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Abstract: The purpose of this paper was to choose an appropriate information dissimilarity measure
for hierarchical clustering of daily streamflow discharge data, from twelve gauging stations on the
Brazos River in Texas (USA), for the period 1989–2016. For that purpose, we selected and compared
the average-linkage clustering hierarchical algorithm based on the compression-based dissimilarity
measure (NCD), permutation distribution dissimilarity measure (PDDM), and Kolmogorov distance
(KD). The algorithm was also compared with K-means clustering based on Kolmogorov complexity
(KC), the highest value of Kolmogorov complexity spectrum (KCM), and the largest Lyapunov
exponent (LLE). Using a dissimilarity matrix based on NCD, PDDM, and KD for daily streamflow,
the agglomerative average-linkage hierarchical algorithm was applied. The key findings of this study
are that: (i) The KD clustering algorithm is the most suitable among others; (ii) ANOVA analysis
shows that there exist highly significant differences between mean values of four clusters, confirming
that the choice of the number of clusters was suitably done; and (iii) from the clustering we found that
the predictability of streamflow data of the Brazos River given by the Lyapunov time (LT), corrected
for randomness by Kolmogorov time (KT) in days, lies in the interval from two to five days.

Keywords: streamflow time series; Brazos River; average-linkage clustering hierarchical algorithm;
K-means clustering; Kolmogorov complexity-based measures; largest Lyapunov exponent; Lyapunov
time; Kolmogorov time; predictability of streamflow time series

1. Introduction

Cluster analysis (also called clustering) is employed to identify the set of objects with similar
characteristics or identify groups, and has a broad range of applications in science (e.g., biology,
computational biology and bioinformatics, medicine, hydrology, geosciences, business and marketing,
computer science, social science, and others). The analysis hypothesizes that the objects in the same
group are more similar to each other than to those in other groups. The question; however, arises:
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What is the purpose of doing that? The purpose can be stated as to: (i) Identify the underlying
structures in data; (ii) summarize behaviors or characteristics; (iii) assign new individuals to groups;
and (iv) identify totally atypical objects [1–3]. Clusters are created by choosing variables that are either
active or illustrative input variables. The active variables are often (but not always) numeric variables,
while the illustrative variables are used for understanding the characteristics on which the clusters are
based and, hence, for their interpretation. For grouping objects, a measure of nearness or proximity
measure is needed. The closeness of objects can be measured by the degree of distance (a dissimilarity
measure) or by the degree of association (a measure of similarity between groups). If two objects are
more alike the dissimilarity measure decreases, while the similarity measure increases [4]. There are
different methods for quantifying the similarity or dissimilarity measure and, hence, clustering, such as
partitioning, hierarchical, fuzzy, density-based, and model-based.

This paper compares the average-linkage clustering hierarchical algorithm based on the
compression-based dissimilarity measure (NCD), permutation distribution dissimilarity measure
(PDDM), and Kolmogorov Distance (KD) for daily streamflow discharge data from twelve gauging
stations on the Brazos River in Texas (USA), for the period 1989–2016. Each of the applied dissimilarity
measures are distances and so they are non-negative, symmetric, and they satisfy triangle inequality.
The algorithm is also compared with K-means clustering based on Kolmogorov complexity (KC), the
highest value of Kolmogorov complexity spectrum (KCM), and the largest Lyapunov exponent (LLE).
This analysis should reveal the differences in the selected clusters for streamflow. The combination
of such a clustering method and information measures can be a useful tool for time series modeling,
interpolation, and data mining; delineation of homogeneous hydrometeorological regions; catchment
classification; regionalization of catchments for flood frequency analysis and prediction in ungauged
basins; and hydrological modeling, flood forecasting, and estimation of predictive uncertainty [5–9];
among others. In the agglomerative hierarchical approach, we define each data point as a cluster
and combine existing clusters at each step. Depending on the definition of the distance between
two clusters, there exist different agglomerative techniques. The most frequently applied techniques
are: the single-linkage, average-linkage, complete-linkage, centroid-linkage, Ward’s method, and
McQuitty linkage [4]. In practice, the linkage function is usually more important than the distance
function itself [10]. Each of these linkage functions can give different results when used on the same
data set. According to [11] and [4] the single-link method is the most versatile algorithm and is
sensitive to data errors and chaining. The complete-linkage method is strongly affected by outliers,
as it is based on maximum distances. Centroid- and average-linkage are affected by outliers but less
than the complete-linkage method. Comparing the single-link, complete-link, average-link, centroid,
and Ward methods, [12] found the average-link method to be the preferred method. As the focus
of our study is information dissimilarity measures, the presentation of results is restricted to the
average-linkage function. The other linkage functions were also considered. In the case when the
dissimilarity measure is Kolmogorov complexity distance, the obtained grouping is the same for
average-linkage, complete-linkage, centroid method, Ward’s method, and McQuitty linkage, either
for three or four clusters. If the compression-based dissimilarity measure or permutation distribution
dissimilarity measure are applied, grouping in clusters depends on the choice of linkage function.

The paper is organized as follows. Section 2 describes the selected clustering hierarchical
algorithms (compression-based dissimilarity measure, permutation distribution dissimilarity measure,
and Kolmogorov distance). Section 3 provides information on streamflow data and gauging locations.
Section 4 presents the results obtained, discussing the average-linkage clustering hierarchical algorithm
with respect to three dissimilarity measures, and K-means clustering based on the above mentioned
information measures. The concluding remarks are given in Section 5.



Entropy 2019, 21, 215 3 of 18

2. Data and Computations

2.1. Data and Gauging Locations

Daily streamflow values were obtained from the National Water Information System:
Web Interface at https://waterdata.usgs.gov/nwis, for the Brazos River in Texas (USA), which has
a drainage area of approximately 118,000 km2, extending from eastern New Mexico to more than
1000 km southeast to the Gulf of Mexico. Daily streamflow observations from 12 USGS stream gauges
on the mainstream were obtained for the period from 1989 to 2016, when simultaneous data for all
the stations were available. The geographical locations of gauging stations are depicted in Figure 1,
and basic statistics of data are given in Table 1.
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Figure 1. Geographical locations of the gauging stations on the Brazos River used in this study.

Table 1. Basic descriptive statistics of the daily discharge data of the Brazos River for the period
(1989–2016); (the first number indicates the order of the station used in this study).

USGS Code Station Mean Median Min Max IQR SDi

1_08082500 Seymour 223.5 51.0 0.0 30,700.0 130.0 907.9
2_08088000 South Bend 613.0 110.0 0.0 43,800.0 320.0 2209.8
3_08088610 Graford 623.5 109.0 4.1 43,800.0 300.0 2306.9
4_08089000 Palo Pinto 723.7 133.0 8.5 39,700.0 361.0 2557.9
5_08090800 Dennis 974.4 195.0 0.0 79,500.0 418.0 3600.3
6_08091000 Glen Rose 1078.8 86.0 1.5 82,100.0 530.0 4093.9
7_08093100 Aquilla 1561.2 445.0 1.2 27,100.0 1118.0 3687.3
8_08096500 Waco 2456.1 695.0 0.5 44,000.0 1775.0 5237.7
9_08098290 Highbank 3103.7 873.5 30.0 70,300.0 2240.0 6148.1

10_08111500 Hempstead 8014.3 2520.0 58.0 137,000.0 7650.0 12,821.1
11_08114000 Richmond 8523.8 2855.0 182.0 102,000.0 8660.0 13,232.0
12_08116650 Rosharon 8851.4 3060.0 27.0 109,000.0 9080.0 13,638.0

Daily discharge data were standardized (i.e., for each calendar day “i” means discharge 〈xi〉
and standard deviation SDi, over the year, “j”, were computed and then the standardized discharge

https://waterdata.usgs.gov/nwis
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on day “i” in year “j” was calculated as yi,j =
(

xi,j − 〈xi〉
)
/SDi [13]. This procedure removes any

seasonal effects.

2.2. Basic Descriptive Statistics

Basic descriptive statistics of daily discharge data of the gauging stations are summarized in
Table 1, where for each station the mean, median, minimum, maximum, interquartile range (IQR), and
standard deviation (SDi) are shown. It is seen from Table 1 that the differences between the maximum
and the mean values are in the range of roughly 10 to 40 standard deviations, strongly positively
skewed, indicating a power law behavior. Indeed, frequency counts for the USGS 08082500 Brazos
River station at Seymour, Texas (USA), displayed in Figure 2 on a log–log scale, demonstrated a power
law distribution, with similar behavior also observed at all other stations.
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3. Method

In this section, we describe the selected dissimilarity measures (compression-based dissimilarity
measure, permutation distribution dissimilarity measure, and Kolmogorov distance), used in the
average-linkage clustering hierarchical algorithm, which was applied to streamflow data measured
from 12 gauging locations on the Brazos River in Texas (USA). We also briefly consider three
information measures (the largest Lyapunov exponent, Kolmogorov complexity, and the highest
value of the Kolmogorov spectrum) used for K-means clustering based on these information measures.

3.1. Choice of Measures for Characterization of Streamflow for Clustering

Cluster analysis of gauged streamflow records into regions is an important tool for the
characterization of hydrologic systems. To that end, the distance between two gauge stations, i and j,
is frequently measured by the Euclidean distance dij (ED) [14–16], which is expressed as:

dij =

√√√√ p

∑
k=1

(
xik − yjk

)2
, (1)

where {xik} and
{

yjk

}
k = 1, . . . , p are the streamflow values at the stations, while p is the period

which can be daily, monthly, seasonal, or annual. Although there are many other distance metrics,
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this distance is frequently used as a dissimilarity measure in the clustering algorithms. Gong and
Richman [15] showed that the majority of investigators (about 85%) applied this measure in their
studies [5]. Despite the popularity of the ED measure in streamflow clustering, it has a drawback in that
it assumes that the sample points are distributed about the sample mean in a spherical manner. If the
distribution happens to be decisively non-spherical, for example ellipsoidal, then we would expect the
probability of a “test point” belonging to the set to depend not only on the distance from the sample
mean but also on the direction. The dynamic time warping (DTW) is a more general algorithm, based on
ED, that enables the finding of the best alignment between time series that may have different lengths
and/or local distortions [17,18]. Besides a shape-based measure, the dissimilarity of time series may be
measured by comparing the features extracted from the original time series, such as autocorrelations,
cross-correlations, spectral features, wavelet coefficients, and information measures, or by model
approach [19]. Among many information measures we have tested in this study, we selected three
measures for the characterization of streamflow: compression based dissimilarity measure (NCD),
permutation distribution dissimilarity measure (PDDM), and Kolmogorov distance (KD).

The normalized compression distance (NCD) provides a computable version of the normalized
information distance (NID). It has been recommended for application in bioinformatics, music
clustering, linguistics, plagiarism detection, image similarity, question answering, and many other
fields [20]. This measure has a broad application in the clustering of heterogeneous data. Therefore,
it can be used for clustering streamflow, for example, in optimizing streamflow monitoring networks
on the basis of daily streamflow data.

Permutation distribution dissimilarity measure (PDDM) is a complexity-based approach to
clustering time series. The dissimilarity of time series is formalized as the squared Hellinger distance
between the permutation distributions of embedded time series [21]. This method has not been
used in hydrology that often in the past. However, recently some authors used it for multiscale
parameter regionalization implemented within a spatially-distributed mesoscale hydrologic model,
clustering streamflow time series for regional classification, and establishing relationships between the
regionalization and streamflow indices [22–24].

The Kolmogorov complexity distance (KD) has become an important tool in a wide variety of
applications [25]. It has also been applied in hydrology in scaling problems, since the heterogeneity
of catchments and the variability of hydrological processes make scaling (which is performed either
in a deterministic or a stochastic framework) so difficult [26]. In this study, we used this measure for
clustering streamflow. To our knowledge, this measure for this purpose has not been applied yet.

3.2. Normalized Compression Distance

A normalized information distance (NID) between two objects (time series, images, texts) x and y
is given by:

NID =
max{K(x|y), K(y|x)}

max{K(x), K(y)} , (2)

where the conditional Kolmogorov complexity K(x|y) of x, given y, is the length of the shortest
program producing x when y is given as an auxiliary input in the program. The NID is theoretically
appealing, but not practical, since it cannot be computed. In this subsection, we consider the normalized
compression distance (NCD), an efficiently computable, and thus practically applicable, form of the
normalized information distance. One approach for computing NID is approximating Kolmogorov
complexity by the length of the compressed objects obtained from some data compressors (gzip, bzip2,
xz). Using the approximation K(x|y) ≈ K(xy)− K(y), the normalized compression distance (NCD) is
defined as:

NCD =
C(xy)−min{C(x), C(y)}

max{C(x), C(y)} , (3)
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where C is a chosen data compressor, and C(xy) is the size in bytes of the series x and y concatenated.
The function NCD from the R 3.5.1 package TSclust, applied in the calculation, selects the best
compression algorithm separately for x,y and concatenated xy [27].

Sometimes, for simplicity, it is advisable to present calculations of the clustering matrix in the
form of pseudocode, which is a detailed yet readable description of what a computer program or
algorithm must do, expressed in a formally-styled natural language, rather than in a programming
language. The pseudocode for calculating the NCD has the following steps:

1. Select data compressor C among available compressors (gzip, bzip2, xz).
2. Set the number of time series compressed by the chosen compressor C to N.
3. Set all elements of clustering matrix MC(N, N) to zero.
4. Calculate Kolmogorov complexity by the length of the compressed time series obtained from

some data compressors C(x), C(y).
5. Calculate C(xy) which is the size in bytes of the time series x and y concatenated.
6. Find the lower value of {C(x), C(y)}.
7. Find the higher value of {C(x), C(y)}.
8. Calculate the normalized compressed distance (NCD) given by Equation (3).
9. Set the calculated value into MC(i, j) i = 1, N − 1; j = i + 1, N.

3.3. Permutation Distribution Dissimilarity Measure

Permutation distribution dissimilarity measure (PDDM) is based on the distance of distributions of
permutations [28]. On the basis of given time series {xt}, t = 1, . . . , N, the m-dimensional embedding
with time delay t is X′m =

{(
xi, xi+t, xi+2t, . . . , xi+(m−1)t

)
, i = 1, . . . , N − (m− 1)t

}
. For each X′m

permutation ∏(X′m) obtained by sorting X′m in the ascending order is recorded, and the distribution
of permutations is denoted by P(xt). The dissimilarity between two time series is measured by
the dissimilarity of their permutation distributions. One approach is based on Kullback-Leibler
(KL) divergence (relative Shannon entropy). Taylor approximation of KL divergence is the squared
Helling distance of discrete probability distributions P = (p1, p2, . . . , pn) and Q = (q, q2, . . . , qn):

D(P, Q) = 1√
2
·‖
√

P−
√

Q‖2
2, where ‖ ‖2 is the Euclidean norm. The pseudocode for calculating the

PDDM has the steps:

1. Set all elements of clustering matrix MC(N, N) to zero.
2. Use time series {xt}, t = 1, . . . , N
3. For given time series, the m-dimensional embedding with time delay t is X′m ={(

xi, xi+t, xi+2t, . . . , xi+(m−1)t

)
, i = 1, . . . , N − (m− 1)t

}
.

4. Sort x′m in the ascending order to get permutation ∏(X′m) for each x′m.
5. Obtain the distribution of permutations P(xt).
6. Steps 2–5 for time series {yt}, t = 1, . . . , N.

7. Calculate distance D(P, Q) = 1√
2
·‖
√

P−
√

Q‖2
2, where P and Q are discrete probability distributions.

8. Set calculated value of D(P, Q) into MC(N, N) i = 1, N − 1; j = i + 1, N.

3.4. Kolmogorov Complexity Distance (KD)

Kolmogorov complexity distance is defined using the conditional complexity as:

KD =

{
K(x|y)− K(y|y)

K(y|y)

}
+

{
K(y|x)− K(x|x)

K(x|x)

}
. (4)
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Since
K(x|y) ≈ K(xy)− K(y),
K(y|x) ≈ K(yx)− K(x),
K(x|x) ≈ K(xx)− K(x)

We get

KDxy =

{
[K(xy)− K(y)]− [K(yy)− K(y)]

[K(yy)− K(y)]

}
+

{
[K(yx)− K(x)]− [K(xx)− K(x)]

[K(xx)− K(x)]

}
. (5)

While KD, as given by (5), is a non-negative and symmetric quantity, it does not in general satisfy
the triangle inequality. Therefore, after calculating KD distance matrix using (5), all pairs are checked:
if for a given pair of objects x,y it turns that KDxy > minz

[
KDxz + KDzy

]
, then the distance is set to

KDxy = minz
[
KDxz + KDzy

]
, and all the pairs are checked anew. The true distance is computed by

iterating this procedure until for all x,y and z the triangle inequality is satisfied KDxy ≤ KDxy + KDzy.
When the matrix D(mxm) of distances of all pairs of p objects is obtained by any of the three

selected information distances, hierarchical clustering is performed. The average linkage clustering
defines the distance between any two clusters to be the average of distances of all pairs of objects from
any member of one cluster from any member of the other cluster. The pseudocode for KD has the
following steps:

1. Set all elements of clustering matrix MC(N, N) to zero.
2. Calculate distances KDxy, KDxz, and KDzy using Equation (5).
3. Check for all pairs: If for a given pair of time series x,y it turns that KDxy > minz

[
KDxy + KDzy

]
then the distance is set to KDxy = minz

[
KDxy + KDzy

]
.

4. The true distance is computed by iterating this procedure until for all x, y and z the triangle
inequality is satisfied KDxy ≤ KDxy + KDzy.

5. Set the calculated value of KDxy into MC(i, j) i = 1, N − 1; j = i + 1, N.

3.5. Calculation of Largest Lyapunov Exponent and Kolmogorov Measures

Because the rate of separation can be different for different orientations of the initial separation
vector, there is a spectrum of Lyapunov exponents whose largest value is commonly assigned as
LLE. A positive value of this exponent is usually taken as an indication that the system is chaotic.
In this study, we obtained the LLE for the standardized daily discharge time series by applying the
Rosenstein algorithm [29], which was implemented in MATLAB program [30]. This algorithm is
fast, easy to apply, and robust to changes in the embedding dimension, reconstruction delay, length
of time series, and noise level. The applied MATLAB program calculates the proper embedding
dimension and reconstruction delay. The value of embedding dimension is selected by the FNN (false
nearest neighbors) method or the symplectic geometry method in the case of high noisy data [31,32].
The Kolmogorov complexity and its derivates (the Kolmogorov spectrum and its highest value) are
calculated using the Lempel Ziv algorithm, which is widely described in [33].

4. Results and Discussion

4.1. Selection of Information Measures for K-Means Clustering of Daily Streamflow

The question arises: How to select the information measures for K-means clustering? We selected
three measures (i.e., the largest Lyapunov exponent (LLE), Kolmogorov complexity (KC), and the
highest value of the Kolmogorov complexity (KCM). This choice was made for the following reasons.
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4.1.1. General Features

(i) The Brazos River course has a large interval of mean daily streamflow values, which ranged
from 223.5 [Seymour station (1_08082500)] to 8851.4 m3/s [Roshanor station (12_08116650)], as seen in
Table 1.

(ii) There are many factors, both natural (runoff from rainfall and snowmelt; evaporation from
soil and surface-water bodies; transpiration by vegetation; ground-water discharge from aquifers;
ground-water recharge from surface-water bodies; sedimentation of lakes and wetlands, etc.) and
human-induced (surface-water withdrawals and transbasin diversions; river-flow regulation for
hydropower and navigation; dams; construction, removal, and sedimentation of reservoirs and storm
water detention ponds; stream channelization and levee construction; drainage or restoration of
wetlands; land-use changes, such as urbanization, that alter rates of erosion, infiltration, overland
flow, and evapotranspiration; wastewater outfalls; and irrigation wastewater return flow), that cause
continuous changes in streamflow time series and; therefore, in its nonlinearity and complexity of
the Brazos River and its drainage basin. For example, a huge human intervention was the Morris
Sheppard Hydroelectric Power Plant at Morris Sheppard Dam (Possum Kingdom Reservoir) on the
Brazos River in Palo Pinto County, built in the period 1938–1941 (11 miles southwest of Graford and 18
miles northeast from Mineral Wells). Currently, “USGS station 3_08088610 (Brazos River near Graford,
Texas) is located approximately 1.25 miles downstream of Possum Kingdom Reservoir. As such,
this site is largely influenced by regulation. This gage was established to monitor outflow from Possum
Kingdom Reservoir. The gage was initially located farther upstream, closer to the outflow from the
reservoir. In 1995, the gage was moved downstream to the current location” [34]. Another regulation
on the Brazos River was the Aquilla Lake, which is an artificial lake in Hill County. The dam for this
regulation was constructed by the U.S. Army Corps of Engineers. This dam is part of the overall flood
control project in the Brazos River basin (station 7_08093100).

(iii) Because streamflow processes are unavoidably influenced by measurement at gauging
stations (including uncertainties in the single determination of river discharge [35]) and dynamical
noises that increase Lyapunov exponents under the influence of noise, then these factors were taken
into considerations.

4.1.2. Largest Lyapunov Exponent (LLE)

The perpetual debate over whether hydrological systems are deterministic or stochastic has
been taken to a new level by controversial applications of nonlinear dynamics tools. Lyapunov
exponents, perhaps the most informative invariants of a complex dynamical process, are also among
the most difficult to determine from experimental data, although when using embedding theory to
build chaotic attractors in a reconstruction space, extra “spurious” Lyapunov exponents arise that
are not Lyapunov exponents of the original system [36,37]. Some hydrologists have discussed the
difficulties and uncertainties in discerning between low-dimensional chaotic and stochastic systems
using Lyapunov exponents and correlation dimension measures [38–40]. Thus, for the analysis of weak
chaos, generating two phenomena from the normal functioning of the same system, the LLE has to be
utilized carefully. In real physical systems, the structure of chaos is more complex than in truly random
processes [41]. Systems with chaotic dynamics usually contain islands of stability. Accordingly, if the
larger is the covering factor of the islands of stability, the weaker is the chaos. Intermittency is also one
of the manifestations of the weak chaos [42]. Intermittent behavior is frequently observed in fluid flows
that are turbulent or near the transition to turbulence. There are also numerous examples of weak
chaos in hydrology. A further quantitative measure of weak chaos is the low dimension (close to 2) of
the strange attractors characterizing their dynamics [43]. Wu et al. [44] offered another quantification
of weak chaos when LLE is less than 0.1. They noted “If emergence is unapparent, the emergent time
may be misjudged, which may lead to erroneous calculation of LLE. However, the LLE at a longer
time is still positive, which manifests that chaos exists”.
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Table 2 shows the LLE of standardized daily discharge data, indicating that station 3_08088610
(Graford) and1_08082500 (Seymour) had the highest value of LLE (0.394 and 0.158, respectively), while
all other stations had values in the interval (0.018, 0.061) (i.e., in the region of weak chaos). Using LLE
as an indicator, [45] established the presence of low chaos in the daily streamflow of the Kizilirmak
River (Iran), with a positive value of LLE (0.0061). Similarly, in forecasting of daily streamflow
of Xijiang River (China), [46] reported that LLE was 0.1604. The streamflow of station 1_08082500
(Seymour) had a value of 0.158 for LLE, which is approximately 2.6–8.8 times larger than for other
stations. Following the criterion by [44], the streamflow, measured at this station, exhibited high chaotic
behavior. In our opinion it comes from several reasons: (i) Uncertainties as a result of errors in the field
determination of discharge [35,47]. In a project report, Ward [48] gave a judgment of the quality of field
in the measurement of discharge for eleven selected Texas stream gauges (for the period 1987–2011),
presumably based on the conditions of field work. He reported that the uncertainties, as relative
standard errors (RSE), for discharge measurements for all stations, in general, were considerably
larger than recommended by [47]. Surprisingly, 1_08082500 (Seymour) had the highest values of RSE
(relative standard error)—188%—pointing to a high level of variability and a potential source of high
nonlinearity (higher values of LLE) and randomness. (ii) The Seymour gauging station posted an
extremely high sediment yield, while the next downstream gage (South Bend) showed a considerable
decrease. In fact, sediment yields at Seymour (1220 t km−2 yr−1) were the highest among all the
gauging stations on the Brazos River, whose average annual suspended-sediment yield is generally
considered the highest of all rivers in the state of Texas [49]. Having in mind that a nonlinear
relationship is inherent in the streamflow–suspended sediment relationship [50], the higher value of
LLE could be attributed to this phenomenon. The highest value of LLE (0.394) for 3_08088610 (Graford)
station is a result of changed river streamflow dynamics because of the Sheppard Hydroelectric Power
Plant at Morris Sheppard Dam (Possum Kingdom Reservoir) that is built on the Brazos River in Palo
Pinto County. More details about the change in the nonlinearity and randomness of streamflow for
this gauge station can be found in [51].

Table 2. Largest Lyapunov exponent (LLE), Kolmogorov complexity (KC), and the highest value of
Kolmogorov complexity spectrum (KCM) of standardized daily discharge data on the Brazos River.

USGS Code Station LLE KC KCM

1_08082500 Seymour 0.158 0.266 0.489
2_08088000 South Bend 0.038 0.242 0.446
3_08088610 Graford 0.394 0.474 0.682
4_08089000 Palo Pinto 0.032 0.371 0.658
5_08090800 Dennis 0.042 0.311 0.510
6_08091000 Glen Rose 0.051 0.301 0.508
7_08093100 Aquilla 0.055 0.352 0.581
8_08096500 Waco 0.061 0.298 0.526
9_08098290 Highbank 0.061 0.316 0.422

10_08111500 Hempstead 0.027 0.218 0.285
11_08114000 Richmond 0.014 0.201 0.260
12_08116650 Rosharon 0.018 0.200 0.252

4.1.3. Kolmogorov Complexity (KC) and the Highest Value of Kolmogorov Complexity Spectrum (KCM)

The Kolmogorov complexity measures applied in this paper sheds additional light on the complex
behavior of streamflow. The values of KC and KCM of standardized daily discharge data are shown
in Table 2, which shows that the KC values for all daily streamflow time series were relatively small,
ranging in the interval from 0.200 to 0.474. Similar behavior was observed for KCM, having values in
the intervals from 0.252 to 0.682, which is expected for lowland rivers in contrast to mountain rivers,
whose KC values can be up to 0.98 [51,52]. From Table 2 it is seen that there were three peaks for
KC: 0.474, 0.352, and 0.316 for stations 3_08088610 (Graford), 7_08093100 (Aquilla), and 9_08098290
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(Highbank), respectively. The highest value of KC (3_08088610) was a result of the human activity
(i.e., the building of a hydroelectric power plant changing the streamflow dynamics; see the previous
subsection). It would be interesting to clarify the appearance of peaks in KC values for 7_08093100
(Aquilla) and 9_08098290 (Highbank) stations. Both stations had low values of LLE (0.055 and 0.061),
which belong to the domain of weak chaos (i.e., they are very close to zero). We now had a situation of
the occurrence of stochastic behavior (high randomness), although LLE indicated a stable state. Vilela
Mendes [53] explained this situation in the following way. The idea is that the dynamics is simple to
describe in law, but not that it has simple orbits. In short, a dynamical law with small sophistication
but capable of generating orbits of high Kolmogorov complexity. According to [54], “sophistication”
is defined as the size of the projectable part of the string’s minimal description and formalizes the
amount of planning which went into the construction of the string. Note that an additional source of
the occurrence of peak for 7_08093100 (Aquilla) station was because of human intervention (i.e., the
presence of the Aquilla dam).

4.2. Hierarchical Clustering of Daily Streamflow

Starting with a dissimilarity matrix based on the compression-based dissimilarity measure
(NCD), permutation distribution dissimilarity measure (PDDM), and Kolmogorov distance (KD)
for daily streamflow discharge data from twelve gauging stations on the Brazos River in Texas (USA),
for the period 1989–2016, the agglomerative average-linkage hierarchical algorithm was applied.
This algorithm consists of a series of successive fusions of the objects into groups culminating in the
stage where all objects are in one group. At any stage in the procedure, two objects or groups of objects
which are the closest are fused together. The average-linkage clustering defines a distance between any
two groups of objects (clusters) to be the average of distances of all pairs of objects, from any member
of one cluster to any member of the other cluster. The tree diagram (dendogram) gives the stages in the
aggregation of gauging stations in clusters (Figure 3). The vertical axis is used to indicate the distances
at which the joining occurs.
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The dendrogram gives the indication that the stations may be grouped either in three or four
clusters. For comparison with the results of the latter analysis, we chose four clusters. The results of
grouping were visualized on maps of the geographical locations of gauging stations on the Brazos
River used in this study (Figure 4). If the compression-based dissimilarity measure was applied,
the stations were distributed as: (i) Cluster 1 (1_08082500, 2_08088000, 5_08090800, and 6_08091000);
Cluster 2 (3_08088610); Cluster 3 (4_08089000, 7_08093100, 8_08096500, and 9_08098290); and Cluster
4 (10_08111500, 11_08114000, and 12_08116650). The hierarchical clustering based on permutation
distribution dissimilarity measure gave: (i) Cluster 1 (1_08082500); Cluster 2 (2_08088000, 5_08090800,
6_08091000, and 9_08098290); Cluster 3 (3_08088610, 4_08089000, 7_08093100; and 8_08096500), and
Cluster 4 (10_08111500, 11_08114000, and 12_08116650). In the case when the dissimilarity measure was
Kolmogorov complexity distance, the obtained grouping was: (i) Cluster 1 (1_08082500, 2_08088000,
5_08090800, 6_08091000, 8_08096500, and 9_08098290), Cluster 2 (3_08088610); Cluster 3 (4_08089000



Entropy 2019, 21, 215 11 of 18

and 7_08093100); and Cluster 4 (10_08111500, 11_08114000, and 12_08116650). It may be noted that,
in all cases, stations 10_08111500, 11_08114000, and 12_08116650 belonged to the same cluster.Entropy 2019, 21, x 11 of 18 
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In computer science, the computational complexity of an algorithm is the amount of resources
required for running it. The computational complexity of a problem is the minimum of the complexities
of all possible algorithms for this problem (including the unknown algorithms). Here we shortly
present a comparative analysis of the computational complexity of all the three used algorithms.
We have chosen for criterion the computational cost, which depends not only on the size of the dataset,
but also on the complexity of many other aspects. For comparison we used three times. The “user time”
(UT) is the CPU time charged for the execution of user instructions of the calling process. The “system
time” (ST) is the CPU time charged for execution by the system on behalf of the calling process.
The first two entries are the total user and system CPU times of the current R (language) process and
any child processes on which it has waited, and the third entry is the “real elapsed time” (RET) since
the process was started.

For 12 time series, each with a size of 9968 samples, we obtained the following results: (1) NCD
(UT = 36.97; ST = 1.67; RET = 52.11); (2) PDDM (UT = 0.17; ST = 0.04; RET = 0.20); and (3) KD
(UT = 19.13; ST = 1.13; RET = 29.24).

The focus of this paper is to suggest a suitable information dissimilarity measure for hierarchical
clustering of river streamflow time series, but without going down into detailed aspects in comparison
of the clustering algorithms we have used. However, in discussion, we cannot avoid the aspect of data
size in time series clustering. Shortly, we will do it in the following way. Time series clustering is a
very effective approach in discovering valuable information in various systems. However, focusing on
the efficiency and scalability of these algorithms to deal with time series data has come at the expense
of losing the usability and effectiveness of clustering. Aghabozorgi and Teh [55] proposed a method,
which was compared with different algorithms and various datasets of dissimilar length, showing that
this method outperformed other conventional clustering algorithms. They emphasized that the user
does not require very low-resolution time series for clustering of large datasets; instead, the clustering
can be applied on smaller sets of high dimension time series by the prototyping process. That is,
the cost of using representatives is much less than the dimension reduction in terms of accuracy.
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4.3. K-Means Clustering of Daily Streamflow

The first step in the K-means clustering is the determination of the number of clusters K. The 3D
scatter plot of points (KCi, KCMi, LLEi) (i = 1, . . . , 12), which were calculated on the basis of daily
discharge data recorded during the period 1989–2016 at twelve gauging stations on the Brazos River
in Texas, suggested that K = 4, as shown by the 3D scatter plot in Figure 5. From this figure it can be
seen that clustering closely followed the aforementioned discussion about the choice of information
measures for K-means clustering. The K-means algorithm consists of repeating three steps until
convergence: (i) Determining the centroid coordinate; (ii) determining the distance of each object to
the centroids; and (iii) grouping the objects based on minimum distance to their closest cluster center,
according to the Euclidean distance function. Any random object may be taken as the initial centroid.
We applied the program STATISTICA 13.2 for K-means clustering. The stations were distributed in
the following ways: (i) Cluster 1 (1_08082500, 2_08088000, 5_08090800, 6_08091000, 8_08096500,
and 9_08098290); Cluster 2 (3_08088610); Cluster 3 (4_08089000 and 7_08093100); and Cluster 4
(10_08111500, 11_08114000, and 12_08116650). Table 3 and Figure 6 show the centroids of the clusters.
Cluster 2 had the highest values, while cluster 4 had the lowest values of the mean values of all
considered information measures.
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Table 3. The centroids (means) of the clusters.

Information Measure Cluster 1 Cluster 2 Cluster 3 Cluster 4

KC 0.289 0.474 0.362 0.206
KCM 0.484 0.682 0.620 0.266
LLE 0.069 0.394 0.044 0.020
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On the basis of the analysis of variance (ANOVA) results (Table 4), it could be concluded that
there existed highly significant differences between mean values of four clusters, which confirms that
the choice of the number of clusters was correctly done.

Table 4. Analysis of variance (ANOVA) table for K-means clustering. The symbols introduced have
the following meaning: SS—sum of squares; df—degrees of freedom; F—calculated value of F-test;
P—value.

Variable Between SS df Within SS df F P

KC 0.064679 3 0.004561 8 37.81 0.00005
KCM 0.215958 3 0.011885 8 48.46 0.00002
LLE 0.112645 3 0.010489 8 28.64 0.00013

For the end of discussion, let us consider the question about predictability of streamflow,
seen through the light of the aforementioned consideration of clustering the streamflow time series.
The Lyapunov exponent relates to the predictability of measured time series, which includes
deterministic chaos as an inherent component. Model predictability is here understood as the degree
to which a correct prediction of a system’s state can be made, either qualitatively or quantitatively.
In stochastic analysis, a random process is considered predictable if it is possible to infer the next state
from previous observations. In many models; however, randomness is a phenomenon which “spoils”
predictability [51]. Deterministic chaos does not mechanically denote total predictability, but means
that at least it improves the prognostic power. In contrast, stochastic trajectories cannot be projected
into future. If LLE > 1 then streamflow is not chaotic, but is rather stochastic, and predictions cannot
be based on chaos theory. However, if 0 < LLE < 1 it indicates the existence of chaos in streamflow.
In that case, one can compute the approximate time (often called Lyapunov time (LT)) limit for which
accurate prediction for a chaotic system is a function of LLE. It designates a period when a certain
process (physical, mechanical, hydrological, quantum, or even biological) moves beyond the bounds
of precise (or probabilistic) predictability and enters a chaotic mode. According to [56], that time can
be calculated as ∆tlyap = 1/LLE. If LLE→ 0 , implying that ∆tlyap → ∞ , then long-term accurate
predictions are possible. However, many streamflow time series are highly complex. Therefore, ∆tlyap
can be corrected for randomness in the following way. Similar to ∆tlyap, we can introduce a randomness
time ∆trand = 1/KC (in time units, second, hour, or day). Henceforth, we shall denote this quantity
Kolmogorov time (KT), as it quantifies the time span beyond which randomness significantly influences
predictability. Then, the Lyapunov time corrected for randomness is defined as

[
0, ∆tlyap

]
∩ [0, ∆trand].
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It can be stated that the KT designates the size of the time window within time series where complexity
remains nearly unchanged.

Figure 7 shows the predictability of the standardized daily discharge data of the Brazos River,
given by the Lyapunov time (LT) corrected for randomness (in days). From this figure it is seen that LT
corrected for randomness increases from two to five days. Such distribution corresponds to the order
of clusters in the 3D scatter plot (Figure 5) along the diagonal, from the upper right corner to the lower
left one.
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Figure 7. Predictability of the standardized daily discharge data of the Brazos River, given by the
Lyapunov time (LT) corrected for randomness (in days).

5. Conclusions

We compared the average-linkage clustering hierarchical algorithm with three clustering
algorithms based on the compression-based dissimilarity measure (NCD), permutation distribution
dissimilarity measure (PDDM), and Kolmogorov distance (KD) for daily streamflow discharge
data from twelve gauging stations on the Brazos River in Texas (USA), for the period 1989–2016.
The algorithm was also compared with K-means clustering based on Kolmogorov complexity (KC),
the highest value of Kolmogorov complexity spectrum (KCM), and the largest Lyapunov exponent
(LLE). The following conclusions are drawn from this study:

1. We considered the way of selecting suitable information measures for K-means clustering.
Accordingly, we selected three measures (i.e., the LLE, KC, and KCM).

2. This choice was made for the following reasons. There are many factors, both natural and
human-induced, that cause continuous changes in streamflow time series and; therefore, in its
nonlinearity and complexity, of the Brazos River, and its drainage basin. Additionally, because
streamflow processes are unavoidably influenced by measurement at gauging stations (including
uncertainties in the single determination of river discharge) and dynamical noise that increases
LLE under the influence of noise.

3. Using a dissimilarity matrix based on NCD, PDDM, and KD for daily streamflow discharge data
from twelve gauging stations, the agglomerative average-linkage hierarchical algorithm was
applied. We selected the KD clustering algorithm as the most suitable among others.

4. The dendrogram gave the indication that the gauging stations may be grouped either in three or
four clusters. For statistical analysis (3D scatter plot specified by the vectors KC, KCM, and LLE,
and calculating the centroids (means) of the clusters), we chose four clusters.
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5. On the basis of analysis of variance (ANOVA) results, it could be concluded that there was highly
significant differences between mean values of four clusters, which confirmed that the choice of
the number of clusters was correctly done.

6. The predictability of standardized daily discharge data of the Brazos River given by the Lyapunov
time (LT), corrected for randomness (in days), increased in the following way: (i) three to four
days for Cluster 1 (1_08082500, 2_08088000, 5_08090800, 6_08091000, 8_08096500, and 9_08098290
stations); (ii) up to four days for Cluster 2 (3_08088610 station); (iii) approximately three days
for Cluster 3 (4_08089000 and 7_08093100 stations); and approximately five days for Cluster 4
(10_08111500, 11_08114000, and 12_08116650 stations).
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