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Membre de l’Académie

B E O G R A D 2 0 1 7



Publie et impimé par
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ON BORDERENERGETIC GRAPHS

IVAN GUTMAN
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A b s t r a c t. A graph G of order n is said to be borderenergetic if its energy is equal

to 2n− 2 and if G ≁= Kn. The first such graph was discovered in 2001, but their systematic

study started only in 2015. The main hitherto established results on borderenergetic graphs

are outlined, and a few new established. Borderenergetic graphs (of the same order) are

mutually equienergetic. The difference in their structure indicates which structural features

of a graph can vary, without affecting the value of its energy. In particular, it is shown that

this applies to the number of edges.
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1. Introduction

Let G be a simple graph of order n, possessing m edges. Let the eigenvalues

of G (i.e., the eigenvalues of the adjacency matrix of G) be λ1,λ2, . . . ,λn [5]. The

energy of the graph G is defined as

E = E(G) =
n
∑

i=1

|λi| .

This graph–spectrum–based invariant has been extensively studied. Details of its

mathematical theory can be found in [28] whereas details of its chemical applications

in [21].
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The upper bound

E ≤
√
2mn

was established by McClelland in the early 1970s [32]. In the same paper [32], an

approximate formula was proposed:

E ≈ a
√
2mn , a ≈ 0.9 (1.1)

which was eventually demonstrated to be highly accurate in the case of molecular

graphs [14, 22]. An additional corroboration of this formula was the analogous lower

bound

E ≥
√

16

27

√
2mn

that holds for certain molecular graphs, in particular, for hexagonal systems [12].

According to formula (1.1), the energy of a graph would be a monotonically

increasing function of the number m of edges. If this formula could be applied to all

graphs, then among graphs with a fixed number n of vertices, the complete graph Kn

would have the greatest energy, equal to E(Kn) = 2n− 2. Counterexamples for this

naive conjecture were soon discovered [4]. Somewhat later [38], the first systematic

construction of graphs with the property E(G) > E(Kn) were reported.

Graphs of order n with the property E(G) > 2n − 2 were named hyperenergetic

[15]. Numerous classes of hyperenergetic graphs have been recognized; for details

see the survey [18], and the recent paper [9]. The search for hyperenergetic graphs

became purposeless after Nikiforov proved in 2007 [33] that for almost all n-vertex

graphs

E =

(

4

3π
+ o(n)

)

n3/2

implying that almost all graphs are hyperenergetic.

The question that remained open was if there exist graphs of order n, other than

Kn, satisfying the equality

E(G) = 2n− 2 .

In 2015, such graphs were named borderenergetic [11]. It is understood that the

complete graph is not borderenergetic.

2. Existence and Properties of Borderenergetic Graphs

The first borderenergetic graph was discovered by Yaoping Hou and the present

author already in 2001 [24], but in that time it failed to attract any attention. This
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L (������)K3,3

Figure 1. The first borderenergetic graph, discovered in year 2001

borderenergetic graph is the line graph of the complete bipartite graph K3,3, depicted

in Fig. 1. It has 9 vertices and its spectrum is

Sp(L(K3,3) = {4, 1, 1, 1, 1,−2,−2,−2,−2} .

Therefore, E(L(K3,3)) = 16 = 2 · 9− 2 = E(K9).
The first systematic research of borderenergetic graphs is reported in the paper

[11], which was then continued in [7, 10, 25, 29, 30, 34]. By means of computer-

aided checking, the following was established.

Theorem 2.1. 1◦ There are no borderenergetic graphs of order n ≤ 6 [11].

2◦ There exists a borderenergetic graph G0 of order 7, depicted in Fig. 2. Its

spectrum is:

Sp(G0) = {5, 1,−1,−1,−1,−1,−2} .

This graph is unique [11].

3◦ For any n ≥ 7, there exist borderenergetic graphs of order n [11].

4◦ There are exactly 6 borderenergetic graphs of order 8 [11].

5◦ There are exactly 17 borderenergetic graphs of order 9 [11].

6◦ Finding the 10-vertex borderenergetic graphs was a less easy task. After some

mistakes [29], the exact value was determined to be 49 [34].

7◦ There are exactly 158 borderenergetic graphs of order 11. [34]. Of these,

157 are connected [10].

A graph is said to be integral if all its eigenvalues are integers [5]. The energy of

an integral graph is necessarily an integer. (As shown in [2], if E is integer, then it
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G0

Figure 2. The smallest borderenergetic graph, n = 7, E(G0) = 12

G1

Figure 3. One of the three distinct non-integral borderenergetic graphs of smallest

order, n = 8, E(G1) = 14

must be even.) Before the discovery of borderenergetic graphs, all known graphs with

integer energy were integral, and the following conjecture seemed to be plausible:

Conjecture 2.1. If E(G) is an integer, then the graph G is integral.

Conjecture 2.1 is false. Some borderenergetic graphs provide counterexamples

for it. A simple such example is the graph G1 of order 8, depicted in Fig. 3. Its

spectrum is

Sp(G1) =
{

3 +
√
6, 1, 3 −

√
6,−1,−1,−1,−2,−2

}

.

Two graphs Ga and Gb are said to be equienergetic if E(Ga) = E(Gb) [1, 3]. In

a trivial manner, cospectral graphs are equienergetic. However, there exist numerous
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pairs, triplets, and larger families of mutually non-cospectral graphs that are equiener-

getic [28]. Evidently, borderenergetic graphs of equal order are equienergetic. Thus,

the results stated in Theorem 2.1 point out large families of mutually equienergetic

graphs.

It is generally believed that the two main structural features of a graph that affect

the values of its energy are the number of vertices n and the number of edges m (for

details see [13, 16, 17] and the references quoted therein). This could be stated in the

form of the following:

Empirical rule 2.1. (a) If two graphs have equal number of vertices and equal

number of edges, then their energies do not differ significantly.

(b) If two graphs of the same order are equienergetic, then the number of their

edges do not differ significantly.

The fact is that Rule 2.1 was tested and verified on countless examples [14, 22,

32], but only for molecular graphs. On the other hand, molecular graphs possess a

relatively small number of edges, usually m ≤ 3

2
n. From the study of borderenergetic

graphs, it becomes evident that in the case of graphs with larger number of edges,

Rule 2.1 could be drastically violated, especially its part (b).

Indeed, the number of edges in families of borderenergetic graphs vary signifi-

cantly. For instance, the six borderenergetic graphs of order n = 8 have m-values

between 19 and 25. Among the 158 borderenergetic graphs of order n = 11, there

are graphs with m between 25 and 49. Moreover, m may assume any value in the

mentioned interval, except m = 42, 46, 48 [34].

Theorem 2.2. A borderenergetic graph of order n must possess at least 2n − 2
edges.

PROOF. We start with the Koolen–Moulton upper bound [26]:

E ≤
2m

n
+

√

√

√

√(n− 1)

[

2m−
(

2m

n

)2
]

.

In view of it, the value of m satisfying the equality

2m

n
+

√

√

√

√(n− 1)

[

2m−
(

2m

n

)2
]

= 2n− 2 (2.1)

such that m ≠ n(n− 1)/2, is a lower bound for the number of edges of a borderen-

ergetic graph. For n ≥ 2, (2.1) can be transformed into the quadratic equation

2m2 − (n− 1)(n + 4)m+ 2n(n− 1)2 = 0
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whose solutions are m = n(n − 1)/2 and m = 2(n − 1). Therefore, any borderen-

ergetic graph must satisfy m ≥ 2(n− 1).

Theorem 2.3. A bipartite borderenergetic graph of order n must possess at least

⌈m0⌉ edges where

m0 =
1

8

(

n2 + 6n− 8−
√

n4 − 20n3 + 84n2 − 128n + 64
)

. (2.2)

PROOF. We use an analogous reasoning as in the proof of Theorem 2.2, applying

it to the Koolen–Moulton upper bound for bipartite (n,m)-graphs [27]:

E ≤ 2

(

2m

n

)

+

√

√

√

√(n− 2)

[

2m− 2

(

2m

n

)2
]

.

It leads to the quadratic equation

4m2 − (n2 + 6n− 8)m+ 2n(n− 1)2 = 0

whose smaller solution is the expression (2.2).

Recall that for large values of n, m0 is asymptotically equal to 16

n (n− 1)2.

The bound m ≥ 2(n − 1) in Theorem 2.2 is not the best possible. However, as

seen from point 4 of the next Theorem 2.4, it is quite close to the optimal value.

Several general methods for constructing borderenergetic graphs have been ela-

borated [7, 11, 25]. Some of these are aimed at generating regular [7] or threshold

borderenergetic graphs [25]. The following results were established for borderener-

getic graphs with small maximal vertex degree ∆:

Theorem 2.4 ([30]). 1◦ There are no borderenergetic graphs with ∆ ≤ 3.

2◦ There are no borderenergetic graphs with ∆ = 4 of order greater than 21.

3◦ Borderenergetic graphs with ∆ = 4 are non-bipartite.

4◦ Borderenergetic graphs of order n with ∆ = 4 have either 2n or 2n−1 edges.

Corollary 2.1. If m = 2n, then the borderenergetic graphs with ∆ = 4 are

4-regular. If n = 2n − 1, then the borderenergetic graphs with ∆ = 4 are either 4-

regular with one edge deleted (i.e., with n−2 vertices of degree 4 and two vertices of

degree 3) or 4-regular with an additional vertex of degree 2 (i.e., with n− 1 vertices

of degree 4 and one vertex of degree 2).

Corollary 2.2. The number of borderenergetic graphs with ∆ = 4 is finite.
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It would be interesting to construct all borderenergetic graphs with ∆ = 4, or –

at least – to determine their number.

By means of an extensive computer search, the following was established.

Claim 2.1 ([10]). 1◦ There are no borderenergetic graphs of order n ≤ 8 and

n = 10, 11, 12, 13, 14, 16, 17 for which ∆ = 4.

2◦ There exist two borderenergetic graphs of order 9 and one of order 15 for

which ∆ = 4.

3◦ If there exist additional borderenergetic graphs with ∆ = 4, their order must

be between 18 and 21.

3. Extensions

The complete graph Kn is regular. Therefore, its Laplacian energy [23] coincides

with the ordinary graph energy, EL(Kn) = E(Kn) = 2n − 2. Bearing this in mind,

one may seek for L-borderenergetic graphs, namely graphs different from Kn, satis-

fying the condition EL(G) = 2n − 2. Several recent papers are devoted to this topic

[6, 8, 31, 35, 36, 37].

In addition to the ordinary graph energy E and the Laplacian energy EL, numer-

ous other “graph energies” EX have been considered in the last few years [19, 20].

Some of these “energies” have the property that for graphs with a fixed order n,

EX(Kn) is maximal. If this is not the case, then it would be possible to seek for

X-borderenergetic graphs. In the present author’s opinion, it is just a matter of time

before papers on X-borderenergetic graphs will start to appear in the mathematical

literature.
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