
Y U I S S N 0005-1144
A T K A A F 26 (3— 4), 145— 152 (1985)

M. Vukobratović, B. Karan, N. Kirćanski, D. Stokić

A Software System for Teaching and Commanding The Industrial
Robots

U D K 681.396:65.011.5

I F A C I A 2.8.32;5.9 Conference paper from
symposium Biokibernetika 84

In this paper the design features of a software system for programming industrial robots with dynamic
control are described. T h e software is intended for implementation on a microprocessor-based system and
should enable the user to control a robot via specialized programming language R L . T h e paper contains descrip­
tion of the R L language and description of the system structure. M a i n characteristics and advantages of the
system as well as questions concerning its realization on existing microprocessors are also discussed.

Programski sistem za učenje i upravljanje industrijskih robota. U radu su opisane projektne
karakteristike programskog sistema za programiranje industrijskih robota sa dinamičk i m upravljanjem. Pro-
gramska podrška predviđ ena je za implementaciju na sistemu zasnovanom na mikroprocesorskoj tehnologiji i
treba da o m o g u ći korisniku upravljanje robotom preko specijalizovanog programskog jezika R L . R a d sadrži opis
jezika R L i opis strukture sistema. T a k o đ e su razmotrene glavne karakteristike i prednosti sistema kao i pitanja
vezana za njegovu implementaciju na postojeći m mikroprocesorima.

Key-words: industrial robots, robot controllers, robot programming languages.
Ključne reči: industrijski roboti, robotski kontroleri, robotski programski jezici.

1. I N T R O D U C T I O N

A n u m b e r of systems for programming the indus­
trial robots is developed in the last decade. Their
capability of programming robots in external coor­
dinates and incorporated advantages of general
purpose programming languages were important
factors for the rapid increase of robotized industry
sites.

M o s t of the existing systems are intended for
use with a particular robot; for example, the most
popular system V A L [1] can be used only for con­
trol of P U M A family robots, the A M L [2] for I B M
System/1 robots etc. Recently, so me systems that
can be applied to various types of robots were de­
veloped and already announced on the market.
However, their adjustment to a particular type of
robot is still too complex and tedious job to be effi­
ciently accomplished by a customer. Besides, they
usually do not perform compensation of dynamic
effects, so that good tracking of fast trajectories cannot
be achieved. For these reasons, the development
of a n e w general purpose controller U C S - 1 was
c o m m e n c e d in the Mihailo Pupin Institute, Bel­
grade [3]. This paper describes the main design
features of the software support of the controller.

2. DE SIG N OBJECTIVES

T h e system is designed to meet two ma in advan­
tages over existing controllers: dynamic control

ensuring tracking of fast trajectories and easy
maintenance and adjustment the system to nonre-
dundant robots of arbitrary type with up to six
degrees of freedom.

T h e specific goals having in m i n d during the
design of the software were:

— reduction of the run time computation required
for calculation of quantities related to the robot
dynamics; in order to meet this goal, which has the
principal importance in implementation of the
system on existing microcomputers, the use of
analytical models is adopted;

— hardware transportability, i. e. a possibility of
adapting the system by the costumer to a particular
robot and a particular application without the need
of intensive training the user; for this purpose, an
interactive procedure for imposing the parameters
necessary for the automatic creation of an analytical
model and the selection of control algorithm is de­
veloped;

— possibility of adapting the robot operation to
the robot environment, especially of synchronizing the
robot with the external hardware; this condition is
essential for the applicability of the robot in most
factory sites; in order to achieve this goal, a set of
routines for processing input and output signals
and for controlling the order of operation are designed;
— possibility of implementing the system on a
unexpensive computer system and possibility of ope­

A U T O M A T I K A 26 (1985) 3— 4, 145— 152 145

A Software System for Teaching . . . M. Vukobratović, B. Karan, N. Kirćanski, D. Stokić

rating the system without utilizing mass memories,
so that the probability of the system faults in factory
conditions is decreased;

— reduction of the h u m a n effort necessary for
programming the robot task; to this end, a specia­
lized programming language R L is designed; the
language supports programming the robot in exter­
nal coordinates, enables to utilize variables of various
types, control structures and user-written subroutines.
— robustness of the system, i. e. protection of the
system integrity from an unautorized use and from
accidental programming errors.

In the following section, a short description of the
language R L is presented.

3. T H E R O B O T P R O G R A M M I N I N G L A N G U A G E
O V E R V I E W

O n e of ma in objectives stated in design of m a n y
robot programming languages was simplicity of
use, even for novice programmers unfamiliar with
computers and basic programming concepts. W e
adopted somewhere different approach: our speci­
fic goal was to enable the field engineer, having so me
experience in programming, to exploit as m u c h
as possible from available robot without necessity to
learn a n e w programming language. For this reason
w e decided to use a P A S C A L - l i k e syntax, supposing
that the P A S C A L is well-known to a majority of
system analysts, control and mechanical engineers
which are to be the main designers of automated
manufactory sites and the ma in class of users of
programming tools in industrial robotics. Besides,
the top-down approach in writing programs that is
encouraged in P A S C A L and clear structure of
P A S C A L programs were also reasons for selecting
it as a basis for the R L language.

During the specification of the R L language, w e
started from a view that the language should facili­
tate all ma in phases of robot programming and exploi­
tation; a m o n g others are:

— definition of the robot task;
— writing a robot program which should describe

not only the robot behaviour during performing the
task, but which also should describe procedures for
robot teaching, testing, tuning etc.;

— teaching the robot, i. e. memorizing individual
positions and orientations of the robot effector
during performing the task, as well as computation
of positions, orientations and dimensions of working
objects;

— testing the robot program, including eventual
reteaching the positions;
— adjusting the controller parameters in order to
meet particular requirements connected to the
manipulator mechanical structure and the task to
be performed;

— exploitation, which can also include necessity
for an occasional reteaching particular positions and
orientations and adjusting the controller parameters.

T h e definition of the robot task can be done either
in an ad-hoc manner, either using the robot language
itself; w e decided to encourage the second one,
believing that it can speed u p the process of writing
robot programs and that it can result in mo r e readable
programs and therefore programs that are easier to
debug, test, tune and expand.

T h e program entities corresponding to particular
phases stated, especially to the phases of teaching
and performing the task, can be viewed as separate
program tasks surrounding a c o m m o n data base.
T h e data base should contain all data that are to
be permanently memorized (end effector trajectory,
position and orientation of working objects etc.).
Such data base is implicitly included in all systems
for programming the robots; however, w e were
standing in position that the programming errors
checking and the robot programs maintenance can
be done m u c h easier if the base were declared expli-
citly by the programmer and if all the tasks were
described in one programming unit which w e call
package. T h e general structure of the robot program
package is:

P A C K A G E name;
B A S E declaration-of-the-data-base;
description-of-the-initialization-part;

T A S K name-1;
description-of-the-task-name-1;

T A S K name-2;
description-of-the-task-name-2;

*
*

*

T A S K name-n;
description-of-the-task-name-n .

A s it can be seen, the package consists of the data
base declaration, description of the initialization part
and description of zero or m o r e tasks. Every task
can be considered as a user-written extension of
system-supplied routines provided for assignment of
values to program variables, communication between
the user and the system, robot motion, gripper ope­
ration, synchronization with external equipment and
setting the system parameters.

T h e language supports Boolean, integer, real,
character string, vector and body data types, as
well as arrays. Boolean data types can have values
from the set (T R U E , F A L S E } . T h e range of values
for integer and real data types is implementation-
-dependent; on the microprocessor Intel 8086
integers can be in the range — 32768 to + 32767,
while the real data types can have absolute values
in the range 1.0 E — 70 to 1.0 E + 70 including zero,
with approximately seven significant decimal digits.
T h e character string is a sequence of zero or m o r e
(up to 255) printable A S C I I characters T h e vector
is defined as an ordered string of three real components
(x, y, z) representing its coordinates in the referent

146 A U T O M A T I K A 26 (1985) 3— 4, 145— 152

M. Vukobratović, B. Karan, N. Kirćanski, D. Stokić A Software System for Teaching . . .

coordinate frame, while the body is defined as an
ordered string (x, y, z, ϕ, θ , ψ) of six real components
representing Euler coordinates of the frame connected
to the body with respect to the referent frame.

Data supported by R L can be either constants or
variables. Variables are to be referenced via identi­
fiers which can be constructed from an arbitrary
string of alphanumeric characters including the
underscore character »— « and starting with a letter
Like in P A S C A L , all identifiers used as variables
or n a m e d constants must be explicitly declared.
For example;

C O N S T M E S S A G E = » S U C C E S S « ;
A P P = (0.0, 0.0, 20.0, 0.0, 0.0, 0.0);

V A R T R A N S L : V E C T O R ;
F A U L T : B O O L E A N ;
P, P I C K , P L A C E , PIN, B L O C K :

B O D Y ;
H O L E : A R R A Y [1 .. 8] O F B O D Y ;

Assignment of a value to a variable is to be achieved
using the operator of assignment » : = «. Assignments
can be also performed by the operator of the system
via c o m m a n d A C C E P T :

A C C E P T variable

A special c o m m a n d is provided for assignment
of values to body-type variables:

L E A R N object

Values corresponding to the manipulator tip
position and orientation after an intervention of
the operator are to be assigned to components of the
body-type variable object as the effect of the execu­
tion of the L E A R N co mm an d.

Individual components of vectors and bodies can
be referenced using keywords X, Y, Z, P H I , T H E T A ,
P S I and P O S . P O S is defined as an ordered string
(x, y, z) representing the position of the origin of
the frame connected to the body with respect to the
referent frame. For example:

(* set x-component of T R A N S L to 20 m m *)
T R A N S L . X : = 20.0;
(* translate B L O C K by T R A N S L *)
B L O C K . P O S : = B L O C K . P O S + T R A N S L ;

A set of built-in library procedures is provided
for computation of Boolean, integer and real expres­
sions. T h e language incorporates Boolean (N O T ,
A N D , OR), relational (— , < , > , < = , > = , < >)
and arithmetic operators (+, — , *, /) for scalar ope­
rations. Operations with vectors can be achieved
using vector addition and subctraction operators
(+, —) and the operator for multiplication of vector
by scalar (*).

Relationships between bodies can be expressed
using the operator »*« and the built-in function IN V.
T h e operator »*« moves the referent coordinate
frame for the second argument to the position and
the orientation represented by the first argument;
the function I N V returns the position and the orien­

tation of the referent frame with respect to the
argument of IN V. For an example, if P represents
the position and the orientation of the robot gripper
grasping the pin, and P I C K represents the position
and the orientation of the pin bottom, the grasping
position and orientation with respect to the pin bot­
t o m can be computed as:

P I N : = I N V (P IC K) * P

A s in other programming languages, operator pre­
cedence can be overriden using parentheses.

Values of variables, constants and expressions
can be displayed on the user terminal by using the
c o m m a n d :

D I S P L A Y expr- 1, expr- 2, ..., expr- n
T h e most important statement in the language

is the statement for specifying the robot motion.
T h e motion statement of the form:

M O V E object T O body-expression
cause the coordinated motion of robot joints until

the object connected to the robot effector is aligned
with the position and the orientation represented
by the body-expression. T h e object specification can
be omitted, in which case the execution of the M O V E
statement results in alignment of the robot effector
with the body-expression. For example, if the
E F F E C T O R were the body-type variable repre­
senting the robot effector position and orientation
with respect to the referent frame, the execution of:

M O V E P I N T O P L A C E * B L O C K * H O L E [I]
results in a coordinated motion until the following

is satisfied:

E F F E C T O R = P L A C E * B L O C K * H O L E [I] *
* I N V (P I N)

Synchronization with the external equipment such
as conveyors, feeders, sensory devices etc., is to
be achieved using 32 input and 32 output channels,
via attached variables. A variable is attached to a
channel using the A T T A C H statement of the form:

A T T A C H identifier: type T O channel n u m b e r

where the identifier represents the scalar variable to
be attached, type can be Boolean or integer, channel
represents the channel type (I N P U T or O U T P U T)
and the n u m b e r is a positive integer in the range
1 to 32. Such explicit attachment is included in the
language in order to provide the user a flexibility
of using input and output signals with different
meanings. O n the other side, it provides the language
translator with additional informations necessary for
error-checking (for example, assignment of values
to variables attached to input channels is disabled).

Variables attached to input channels behave as
read-only variables and they can be referenced in any
place of the program where the occurence of the
value of the same type is allowed. Output signals
can be generated as a result of specifying assigning
values to the variables attached to output channels.
Also, explicit waiting for an external event is possible
using the W A I T c o m m a n d :

A U T O M A T I K A 26 (1985) 3— 4, 145— 152 147

A Software System for Teaching . . . M. Vukobratović, B. Karan, N. Kirćanski, D. Stokić

W A I I wait-clause
where the wait-clause is any logical expression
involving at least one variable attached to an input
channel. A n example of using attached variables
follows:

A T T A C H L E V E L : I N T E G E R T O I N P U T 2;
D O N E : B O O L E A N T O O U T P U T 10;

.

.

.

W A I T L E V E L < 100;
.
.
.

D O N E : = T R U E ;

T h e specification of the motion c o m m a n d can
include a n u m b e r of control parameters and can also
include a testing of variables attached to input
channels. T h e general form of the M O V E c o m m a n d is:

N O V E object T O body-expression
V I A expr- 1, expr- 2, ..., expr- n
D E P A R T depart-expr
A P P R O appro— expr
W I T H control— 1, control— 2, ..., control— m
U N T I L until-clause

In this form the expressions expr— 1, expr— 2, ...
..., expr— n return positions and orientations of
intermediate points that should be passed by the
object without stopping the robot. Expressions
depart-expr and appro-expr define the object rela­
tive positions and orientations during the motion
with respect to its starting and ending positions and
orientations where the velocity of the robot tip
should stop increasing to or start decreasing from
its m a x i m u m level. If S T A R T I N G were the body-
-type variable representing the starting position
and orientation of the robot tip, the following rela­
tions will hold during the execution of the motion
c o m m a n d :

E F F E C T O R = S T A R T I N G
E F F E C T O R = S T A R T I N G * depart-expr *
* I N V (object)

E F F E C T O R = expr— 1 * INV(object)
E F F E C T O R = expr- 2 * INV(object)
.
.
.

E F F E C T O R = expr— n * INV(object)
E F F E C T O R = bo dy— expression * appro—

— expr * INV(object)
E F F E C T O R = body— expression * I N V (object)

Optional clause W I T H enables the user to control
the m o d e of movement. Controls control— 1,
control— 2, ..., control— n have the form:

keyword = value

where the keyword specifies a control parameter
(S P E E D , M A X T I M E , P A S S M O D E , T O L E R A N ­

CE, E X E C M O D E etc.) and the value is a keyword,
an integer or a floating point value of the parameter.
For example:

M O V E P I N T O P L A C E W I T H P A S S M O D E =
= Joint, M A X T I M E = 3.0;

specifies that the motion is to be performed with
linear change of robot point coordinates (default
mode, other alternatives are S T R I G H T , with
linear change of Euler coordinates, and P A R A B O L I C ,
with polynomial interpolation) and in time less than
or equal 3 seconds.

Optional clause U N T I L specifies a logical expres­
sion until-clause involving variables attached to the
input channels; the expression is evaluated during
the motion and the motion is to be stopped w h e n
the value of the until-clause becomes true.

Another w a y to specify the m o v e m e n t is by spe­
cifying displacements in the robot joint coordinates:

D R I V E n u m b e r — 1 B Y displacement— 1
n u m b e r — 2 B Y displacement— 2

n u m b e r — n B Y displacement— n
U N T I L unitl— clause

where the integers n u m b e r — 1, n u m b e r — 2, ...,
..., n u m b e r — n are the indices of the robot joints,
and the real expressions displacement— 1, displa-
cemnet— 2, ..., displacement— n corresponding dis­
placements; Optional U N T I L clause is the same
as in the M O V E co mm an d.

T w o c o m m a n d s are provided for the gripper
operation:

O P E N U N T I L until-clause
C L O S E U N T I L until-clause

the optional suffix U N T I L until-clause includes
the expression until-clause which has the same meaning
as in M O V E and D R I V E commands. T h e opera­
tion of other effectors (as in painting, etc.) can be
requested by assigning values to variables attached
to corresponding output channels.

Control parameters c o m m o n to a sequence of
M O V E c o m m a n d s can also be set via c o m m a n d :

S E T control— 1, control— 2 ..., control— n
where list of controls has the same meaning as in the
M O V E co mm an d.

T h e order of execution of c o m m a n d s (i. e. assign­
ment, wait, input/output, motion specification, grip­
per operation and parameter setting) can be control­
led by usual B E G I N ... E N D , IF ... T H E N ...
... E L S E , W H I L E ... D O and R E P E A T ... U N T I L
constructs.

C o m m a n d s can be g r o u p e d in procedure or func­
tion subroutines which can be freely used as user-
-written c o m m a n d s or parts of expressions; their
use is restricted to the packages in which they are
declared and it is disabled to request execution of
subroutines directly from the user terminal. T h e

148 A U T O M A T I K A 26 (1985) 3— 4, 145— 152

M. Vukobratović, B. Karan, N. Kirćanski, D. Stokić A Software System for Teaching . . .

scope of variables and n a m e d constants are sub­
routines or tasks in which they are declared. V a ­
riables declared in the initialization part of the
package, base variables and variables attached to
channels are global to the package. During execution
of the package it is disabled to change the values of
variables by directly entering the R L c o m m a n d s
from the user terminal. T h e only exception are the
variables explicitly declared by the programmer as
public; for example:

B A S E P I C K : P U B L I C B O D Y ;

4. C O N T R O L SYNTHESIS

T h e execution of motion c o m m a n d s involves
computation of the robot trajectory in the space of
joint coordinates (kinematic model), computation of
quantities necessary for compensation of the robot
dynamics (dynamic model) and computation of out­
put signals for the actuators in the robot joints
(control synthesis). In order to reduce the n u m b e r
of floating point operations in the models, an expert
program is developed by Vukobratovic and Kircanski
[4] for the automatic generation of the models in
analytical form. T h e operation of the program is
controlled b y the data on me ch an is m parameters,
actuators and tolerances imposed by the user.

T h e computation of the dynamic model for so me
types of manipulator structures m a y be time consu­
m i n g even with the use of analytical models. For
this reason the effects of selecting particular control
laws were carefully studied and the following con­
trol structure was adopted [3]:

— the local control is synthesized for each robot
joint, using the models of particular actuators and
neglecting the coupling a m o n g the joints;

— the global control necessary for satisfactory
tracking of fast trajectories is synthesized as a function
of the driving torque.

T h e driving torques are nonlinear functions of
angles, velocities and accelerations of all joints of
the manipulator and the computation of the torques
using the complete dynamic model is vary complex.
However, it has been sh o w n that it is not necessary
to use the complete m o d e l : as an example, according
to investigations by Vukobratovic and Stokic [5],
Coriolis and centrifugal forces can be neglected in
most cases without loosing the robot performance.
Thus, s o me dynamic effects can be neglected and
the computation therefore reduced.

A n example of the computational complexity is
sh ow n in Figure 1. T h e figure displays the n u m b e r
of floating point operations that is to be performed
for the dynamic control synthesis with various appro­
ximative dynamic analytical models and for the
following manipulator structures:

C L — cylindrical, 3 d. o. f. (R T T)
A R — arthropoid, 3 d. o. f. (R R R)
A N — anthropomorphic, 3 d. o. f. (R R R)

C L - A N cylindrical-anthropomorphic, 6 d. o. f.
(R T T R R R)

S A R - A N — semiarthropoid-anthropomorphic,
6 d. o. f. (R R T R R R)

T h e selection of a particular model as well as the
selection of period of sampling input data on point
angles and velocities is included in the previously
mentioned procedure for generation models for
controlling the robot motion. In this manner, a sa­
tisfactory adjusting the system to the particular appli­
cation can be achieved.

Figure 1. N u m b e r of floating point operations in decentralized
control structures

5. S O F T W A R E OR G A N I Z A T I O N

T h e software is designed as a multiprocessing
system consisting of a set of interconnected modules
(Figure 2.). T h e central part of the system is denoted
as monitor and its main function is the allocation
of processor time to individual processes such as
accepting the user c o m m a n d s and interpreting R L
packages; the operation of the monitor is controlled
by the signals generated from previously activated
processes.

T h e user of the system can select one of the system
programs provided for initial system generation,
creating or editing R L packages, cassette drive ope­
ration and execution of R L c o m m a n d s via terminal
keyboard.

T h e program for initial generation of the system
produces analytical models of the robot kinematics
and dynamics, produces models of the robot actu­
ators and calculates the digital servosystem para­
meters. T h e program generates the models in machine-
-readable form and is therefore implementation
dependent. It is designed as an interactive program
which enables the user to impose mechanical parame­
ters of the robot and actuator parameters and to
specify tolerances serving as a basis for producing
a code for computation of the digital servosystem

A U T O M A T I K A 26 (1985) 3— 4, 145— 152 149

A Software System for Teaching . . . M. Vukobratović, B. Karan, N. Kirćanski, D. Stokić

video
display

segment
display

external equipment

Figure 2. Organization of the software

robot

gains. T h e parameters and the models can be easily
changed and adjusted to particular applications
during the exploitation of the robot; however, the
program for initial system generation is not neces­
sary during the normal operation of the system.

T h e creation and editing of R L packages is sup­
ported by the specialized line editor which also
performs partial syntax error checking during the
editing. After completion of editing, the control
is automatically transferred to the R L translator. It
translates the source R L program into Polish form,
produces the symbol table (comprising identifiers
denoting tasks entry points, procedures, functions,
variables and n a m e d constants), and allocates a
space for global variables.

T h e activation of a previously translated package
can be requested by the user by simply entering
the n a m e of the package; after the initialization part
of the package is executed, particular tasks can be
activated. T h e execution of any task can be always
stopped by the user and later continued. Also, the
execution of any acceptable R L c o m m a n d can be
requested from the terminal keyboard; only R L
c o m m a n d s not involving identifiers are acceptable
before the initialization of the package is done. A n
alternative w a y for controlling the system operation
is via portable manual control unit: c o m m a n d s from
the manual control unit are to be imposed via its
functional keys and are a subset of R L commands.

There is no need to use a mass m e m o r y during
the normal operation of the system. T h e module
denoted as file manager is included in the system
in order to enable the user to save and later reload
previously written R L packages. T h e file manager
supports formatting cassettes, saving, loading and
deleting packages as well as displaying a list of
packages saved on a cassette.

T h e operation of the R L interpreter is controlled
by the internal code generated by the translator.
T h e interpreter performs calculation of R L expres­
sions, allocation of core m e m o r y to local R L vari­
ables, assigns values to the variables and prepares
data necessary for realization of the robot motion.
T h e preparation comprises setting the motion con­
trol parameters and (for the M O V E c o m m a n d)
calculation of Euler coordinates for the robot tip
position and orientation with respect to its base
that are to be reached in the next execution step.
This preparation also includes calculation of constant
parts of expressions used in the U N T I L clause of
M O V E , D R I V E , O P E N and C L O S E c o m m a n d s
(i. e. computation of values that do not depend on
input signals from external hardware).

T h e operation of the kinematic module and the
module for monitoring signals from the input chan­
nels are under control of the interpreter. T h e
kinematic module realizes on line trajectory synthe­
sis in the space of the robot joint coordinates until

150 A U T O M A T I K A 26 (1985) 3— 4, 145— 152

M. Vukobratović, B. Karan, N. Kirćanski, D. Stokić A Software System for Teaching . . .

the desired point is reached or until the end-of-
-motion condition tested by the module for m o n i ­
toring external signals becomes true. T h e operation
of the digital servo system is explained in the pre­
ceding section: this module generates signals for the
robot actuator amplifiers on the basis of desired
joint coordinates computed b y the kinematic module,
attained angles/positions of the robot joints supplied
from potentiometers, and current velocities in the
joints supplied from tachogenerators.

6. CONCLUSION

T h e ma in problem in the design of the system was
to ensure on line computation of trajectories in the
robot joint coordinates and dynamic digital control,
as well as to ensure efficient programming without a
necessity of use an expensive and complex processors.
T h e solution is quite acceptable from the stand­
point of the equipment complexity and price. It
enables to achieve good performance and to m a k e
the system quite independent from the robot
structure.

R E F E R E N C E S

[1] Unimation Inc., User’s Guide to VAL. Version 12,
Danbury, Unimation Inc., 1980.

[2] Taylor R. H., S u m m e r s P. D., M e y e r J. M., AM L: A
Manufacturing Language. Robotic Ressearch, Vol. 1,
N o 3, pp. 19— 41, 1982.

[3] Vukobratovic M., Kircanski N., Stokic D., Kircanski M.,
Karan B., General Purpose Controller for Industrial
Manipulators. Proc. of the Second Yugoslav-Soviet
S y m p o s i u m on Applied Robotics, pp 1— 15, Belgrade,
Mihailo Pupin Institute, 1984.

[4] Vukobratovic M., Kircanski N., Computer Assisted
Generation of Robot Dynamic Models in Analyti­
cal Form, Acta Applicandae Mathematicae, N o 2, pp.
49— 70, 1985.

[5] Vukobratovic M., Stokic D., Control of Manipulation
Robots Berlin, Springer-Verlag, 1982.

A U T H O R ’S ADDRESS:

M. Vukobratović, B. Karan, N. Kirćanski, D. Stokić
Mihailo Pupin Institute
Robotics Department
Volgina 15
11000 Belgrade
Yugoslavia

Received: 1985-3-20

A U T O M A T I K A 26 (1985) 3— 4, 145— 152 151

