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Abstract—A novel high-precision model of a custom-made 

coaxial chamber used for broadband measurement of the relative 

complex permittivity at microwave frequencies is presented. The 

model is based on a surface integral-equation formulation of the 

method of moments tailored for bodies of revolution. All singular 

integrals encountered in the numerical analysis are calculated in 

a unified way with a novel integral transformation, which enables 

precision of up to 12 significant digits using the 64-bit 

representation of real numbers. The dielectric parameters are 

estimated from the reflection-coefficient measurement of the 

chamber with a disk-shaped dielectric sample by comparison of 

the measured data with the high-precision numerical analysis of 

the chamber. The complete measurement procedure is illustrated 

and verified using samples of known dielectric properties. 

 

Index Terms—body of revolution, dielectric measurements, 

high-precision integration, method of moments, numerical 

electromagnetics, singular integrals. 

I. INTRODUCTION 

CCURATE measurements of the relative permittivity of 

various materials (dielectrics) at microwave frequencies 

are of great importance for applied and theoretical 

electromagnetics (EM) [1]–[2]. Permittivity measurements 

have been done both in the time domain and in the frequency 

domain, and have a long history [3]–[15].  

There exist various techniques and different setups of 

equipment for the measurements of the relative permittivity in 

the frequency domain, depending on the frequency range, the 

aggregate state of samples, as well as the shape and the size of 

samples. Our focus is on solid materials that are linear, 

homogeneous, and isotropic in the microwave frequency 
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range. Both the relative permittivity, r , and the loss tangent, 

tan , are contained in the complex permittivity, which is 

defined by )j(tanj rr0r0r0   , where 

pF/m854.80   is the permittivity of a vacuum, and j  is the 

imaginary unit.  

Predominantly, the permittivity measurements have two 

steps: (1) measurements of a quantity that is related to the 

permittivity and (2) extraction of the permittivity from the 

measurement data. The extraction step can include various 

high-accuracy electromagnetic models of the measurement 

setups or can be based on certain approximations.  

We focus on the permittivity extraction using the full-wave 

numerical analysis based on the method of moments (MoM) 

[16]. Recent advancements in MoM and the increase in 

computer performance have lead to high-precision analysis in 

acceptable computing time [17]–[21]. The high precision is 

achieved by calculation of singular and quasi-singular MoM 

integrals up to the machine precision.  

Our measurement setup has rotational symmetry, i.e., it is a 

body of revolution (BoR) that consists of conductors and 

dielectrics. BoRs, being a special case of the geometry of EM 

structures, have been analyzed for over half a century [22]–

[25]. However, no high-precision MoM approach has been 

developed and applied to the high-frequency analysis of BoRs 

made of composite metallic and dielectric materials. If a 

surface integral-equation formulation is used for the analysis, 

the current distribution in a BoR can be a function of one 

coordinate. Hence, its EM analysis is numerically similar to 

the analysis of 2-D structures, for which, in [21], a high-

precision analysis is presented. However, this analysis cannot 

be directly applied to BoRs due to different singularities 

( Rlog  for 2-D vs. R/1  and 
2/1 R  for BoRs). In the technique 

that we propose, we use polynomials as higher-order basis 

functions, similarly to [16], [20]–[21]. In [20], only metallic 

BoRs are analyzed, using a set of basis functions in which 

some functions belong to multiple (connected) mesh elements. 

We analyze composite metallic and dielectric BoRs with a 

different set of basis functions in which basis functions belong 

exclusively to a single mesh element. 

The aim of the present work is twofold. The first goal is to 

introduce a singularity cancellation transformation that 

ensures a unified calculation of MoM integrals with high 
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precision, up to 12 significant digits (near the theoretical 

machine precision of 15 significant digits). It is specifically 

tailored for the MoM analysis of BoRs made of metallic and 

dielectric domains, with or without losses. We use a MoM 

surface integral-equation (MoM-SIE) formulation with 

Galerking testing and Legendre polynomials of arbitrary order 

as higher-order basis functions.  

The second goal is to apply the developed high-precision 

analysis of BoRs to the extraction step of permittivity 

measurements in rotationally symmetrical test fixtures 

(chambers). We use an upgraded version of the coaxial 

chamber from [26], for which the material samples need to be 

disk-shaped. Previous quasistatic models of the chamber [27] 

were used for measurements of ceramic samples [28] at lower 

frequencies, up to 1000 MHz, while the proposed approach 

significantly increases the upper frequency limit, deeply into 

the microwave region.  

When the proposed high-precision approach is used, the 

uncertainty of the numerical results is several orders of 

magnitude smaller than the uncertainty of the measurements. 

Hence, the main uncertainty in the extraction of the dielectric 

parameters is due to the measurements. 

The paper is organized as follows. The MoM analysis of 

BoR numerical models is explained in detail in Section II. In 

Section III, special attention is devoted to the high-precision 

numerical integration using a coordinate transformation. In 

Section IV, the measurement chamber and the hardware setup 

are briefly presented. The numerical model of the used 

chamber is described in Section V. Section VI presents results 

for the complex permittivity, obtained using the proposed 

model. Finally, concluding remarks are given in Section VII. 

II. MOM ANALYSIS OF BOR MODEL 

We consider an arbitrary axially symmetrical structure 

(BoR) that comprises metallic objects and linear piecewise-

homogeneous dielectric objects. For the MoM-SIE analysis, 

based on the equivalence principle and the domain 

decomposition [16], the input data are the geometry of the 

BoR, material specifications, and the excitation. The 

unknowns are the coefficients in the approximations of the 

surface electric and magnetic currents at the boundary 

surfaces. The objective is to find the unknown coefficients in 

the approximations of the surface currents at a given set of 

frequencies, in the complex domain. 

A BoR can comprise several objects that have various 

electric and magnetic properties. Hence, we consider the BoR 

as a multiple-region problem [16]. We solve it by using the 

Poggio-Miller-Chang-Harrington-Wu-Tsai (PMCHWT) 

formulation [29]. Thereby, the boundary conditions on the 

surface between regions i and j are )(
tan

)(
tan

ji
EE   and 

)(
tan

)(
tan

ji
HH  , where )(

tan
i

E  and )(
tan

j
E  are the tangential 

components of the total (complex) electric fields, and )(
tan
i

H  

and )(
tan

j
H  are the tangential components of the total (complex) 

magnetic fields in domains i and j, respectively. The total 

fields are due to the excitation and due to the surface electric 

and magnetic currents and charges, located on the interfaces 

between adjacent regions. 

Our test fixture (i.e., the coaxial chamber) is fed by a 

coaxial line. Hence, we use a TEM frill to model the excitation 

[16]. The corresponding rms voltage is V 1V . Upon MoM-

SIE analysis, the approximation of currents is known and the 

network parameters of the chamber can be calculated.  

We assume that the surfaces of discontinuities of the 

analyzed BoR (i.e., surfaces of conductors and dielectric-to-

dielectric interfaces) are assembled of BoR elements. Each 

BoR element is the lateral surface fS  of a conical frustum 

(depicted in gray in Fig. 1), which is defined by its lower 

radius a , its upper radius b , and its height L . Each element 

has its local coordinate system defined by t (the local linear 

coordinate along a frustum generatirx, 11  t , where the 

radius of the frustum is a at 1t  and b at 1t ) and   

(the azimuthal angle,  ). For a point on the frustum 

whose local coordinates are ),( t , the corresponding 

Cartesian coordinates are   2/cos)(  abtabx , 

  2/sin)(  abtaby , and  2/Ltz  . (Note that 

special cases of fS  are a cylindrical surface, a flat annular 

ring, and a circle.) 
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Fig. 1.  Axially symmetrical BoR element and its local (t,ϕ) coordinate 

system. 

Due to the axial symmetry of the geometry (BoR) and to the 

TEM-frill excitation, the currents and charges depend only on 

the t-coordinate. Therefore, if we introduce the unit vectors of 

the coordinates t  and   ( ti  and i , respectively), the density 

of surface electric currents sJ  has only the ti  component, 

while the density of the surface magnetic currents sM  has 

only the i  component.  

For each BoR element, we approximate sJ  and sM  by 

linear combinations of basis functions that depend only on t , 

as 






1

0

s

0

)(

N

n

bnn tLa iC , where },{ sss MJC  , },{  iii tb , 

)(tLn  is the n-th basis function, },{
)()( ss M

n
J

nn aaa   are 

unknown coefficients (
)( sJ

na  for sJ  and 
)( sM

na  for sM ), and 

02N  is the total number of unknown coefficients per element. 

We use Legendre polynomials of degree n )0( n  as the basis 
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functions Ln(t), since they are orthogonal, which is 

advantageous for obtaining high accuracy [20]–[21]. Each 

BoR element has its own set of basis functions, which belong 

exclusively to that element. Since the continuity of sJ  is not 

explicitly enforced, in our model there are electric line charges 

at the edges of the element (i.e., for 1t  and 1t ), whose 

per-unit-length density is, due to the boundary condition, 

given by )1(
j

)1(' s 


 tJtQ . 

In the electromagnetic model, due to the used domain 

decomposition, the fields are induced only by the electric and 

magnetic currents in the same domain. The electric and 

magnetic fields due to the electric currents and associated 

charges are given by [16] 
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where R  is the position-vector of the field point with respect 

to the source point ( RR ), RR /Ri   is the unit vector of 

R , s  is the density of the surface electric charges, 'Q  is the 

density of the electric line charges, and  j  is the 

(complex) propagation coefficient ( f 2 , where f  is the 

operating frequency). When the material within the considered 

domain is lossy,   and   are complex quantities. The charge 

density s  is calculated using the continuity equation 

sss jdiv J , where sdiv  stands for the divergence over 

the surface where currents exist. Finally, 'S  is the union of the 

surfaces over which sJ  and s  are distributed, while 'C  

denotes the union of the edges where 'Q  is distributed. The 

electric field due to s  has finite (but different) values at 

 0R  and  0R , while it is not defined at 0R , i.e., 

when the field point is exactly at the surface that carries the 

charges. In order to avoid 0R , we numerically calculate the 

electric field shifted away from the singularity point for 

L410 , in the direction perpendicular to Sf. 

Due to the axial symmetry and the TEM excitation, 

0div ss M . Hence, there are no magnetic surface charges 

associated with the magnetic currents. In addition, there are no 

magnetic line charges, because the vector sM  is tangential to 

all the edges of the model. Hence, the magnetic and electric 

fields due to sM  are given by [16] 
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All non-vanishing integrals in (1)–(4) can be reduced to the 

following four integrals over 't  and '  (primes denote the 

source point). By omitting the constants and by designating 

the local coordinates of the element edges as }1,1{'e t  

(Fig. 1), the integrals are 

),','('d)','()(
1

1' '
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where     4/'d'd')()','('d
22 tabLbatabtS   and 
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22  abLl , while the integrands are 
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By substituting (1)–(4) and the TEM-frill excitation into the 

boundary conditions and by applying the PMCHWT, we 

obtain a set of integral equations with unknown coefficients 

for current approximations. By using the Galerkin testing, 

these integral equations are transformed into a set of linear 

equations. Since the integrands are independent of the 

 -coordinate, the integration over   in the Galerkin testing is 

omitted. The obtained set of linear equations is given by 

    ,0d
4

)(
)(

22

1

1

)(

tan

)(

tan 





tabL
batab

tL

t

ji

m FF  (11) 

where 1,...,1,0  Nm , N  is the total number of unknowns 

for all elements in the model, },{ tantantan HEF  , and 0 . 

Therefore, there are three numerical integrations to be 

performed: two for the fields (the first integration over '  and 

the second one over 't ) and one for the Galerkin testing 

procedure (the third integration, which is over t ). Note that 

the integrands (7)–(9) are singular at 0R , while the 

integrand (10) is singular near the edges of the BoR elements. 

Nonetheless, after the Galerkin integration (11), all the 

involved integrals have finite values. 

By grouping the unknowns on the left-hand side of (11) and 

the excitation on the right-hand side, we obtain a set of linear 

equations that can be cast in matrix form as bAx  , where 

NNA  is the MoM system matrix, 1Nx  is the column-vector 

of unknown coefficients, and 1Nb  is the excitation column-

vector. Once this system is solved for x , the approximations 

of the surface currents are obtained. Thereafter, the EM field 
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at a given point of space can be calculated using (1)–(4).  

The precision of A  has the dominant influence on the 

precision of the whole analysis. Therefore, the integrations 

involved in the calculation of the elements of A must be 

performed with high precision, preferably in a unified manner. 

To that aim, we apply a coordinate transformation prior to the 

numerical integration. After the transformation, the numerical 

integration is performed using the standard Gauss-Legendre 

(GL) procedure. The proposed coordinate transformation is 

explained in detail in the next section. 

III. COORDINATE TRANSFORMATION FOR HIGH-PRECISION 

INTEGRATION 

The idea of the presented transformation is to stretch-out the 

region in the vicinity of the singularity so that there are more 

integration points in regions where the integrand rapidly 

changes. The transformation is defined as 

,||

,))sgn(1(||

1

mm
1

2

1

pp

ttssst

m

m








 (12) 

where ]1,1[s  and ]1,1[p  are new variables, mt  

defines the singularity point in the local t -coordinate system, 

1m  and 2m  are transformation parameters (positive real 

numbers), and )sgn(s  is the sign function. Fig. 2 illustrates 

(12), when 5.0m t , for 1m  and 2m  in the range from 2 to 11. 

m2 = 2
m2 = 3

m2 = 4

m2 = 5,6,...11

m1 = 2

m1 = 3
m1 = 4

m1 = 5,6,...11

  
 [

ra
d

]





 

Fig. 2.  Illustration of singularity-cancellation transformations. 

After applying (12), we obtain )'(' st  and )'(' p  (where 

primes denote source points). The functions )','( tkf , 

3,2,1k , in the double integrals (5) are transformed into 

functions ))'('),'('( pstk f , with new variables 's  and 'p , by 

substituting each 't  with )'(' st  from (12) and each '  by 

)'(' p  from (12), while )'(4 f  from the single integral (6) is 

transformed into ))'('(4 pf , with a new variable 'p , by 

substituting each '  by )'(' p . The elementary surface in (5), 

)','('d tS , is converted into ))'('),'('('d pstS   by substituting 

each 't  with )'(' st  from (12) and 'd'd t  by 'd'd psJ sp , where 

spJ  is the corresponding Jacobian. So, we obtain a new 

elementary surface defined by 

    .
4

'd'd
)'(')('d

22 sp
abLbastabJS sp   Similarly, 

the elementary length )'('d l  from (6) is converted into 

  2/'d))'('('d
22 pabLJpl p  , where pJ  is the 

corresponding Jacobian. Finally, the integrals (5)–(6) are 

transformed into 

,3,2,1
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1
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where the corresponding Jacobians are 
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  (17) 

Note that the convergence rate of these integrals depends on 

the order of the basis functions, the position of the singularity 

point, the operating frequency, and the shape of the BoR 

element. The convergence is examined in detail in the next 

subsection. 

A. Convergence of Integrals 

In order to check the convergence of the integrals, we 

define a relative error estimate, I , as 

||

||

1

1

int

intint



 


N

NN

I
I

II
, (18) 

where 
intNI  is the integral value calculated with intN  

integration points and 1intNI  is the value of the same integral 

calculated with 1int N  points. If the integral is a surface 

integral, then intN  is the number of integration points per one 

integral, i.e., the total number of integration points is 2
intN . If 

the integral is close to zero, i.e., 
14

1 10
int


 NI , the relative 

error estimate is set to 1410 . This limit is based on the fact 

that 64-bit double-precision numbers are used, i.e., the 

machine precision is 15 significant digits.  

All of the following numerical experiments are performed 

on a desktop computer with Windows 10 operating system, 

Intel(R) Core™ i7-9700 processor, running at 3.00 GHz and 

using up to 32 GB of memory. The programs are coded in 

C/C++ programming language and compiled for the maximum 

execution speed. 

The total electric field is calculated based on four integrals, 

(13) and (14), so we also define an overall (maximum) relative 
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error estimate as 

))((maxlog10max
k

I , (19) 

where 
kI , 4,...,2,1k , is the relative error estimate (18) of 

the integral kI . Note that the number of significant digits of 

an integral I  can be calculated as I 10log . Therefore, 

the negative value of (19), max , can be interpreted as the 

approximate number of significant digits. 

Our focus is on the singular integrands, when the field point 

and the source point are at the surface of the same BoR 

element.  

Results in this subsection are given for BoR elements 

without losses in the materials, and 1rr  . 

We focus on electrically small BoR elements, due to the 

application. Hence, (19) is practically independent of 

frequency. 

It is numerically harder to calculate integrals with 

singularities in the vicinity of the BoR edges than further away 

from them [21]. Hence, as a representative difficult case, we 

present results for the integrals with the singularity at 

95.0m t . 

1) The Integration Parameters 

The maximum relative error estimate (19) as the function of 

the parameters 1m  and 2m  is presented in Fig. 3 in the case of 

a cylinder ( mm6.0 ba  and mm25.15L ), at the 

operating frequency GHz3f . The cylinder is shown in the 

inset of Fig. 4. The order of the basis functions is 2n  and 

the number of integration points per integral is 300int N . 

This numerical experiment is used to find the optimal values 

of the parameters 1m  and 2m . From Fig. 3 it can be seen that 

if 51 m  and 105 2  m , the number of significant digits is 

about 12. Further numerical experiments have shown that for 

other BoR elements results are qualitatively the same. 
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Fig. 3.  Maximum relative error estimate for a cylindrical BoR element.  

2) Order of Basis Functions 

Higher-order basis functions require more integration points 

than the lower-order ones, for the same accuracy. The 

maximum error estimate (19) for three BoR elements, when 

the orders of the basis functions are 4n  and 0n , is 

presented in Fig. 4. The first considered element is the 

cylinder used in the previous subsection, the second one is a 

frustum ( mm .01a , mm 0.15b , and mm) 0.15L , and 

the third one is an annular ring ( mm0.3a , mm2.12b , 

and 0L ). All BoR elements are shown in the inset of Fig. 4. 

In addition to these results, results for max  when integrals are 

calculated without transformation are also shown in Fig. 4. 

The operating frequency is GHz3f . From Fig. 4, it can be 

concluded that using the proposed transformations, we obtain 

significantly better precision for the same number of 

integration points. For example, with around 400int N , all 

integrals are calculated with at least 12 significant digits, 

while for the same number of integration points without the 

transformation, just one significant digit is obtained. A 

relatively large number of integration points for small order of 

basis function is needed, due to the fact that we are interested 

in the highest precision. However, if lower precision is 

satisfactory for an application, a smaller number of integration 

points can be used, according to Fig. 4. Note that if the 

numerical integration is performed without the singularity 

cancellation, then positive values of max  are obtained due to 

the singularity of the integrals. This means that the 

successively calculated integrals (
intNI  and 1intNI ) differ for 

several orders of magnitude. Therefore, MoM integrals must 

be calculated with the proposed singularity-cancellation 

approach, or some other numerical technique (e.g. singularity 

extraction).  

To summarize the results from subsections III.A.1-2, if the 

approximations for the electric and magnetic surface currents 

are with up to five unknowns each, the integrals (13) and (14) 

can be calculated with up to 12 significant digits, at an 

arbitrary field point, with the proposed transformation and the 

integration setup 71 m , 92 m , and 250int N  in the cases 

of the cylinder and the annular ring, or 400int N  in the case 

of the frustum. This setup will be used as the default one in the 

following subsection. 

L

b

a

b

a

L

L=0

a
b

n = 4

n = 0

n = 0

n = 4

No transformation

 

Fig. 4.  Maximum relative error estimate for various orders of basis functions. 
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B. The Galerkin Testing  

After the integrals (13) and (14) have been calculated, an 

additional integration, i.e., the Galerkin testing, is performed 

to calculate the elements of the MoM system matrix. If the 

domain of the testing function, )(tLm , and the domain of the 

source basis function, )(tLn , coincide, the integrand has 

singular behavior in the vicinity of the edges, i.e., in the 

vicinity of 1t  and 1t . Therefore, before the GL 

numerical integration, the singularity-cancellation 

transformation (12) is applied to the integrand two times in a 

row, as follows.  

We use the following notation: gint,N  is the number of 

integration points for the Galerkin integration, )(GL lx  are the 

abscissas and )(GL lw  are the weights for the GL integration 

( gint,...,,2,1 Nl  ), t  is the coordinate of the field point, and 

),( ntI  is the integrand. Since the integrands are singular in the 

vicinity of the edges, (12) is applied to stretch the integrands 

at the points )1(GLm1 xt  , which is near 1t , and 

)( gint,GLm2 Nxt  , which is near 1t . To that purpose, a new 

integration parameter, 3m , and a new integration coordinate, 

)(GL1 lxs  , are introduced. The transformation (12) is used to 

stretch around m1t  ( st  , 1ss  , 1mm tt  , and 31 mm  ), and 

then around m2t  ( tt  , ss  , m2m tt  , and 31 mm  ). Now, 

the matrix element mnA , in the n
th 

column and m
th

 row, is 

),(),(),()()( m2m11

gint,

1

GL tsJtsJntItLlwA ss

N

l

mmn 


 , (20) 

where ),( 1m1 tsJ s  and ),( 2mtsJ s  are the Jacobians (15) of the 

transformation. 

The optimal value of 3m  is found using a similar 

experiment as for 1m  and 2m . In order to illustrate the 

optimal found value of the parameter 73 m , the relative 

error estimate (18) is shown in Fig. 5. The error estimate is 

calculated for the case when there is no transformation and 

when the integration is done using the transformation. (Note 

that in all cases the inner integrals are calculated using the 

proposed transformation, as explained in the previous 

subsection.) The considered BoR elements are the cylinder, 

the frustum, and the annular ring, as previously. The operating 

frequency is GHz3f , and the orders of the basis functions 

and the testing functions are 4 mn .  

Even though the number of integration points required to 

obtain 12 significant digits is 700gint, N , which is about two 

times more than in the case of integrals (13) and (14), the 

transformation still yields up to 4 additional significant digits 

compared to the results without the transformation.  

Therefore, the proposed transformation leads to a unified 

way for calculation of all MoM integrals with high precision. 

In the following sections, all results are calculated by using 

71 m , 92 m , and 73 m  for extraction of the complex 

permittivity from the measurements. Note that the optimal 

values of 1m , 2m , and 3m  might be different for each BoR 

element. However, the used values are chosen so that all 

integrals are calculated with 12 significant digits.  

No transformation

With  transformation

 

Fig. 5.  Relative error estimate of the third (Galerkin) integration. 

IV. MEASUREMENT CHAMBER AND HARDWARE SETUP 

We use a custom-made coaxial chamber [27] for 

permittivity measurements. The first step is to measure the 

reflection coefficient of the chamber with the sample placed 

inside it.  

The measurement setup consists of the chamber and a 

vector network analyzer (NA, Agilent E5061A). The 

frequency range of the measurements is within 2 MHz to 

3 GHz range, which is determined by the NA. A photograph 

of the setup is shown in Fig. 6, while a photograph of the 

disassembled chamber and a material sample is shown in the 

inset of Fig. 6. The material samples are cylindrical, with 

diameter up to mm20  and height up to mm14 , placed 

between the plunger and the body of the chamber (see the 

model cross-section shown in Fig. 7). 

plunger

sample

chamber 

outer wall

SMA

SMA to N
chamber

 

Fig. 6.  Photograph of the NA with connected chamber. Disassembled 
chamber is shown in the inset. 

The chamber is made of brass and is fed by the standard 

SMA (SubMiniature version A) connector with extended 

PTFE (Teflon), whose outer conductor is connected to the 

chamber’s outer wall, while a metallic annular ring is 

connected to the inner conductor. The annular ring is 

supported by a pad made of PTFE. After a material sample is 
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centered on the annular ring, the chamber is closed by the 

plunger. 

The NA has an N-connector at the port. Hence, a standard 

SMA-to-N transition is used. Before measurements, a full one-

port calibration is performed, so that the reference plane for 

the measurements of the reflection coefficient is set at the 

beginning of the SMA connector, as it is marked in Fig. 7. 

V. NUMERICAL MODEL OF THE CHAMBER 

For the permittivity extraction, as good as possible 

numerical model of the chamber is needed. Once the 

numerical model is analyzed, the complex reflection 

coefficient   at the reference plane is calculated for various 

dielectric parameters of the sample, and compared to the 

measured reflection coefficient meas . Dielectric parameters 

that provide the closest values of   and meas  are declared as 

the extracted parameters. 

Due to the rotational symmetry along the vertical axis, we 

use the BoR model. The 3-D cross-section of the chamber 

model is presented in Fig. 7. 

TEM frill

PTFE pad

Sample

Plunger Chamber 

outer wall

Disc

(reference plane)

BoR symmetry axis

 

Fig. 7.  Cross-section of the numerical model of the chamber (BoR). 

There are three different domains (volumes of materials) in 

the model: the first one is PTFE, which is the dielectric in the 

used SMA connector and the pad, the second one is air, and 

the third is the material of the sample, of the unknown 

(complex) permittivity. The material samples are considered 

to be non-magnetic; therefore their permeability is set to 

H/m104 7
0

 . Metal losses are included by the surface 

impedance for all metallic surfaces as  /0c fZ , where 

  is the electric conductivity. The boundary condition in this 

case is exc
tanscsstan ),( EJMJE  Z , where exc

tanE  is the 

tangential component of the electric field due to the TEM frill. 

In the numerical model, this leads to altering the values of the 

elements on the main diagonal of the MoM system matrix 

[16], as compared to the lossless case. 

The excitation, i.e., the TEM frill, is placed at the reference 

plane, as it is marked in Fig. 7. 

Prior to the permittivity extraction from the measured 

results, the orders of the current approximations in the model 

and the number of integration points need to be set. In 

addition, we want to explore the influence of variations in r  

on  . Therefore, we preformed numerical experiments 

summarized in the following subsections. 

A. Convergence of the Reflection Coefficient 

We want to find the parameters of the numerical model that 

yield results for   with a precision higher than can be 

obtained in the measurements. To that purpose, we calculate 

  for various parameters, at MHz2  and GHz3 , for the 

chamber with a sample ( 5.3ε r   and 3
r 1085.10ε  ). The 

total number of BoR elements in the model is 23, the number 

of unknowns per each BoR element is }6,5,4{0 N , while 

the number of integration points intN , per integration, is 

varied from 60 to 160. 

The modulus and the argument of   are presented in Fig. 8 

(the upper panel is for MHz2f  and the lower panel is for 

GHz3f ). From Fig. 8 it can be concluded that   

converges for 5N  and 120int N  at both frequencies. 

Therefore, this setup is used for the extraction of the material 

parameters. 

 

Fig. 8.  The modulus and the argument of the reflection coefficient of the 

chamber: upper panel at f = 2 MHz and lower panel at f = 3 GHz. 

B. Comparison with Analytical Solution 

In order to check the accuracy of the setup, we analyze a 

cascaded connection of two sections of coaxial transmission 

lines, shown in the inset of Fig. 9. The first section is filled by 

a vacuum, while the second one is filled by a nonmagnetic 

lossless material of relative permittivity r . The radii of the 

inner and the outer conductors of the two sections are the 

same, mm 6,0i a  and mm 025,2i b . The length of each 

section is mm 6L . (The dimensions of coaxial transmission 

lines are chosen so that they are of the same order of 

magnitude as the dimensions of the coaxial feed of the 

chamber.) The port with the nominal impedance of  50  is 

placed at the beginning of the first line, while the end of the 

second line is short-circuited. The reflection coefficient is 

calculated both analytically ( theory ) and using the proposed 

numerical approach (  ). In the numerical model, the TEM-
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frill excitation is placed at the beginning of the first section. 

The relative permittivity is varied in the range 1001 r  . 

The results for the relative errors of  , namely 

theory

theory




, 

are presented in Fig. 9 for frequencies 30 MHz, 300 MHz, and 

3 GHz.  

ai
bi

L L

ε0, μ0 ε, μ0

Γ

Port

εr



Shorted

end

 

Fig. 9.  Relative error of Γ as a function of εr at 30 MHz, 300 MHz, and 

3 GHz. 

The results presented in Fig. 9 show that the relative error 

of   is below 0.1 % for all considered frequencies and all 

considered relative permittivities. This relative error is below 

the errors of the measurement setup. Hence, the model is 

sufficiently accurate for the present application.  

Note that the increase of the relative error of   in Fig. 9 for 

higher frequencies is due to the fact that the same numerical 

setup (i.e., the same number of basis functions and integration 

points) is used for all presented frequencies. Higher accuracy 

can be achieved if the number of basis functions is increased.  

With the aim to determine the influence of the number of 

significant digits, p, of the elements of the MoM system 

matrix to the accuracy of  , an additional numerical 

experiment is performed. We start from the system matrix 

with all elements calculated with at least 12 significant digits. 

In each sequential step, one digit is changed to zero starting 

from the least significant digit. This is repeated until we get 

only one significant digit. The same procedure is 

simultaneously applied to the excitation vector, i.e., the free 

column vector. For each p, the resulting linear system is 

solved, the reflection coefficient is calculated, and the relative 

error is compared to the theoretical solution. The operating 

frequency is f = 300 MHz and 1001 r  . Fig. 10 shows the 

relative errors of the reflection coefficients calculated with 

14,...,2,1p  significant digits for higher-order basis 

functions. Since the system matrix is calculated with 12 

accurate significant digits, the relative errors for 

}12,13,14{p  are practically the same. When 11p , we 

can see small discrepancies. Reducing the number of 

significant digits leads to the reduction in the accuracy of the 

reflection coefficient. Obviously, it is sufficient to calculate 

the system matrix with 9p  significant digits to keep the 

relative error below 0.1 %. 

Finally, we make a comparison between a low-order 

approximation (polynomial of degree one) and a higher-order 

approximation (polynomial of degree eight). As low-order 

approximations we consider polynomials of the order of zero 

or one, while higher-order approximations are all polynomials 

of degree higher than one. The low-order model has the largest 

segment of length l = 1 mm. As the operating frequency is 

f = 300 MHz, the electrical length of the largest segment is 

01.0/ l  in the dielectric with 100r  . The results are 

obtained with integrals calculated with either 2 or 3 significant 

digits. The total analysis time for the low-order approximation 

with 3p  is practically the same as the time needed for the 

higher-order approximation with 12p . The result presented 

in Fig. 10 shows that for the same amount of time, the higher-

order approximation leads to one order of magnitude lower 

relative error. Therefore, for the high precision analysis, a 

higher-order approximation is needed. 

εr  

Fig. 10.  Relative errors of  for matrix elements calculated with different 

number of significant digits, p, with either higher-order (h.o.) or low-order 

(l.o.) basis functions.  

C. Influence of Variations of Permittivity on Reflection 

Coefficient 

We consider the coaxial chamber shown in Fig. 7 and 

assume that we know the dimensions of the measured sample. 

In order to prepare tools for the estimation of the relative 

permittivity of the sample ( r ) from the measured data, we 

use the numerical model to investigate the relation between r  

and the reflection coefficient at the reference plane (  ), i.e., 

we consider the function )( r . The analytic form of this 

function is not known. However, if we consider small 

variations of r , the corresponding variations of   are 

expected to be practically linearly proportional to the 

variations of r  (Taylor expansion).  

To prove this assumption, we calculate the absolute change 
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in   normalized to the relative change of r , namely 

r

r




 . For a given frequency and small variations of r  

this ratio should be constant (but different for different 

frequencies and different complex permittivities). The results 

are presented in Fig. 11 for 5.3r  , 3
r 1085.10  , 

mm 4.10d  and mm 6.1h . Indeed, in the range 
2

rr
10 1010   , the ratio is constant, which illustrates 

the overall numerical stability of the model. When 

10
rr 10 , we enter into numerical noise of the 

differencing. Hence, the results become erratic. On the other 

hand, when the variations of r  become large (e.g., 

2
rr 10 ), the linearity does not hold any more because 

higher-order terms in the Taylor expansion become important.  

|Δεr/εr|

|Δ
Γ

|/
|Δ

ε r
/ε

r|

 

Fig. 11.  The absolute change of Γ normalized to relative variations of εr. 

The results from Fig. 11 can be used to estimate the relative 

error of extracted r  in the following way. If the measurement 

uncertainty of   is % 5.1 , then 
K

1
rr  

(assuming 1 ), where, from Fig. 11, 3.0K  is a constant 

(for 
2

rr
10 1010   ) at 300 MHz. Hence, 

% 5rr   is the relative error of the extracted r  at 

300 MHz. 

VI. MEASURING RELATIVE PERMITTIVITY OF MATERIAL 

SAMPLES  

Using the proposed high-precision BoR model and the 

outlined measurement setup, the relative permittivity of Teflon 

is measured. This material is chosen as a benchmark example 

since its relative permittivity is well known.  

At frequencies up to 3 GHz, the real part of the relative 

permittivity of Teflon is around 2r   and the imaginary part 

is very small, 4
r 10 . Hence, only r  is determined here. 

Measurement of Teflon is challenging because we used 

samples whose diameter is more than two times smaller than 

the diameter of the chamber and the relative permittivity is 

small (i.e., it is a low-contrast material). Hence, the influence 

of the measured sample on   is relatively small. 

The extraction of r  is done by minimizing the discrepancy 

between measured and calculated   at each considered 

frequency. Moreover, r  obtained at the previous frequency is 

used as the starting point for the minimization at the next 

frequency (i.e., we use tracking). The tracking solves the 

problem of possible multiple solutions of r , by using the fact 

that r  does not change significantly between successive 

frequencies (since Teflon is a low-loss material).  

Four samples of diameter 10 mm and thickness 2 mm, 

3 mm, 4 mm, and 5 mm are considered. The real part of the 

relative permittivity is extracted at eight frequencies in the 

range from 300 MHz to 2.4 GHz and results are presented in 

Fig. 12. From this figure, it can be seen that the relative error 

of the extracted r  is around % 5 . Namely, the maximal 

measurement uncertainty of   is estimated to be 0.5 %. 

Using the estimation of K  from Fig. 11, this leads to the 

measurement uncertainty of r  around % 5 . Note that the 

measurement uncertainty is due to various factors, e.g., the 

measurement error of the physical dimensions of the chamber 

and the sample, the surface flatness of the sample and the 

chamber (which is important for high-permittivity samples), 

the pressure of the plunger (which is important for soft 

samples, like Teflon), the actual position of the sample (i.e., 

the offset from the central position, which is important for 

very high frequencies), the measurement uncertainty of the 

NA, etc. 

The measurement results verify the proposed numerical 

model and the measurement procedure. 

r


 

Fig. 12.  Relative permittivity extracted from the measurements of the 
reflection coefficient for Teflon samples. 

VII. CONCLUSIONS 

The singularity-cancellation transformation for the 

numerical integration in the analysis of BoRs, using MoM-SIE 

based on domain decomposition, is presented in this work. 
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Using this transformation, all the encountered MoM integrals 

can be calculated up to 12 significant digits in a unified way, 

using 64-bit representation of real numbers. 

The high-precision numerical model based on the proposed 

approach is applied to the extraction of the relative complex 

permittivity at microwave frequencies, because it yields 

results of higher accuracy than can be achieved in the 

measurements setup.  

The obtained results for the measurements of samples of 

known permittivities verify the procedure for extraction of 

dielectric parameters as well as the proposed high-precision 

numerical model. Finally, the proposed numerical model can 

be used for higher frequencies, where resonance of the 

chamber occurs, which is the work in progress. 
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