Institute of Technical Sciences of SASA

SYNTHESIS OF THE NANOSTRUCTURED YAP:Ce VIA SPRAY PYROLYSIS BY POLYMERIC PRECURSOR SOLUTION

${ }^{1}$ Institute of Techni Vesna Lojpur 1, Lidija Mancic ${ }^{1}$, Maria Eugenia Rabanal ${ }^{2}$, Olivera Milosevic
${ }^{2}$ University Carlos III of Madrid, Dept. of Material Science and Engineering and Chemical Engineering, Avd. Universidad 30, 28911 Leganes, Madrid, Spain

Abstract The ytrium aluminum system $\left(\mathrm{Y}_{2} \mathrm{O}_{3}-\mathrm{Al}_{2} \mathrm{O}_{3}\right)$ includes three compounds: yttrium aluminum garnet $\left(\mathrm{Y}_{3} \mathrm{Al}_{5} \mathrm{O}_{12}, \mathrm{YAG}\right)$, yttrium aluminum perovskite $\left(\mathrm{YAlO}_{3}\right.$, YAP) and yttrium aluminum monoclinic ($\mathrm{Y}_{4} \mathrm{Al}_{2} \mathrm{O}_{9}$, YAM). Doped with Ce YAP and YAG phases are well known optical materials used as a fast scintillators for synchrotron X-ray experiments. Synthesizing single YAP phase is difficult even through wet chemical processing because of the possible allocations of other phases Here, we tried to synthesize fine powders of YAlO_{3} : Ce^{3+} ($5 \mathrm{at} \%$) via spray pyrolysis of polymeric precursor obtained by dissolving the corresponding nitrates in ethylenediaminetetraacetic acid (EDTA) and ethylene glycol (EG) solution. Aerosol droplets are decomposed at $550{ }^{\circ} \mathrm{C}$ in argon atmosphere. In order to get a pure YAP:Ce phase as-prepared particles were additionally thermally treated in the range from $900^{\circ} \mathrm{C}$ to $1100{ }^{\circ} \mathrm{C}$ for 12 hours in the air atmosphere.

XRD analyses imply changeable phase compositions in thermally treated powders. The presence of a hexagonal YAP phase ($\mathrm{P} 63 / \mathrm{mmc}$) is observed at $900^{\circ} \mathrm{C}$ in $\sim 70 \mathrm{wt} \%$, while its orthorhombic modification is obtained at higher temperatures.
With the rise of temperature, the content of the YAG phase increases from ~ 10 to $50 \mathrm{wt} \%$.
In all samplesYAM and cerianite phase are also present as minority ones.

Example of the structural refinement is presented for the powder thermally treated at $1100^{\circ} \mathrm{C}$.

SEM/EDS analyses of YAP:Ce ${ }^{3+}$ powders obtained via spray pyrolysis - thermally treated at: 900 (a), 1000 (b) and $1100{ }^{\circ} \mathrm{C}$ (c)

Microstructural parameters of determined phases (obtained through Rietveld refinement using Topas Academic software)

	$900^{\circ} \mathrm{C}$, Gof = 1.59	$1000^{\circ} \mathrm{C}$, Gof $=1.14$	$1100^{\circ} \mathrm{C}, \mathrm{Gof}=1.12$
$\begin{aligned} & \text { YAP hexagonal } \\ & \text { [74-1334] } \\ & \text { S.G. P63/mmc } \end{aligned}$	$\begin{aligned} & \text { C.S. }(n \mathrm{~nm})=35(4) \\ & \mathrm{a}(\AA)=3.6(7) \\ & \mathrm{c}(\AA)=10.5(0) \end{aligned}$		
YAP orthorhombic [89-7947] S.G. Pbnm		$\begin{aligned} & \text { C.S. }(\mathrm{nm})=269(0) \\ & \mathrm{a}(\AA)=5.1(8) \\ & \mathrm{b}(\AA)=5.3(2) \\ & \mathrm{c}(\AA)=7.3(7) \end{aligned}$	$\begin{aligned} & \text { C.S. }(\mathrm{nm})=215(1) \\ & \mathrm{a}(\AA)=5.1(8) \\ & \mathrm{b}(\AA)=5.3(2) \\ & \mathrm{c}(\AA)=7.3(7) \end{aligned}$
$\begin{aligned} & \hline \text { YAG cubic } \\ & \text { [33-004] } \\ & \text { S.G. Ia-3d } \end{aligned}$	$\begin{aligned} & \text { C.S. }(n m)=56(0) \\ & \mathrm{a}(\AA)=12.0(3) \end{aligned}$	$\begin{aligned} & \text { C.S. }(\mathrm{nm})=84(9) \\ & \mathrm{a}(\AA)=12.0(4) \end{aligned}$	$\begin{aligned} & \text { C.S. }(\mathrm{nm})=84(9) \\ & \mathrm{a}(\AA)=12.0(3) \end{aligned}$
YAM Monoclinic [34-0368] S.G. P21/a	$\begin{aligned} & \text { C.S. }(\mathrm{nm})=19(7) \\ & \mathrm{a}(\AA)=7.3(5) \\ & \mathrm{b}(\AA)=10.5(9) \\ & \mathrm{c}(\AA)=11.0(4) \end{aligned}$	$\begin{aligned} & \text { C.S. }(\mathrm{nm})=76(4) \\ & \mathrm{a}(\AA)=7.3(8) \\ & \mathrm{b}(\AA)=10.4(5) \\ & \mathrm{c}(\AA)=11.1(5) \end{aligned}$	$\begin{aligned} & \text { C.S. }(\mathrm{nm})=72(6) \\ & \mathrm{a}(\AA)=7.3(7) \\ & \mathrm{b}(\AA)=10.4(4) \\ & \mathrm{c}(\AA)=11.1(3) \end{aligned}$
Cerianite cubic [81-0792] S.G. Fm-3m	$\begin{aligned} & \text { C.S. }(\mathrm{nm})=18(1) \\ & \mathrm{a}(\AA)=5.49(9) \end{aligned}$	$\begin{aligned} & \text { C.S. }(\mathrm{nm})=18(9) \\ & \mathrm{a}(\AA)=5.4(0) \end{aligned}$	$\begin{aligned} & \text { C.S. }(\mathrm{nm})=29(1) \\ & \mathrm{a}(\AA)=5.4(0) \end{aligned}$

Highly spherical particle morphology is revealed with the SEM analyses. Particles are agglomeration-free and have high porosity. Volume precipitation is predominant. Temperature increase leads to the separation of the primary particles. Size of the secondary particles ranged from 200-800 nm; the mean particle size is around 350 nm . EDS analysis confirms required cations ratio (Y:Al ~1:1).

Photoluminescence emission spectra indicates wide greenyellow emission band with the maximum at 570 nm . This feature can be tentatively ascribed to the ${ }^{2} \mathrm{D}-{ }^{2} \mathrm{~F}_{5 / 2-7 / 2}$ electron transition of Ce^{3+} ions in the YAG matrix.

Conclusion Highly spherical, submicronic in size and agglomerated-free particles were obtained via spray pyrolysis method using polymeric precursor solution. Independently of the additional thermal treatment applied multiphase composition is confirmed in all samples. Target hexagonal YAP phase ($70 \mathrm{wt} \%$) is observed after thermal treatment at $900^{\circ} \mathrm{C}(12 \mathrm{~h})$, while additional rise of the temperature stabilizes the YAG phase generation and Ce^{3+} accommodation in it. Further synthesis optimization steps will be performed towards stabilization of kinetically favored pure YAP phase formation.

Acknowledgements: This research is financially supported through the Project s No. 172035 and 45020, Ministry of Science and Education - Republic of Serbia as well as the University Carlos III, Madrid, Spain-Santander Banc Chairs of Excellence program.

