of the Quantum. New York: Columbia University, http://musicofthequantum.
rutgers.edu/musicofthequantum.php

Culpan, Daniel (2015) “CERN’s ‘Cosmic Piano’ uses particle data to make music.“ Wired, 8 September
2015, http://www.wired.co.uk/article/cern-cosmic-piano

Glowacki, David, Tew, Philip, Mitchell, Thomas and McIntosh-Smith, Simon (2012) “Danceroom
Spectroscopy: Interactive quantum molecular dynamics accelerated on GPU architectures using
OpenCL.“ The fourth UK Many-Core developer conference (UKMAC 2012), Bristol, http://eprints.
uwe.ac.uk/18268/

Katzgraber, Helmut G. (2015) “Seeking Quantum Speedup Through Spin Glasses: Evidence of
Tunneling?“ American Physical Society Meeting Abstracts id. L53.005.

Kirke, Alexis, Miranda, Eduardo, Chiaramonte, Antonino, Troisi, Anna R., Matthias, John, Fry, Nicholas
and McCabe, Catherine (2013) “Cloud Chamber: A Performance with Real Time Two-Way
Interaction Between Subatomic Particles and Violinist.“ Leonardo Journal 46(1): 84–85.

Kirke, Alexis (2016) Superposition Symphony. Port Eliot Festival, 29 July 2016, https://porteliotfestival.
com/wp-content/uploads/2016/07/Port-Eliot-Programme.pdf

Kirke, Alexis and Miranda, Eduardo R. (2017) “Experiments in Sound and Music Quantum Computing.“
In: Eduardo Reck Miranda (ed.), Guide to Unconventional Computing for Music. Cham: Springer,
121–157.

Lucas, Andrew (2014) “Ising formulations of many NP problems.“ arXiv.org, Cornell University Library,
preprint https://arxiv.org/pdf/1302.5843.pdf

Malloy, Ian and Hollenbeck, Dennis (2016) “Inversions of New Hope.“ arXiv.org, Cornell University
Library, preprint https://arxiv.org/pdf/1608.04993.pdf

Neven, Hartmut (2016) “Quantum Annealing at Google: Recent Learnings and Next Steps.“ American
Physical Society (APS) Meeting Abstracts, March 2016, http://adsabs.harvard.edu/abs/2016APS..
MARF45001N.

O’ Flaherty, Eric (2009) “LHCsound: Sonification of the ATLAS data output.“ Science & Technology
Facilities Council — Small Awards Scheme, https://stfc.ukri.org/news/the-sounds-of-the-lhc/

Putz, Volkmar and Svozil, Karl (2017) “Quantum Music.“ Soft Computing 21(6): 1467–1471.

Shor, Peter W. (2006) “Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms
on a Quantum Computer.“ SIAM Journal of Computing 26(5): 1484–1509.

Sturm, Bob L. (2000) “Sonification of Particle Systems via de Broglie’s Hypothesis.“ In: Peter R. Cook
(ed.), Proceedings of the 6th International Conference on Auditory Display (ICAD2000), Atlanta,
GA, April 2–5, 2000. Atlanta: Georgia Institute of Technology / International Community for
Auditory Display, https://smartech.gatech.edu/bitstream/handle/1853/50683/Sturm2000.
pdf?sequence=1&isAllowed=y

Sturm, Bob L. (2001) “Composing for an Ensemble of Atoms: The Metamorphosis of Scientific
Experiment into Music.“ Organised Sound 6(2): 131–145.

Weimer, Heindrik (2010) “Listen to Quantum Computer Music.“ Quantenblog, http://www.
quantenblog.net/physics/quantum-computer-music.

37

Алексис Кирк

Програмирање квантних рачунара базираних на употреби логичких
кола за потребе рада са музиком

(Сажетак)

Досад су забележени значајни покушаји да се једначине квантне механике
користе за генерисање звука и да се озвуче симулирани квантни процеси. Али,
за нове облике рачунања који би се користили у компјутерској музици, мора се
употребити одговарајући хардвер. Ово се досад ретко дешавало са квантном
компјутерском музиком, најпре зато што такав хардвер није широко доступан.
Други разлог јесте околност да овакав хардвер захтева извесно познавање
теорије квантног рачунарства. Овим чланком померамо овај процес унапред
помоћу два хардверска квантна рачунарска система: IBMQASM v1.1 и
D-Wave 2X. Такође уводимо неке идеје из IBM-овог система заснованог
на логичким колима, на начин доступан рачунарски писменим читаоцима.
Ово је презентација првог хибридног квантног компјутерског алгоритма,
који укључује две хардверске машине. Иако ниједан од ових алгоритама
експлицитно не користи обећана квантна убрзања, они представљају виталан
први корак у увођењу квантног рачунарства у поље музике.

Чланак започињемо кратким прегледом квантног рачунарства и указујемо
како се оно може применити на подручју уметности. Следи истраживање
претходних пројеката у којима су коришћени стварни или симулирани
квантни процеси у музичким делима или извођењима. У следећем одељку се
говори о најпознатијој врсти квантних рачунара, заснованих на логичким
колима, и описује се хардвер једног од мањих квантних рачунара компаније
IBM. Следи кратак увод у теорију квантног рачунарства; ове идеје су потом
пројектоване на језик који користе IBM рачунари: IBMQASM.

Следећи одељак доноси кратак преглед друге врсте квантног рачунара који
се користи: D-Wave. Детаљнији описи мог алгоритма доступни су у другим
чланцима на које се позивам. На крају је описан qGen: IBM генерише
мелодију, а D-Wave је хармонизује. Фокус је на мелодијском алгоритму, пошто
је алгоритам D-Wave описан у поглављу из књиге на коју реферирам. Развијен
је “најједноставнији могући“ мелодијски алгоритам, уз који је приложен и
одговарајући пример.

Кључне речи: квантна компјутерска музика, алгоритми, D-Wave

ALEXIS KIRKE
PROGRAMMING GATE-BASED HARDWARE QUANTUM COMPUTERS FOR MUSIC

