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Abstract 

We report an innovative low-cost wet precipitation synthesis method for gelatin modified zinc oxide 

nanoparticles (GM ZnO NPs) at the interface between the gelatin hydrogel and aqueous electrolyte. 
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Diffusion of ammonia through the hydrogel matrices with different gelatin content induced precipitation of 

the product in contact with the surface of the aqueous solution of zinc ions. The obtained precipitate was 

subjected to thermal treatment to partially decompose the adsorbed gelatin in the NP structure. 

Physicochemical properties of obtained GM ZnO NPs were characterized by X-ray powder diffraction 

(XRD), scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), differential 

thermal analysis (DTA), thermogravimetry (TG), photon correlation spectroscopy (PCS), zeta potential 

measurements, and inductively coupled plasma-mass spectrometry (ICP-MS). The estimated mean 

crystallite size of GM ZnO NP powders was in the range from 5.8 nm to 12.1 nm. The synthesized NPs 

exhibit nanosheet morphology and arrange into flake-like aggregates. The toxic potential was investigated in 

vitro in human hepatocellular carcinoma cell line HepG2. The thiazolyl blue tetrazolium bromide (MTS) 

assay was used to assess cell viability, 2’,7’-dichlor-fluorescein-diacetate (DCFH-DA) assay to examine the 

formation of intracellular reactive oxygen species (ROS), and comet assay to evaluate the genotoxic 

response. GM ZnO NPs slightly reduced HepG2 cell viability, did not induce ROS formation, and showed 

low genotoxic potential at very high doses (100 µg mL
-1

). ZnO NPs fabricated and modified using the 

proposed methodology deserve further study as potential candidates for antibacterial agents or dietary 

supplements with low overall toxicity. 
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1. Introduction 

Zinc oxide (ZnO) is a multifunctional material used for diverse applications in fields such as biomedicine, 

photonics, electronics, cosmetics, the food industry, and many others. Nanostructured ZnOs are highly 

promising materials for a variety of biomedical applications including antibacterial, antidiabetic, and 

anticancer agents, biosensing, biomedical imaging, drug and gene delivery, wound healing, etc [1–4]. ZnO 

in the form of nanoparticles (NPs) has also proved to be beneficial for improving dietary supplementation 

[5, 6].     

Various synthesis methods were designed and developed for the production of ZnO NPs to achieve suitable 

material properties and address specific applications [7, 8]. In their previous studies, Stanković et al. (2013, 

2016) demonstrated the possibility to significantly alter the morphology and average particle size of ZnO by 

changing the pH value of the reaction system in hydrothermal processing, as well as the successful 

preparation of ZnO NPs via a simple microwave-assisted synthesis method. Among many synthesis 

methods, wet chemical precipitation stands out as a simple and low-cost method, which is easily modified 

and suitable for large-scale fabrication. Many studies have been performed to optimize the precipitation 

synthesis protocols by varying the physical parameters, precursors, stabilizers, and composition of the 

synthesis medium [11–22]. 

Several attempts have been made to modify the precipitation of ZnO NPs in the presence of gelatin as a 

biologically derived and highly biocompatible material. These studies were mainly focused on the 

precipitation in gelatin solution where gelatin can act as a stabilizer and organic template for nucleation and 

crystallization of ZnO NPs [23–29]. However, one of the studies also reports the possibility of using 

immobilized gelatin on the silicon wafer surface to modify ZnO crystallization [23]. 

Although ZnO NPs exhibit a multitude of favorable properties, their use in biomedicine is often hampered 

by the issue of toxicity, which is still not completely understood. Four different main mechanisms are 

commonly proposed in the literature (see [30–32] and references therein, and also [33–37]): 1) direct contact 

of ZnO NPs with the cell surface structures destroying the structural integrity of cells, 2) ZnO dissolution 
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and shedding of Zn
2+

 ions, 3) generation of reactive oxygen species (ROS), and 4) cellular internalization of 

ZnO NPs. 

The generation of ROS is commonly considered the most important mechanism and main contributor to 

ZnO NP toxicity [32]. However, the importance of other mechanisms cannot be neglected (e.g. involving the 

disruption of the cell membrane and leakage of cell contents) [38]. Some findings also imply that more 

meticulous research is required at the molecular level to unravel the underlying toxicity mechanisms that 

may involve several metabolic pathways [39]. 

The potential of ZnO NP to induce toxicity depends on the physical, chemical, and biological parameters 

described in the literature [32, 40, 41]. Toxicity of ZnO NPs is influenced by many factors including particle 

size and morphology [9, 42–44], particle concentration [45–47], particle surface properties [48, 49], particle 

interfacial potential [50], cell type [51, 52], medium composition [53], and pH [54–56]. 

ZnO NPs typically exhibit higher toxicity towards bacterial and cancerous cells compared to normal human 

cells [51, 57–59]. However, cytotoxic and genotoxic effects of ZnO NPs on normal human cells reported in 

the literature [59–62] should also be minimized to achieve safe and effective treatment. There were only few 

attempts to reduce the toxicity of ZnO NPs using the approaches of transitional metal doping [63, 64], silica 

coating [65, 66], and other surface chemistry modifications [67–72]. 

Most notable metal doping with iron decreased ZnO NP dissolution and release of Zn
2+

 ions, but it also 

increased ROS generation (probably through Fenton-type reactions), and overall toxicity was not reduced 

[64]. Hermetic silica coating of ZnO nanorods reduced their genotoxicity [65], while another study showed 

reduced cytotoxicity of silica-coated ZnO NPs through the decrease in the dissolution of core ZnO NPs [66]. 

Surface chemistry was found to influence the generation of ROS directly [67], and the PEGylation of ZnO 

NPs contributed to the reduction in cytotoxicity through the decrease in cellular uptake [69]. Decomposition 

of organic impurities at the surface of commercial ZnO NPs with hydrogen peroxide treatment also led to 

the reduced cytotoxicity attributed to decreased ROS generation and protection of membrane integrity [70]. 

Synthesized ZnO NPs were also precoated by incubation in the supplemented medium for cell culture to 

induce the formation of the hard protein corona, which in turn significantly lowered their toxicity. The 
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approach used in this study led to the inhibition of ROS generation as well as to the reduced dissolution of 

ZnO NPs [71]. Coating of ZnO nanocrystals with 2-(2-methoxyethoxy)acetate ligand shell prevented the 

release of Zn
2+

 ions from the core and inhibited ROS generation [72]. 

Further improvements in the fabrication of ZnO NPs are necessary to produce safe nanomaterials for diverse 

biomedical applications. The issue of nanomaterials safety becomes increasingly important not only from 

the biomedical but also from the environmental perspective implying that new nanomaterials should be safe 

by design [73–75]. 

We present an innovative precipitation synthesis of gelatin modified (GM) ZnO NPs at the gel/liquid 

interface where NP properties can be modulated by changing the gelatin content of the hydrogel. Our 

synthesis methodology results in altered ZnO NPs which are safe-by-design with very low in vitro toxicity. 

2. Materials and methods 

2.1. Materials 

Synthesis of GM ZnO NPs was performed using the following chemicals: zinc acetate dihydrate 

(Zn(CH3COO)2·2H2O) p.a. purchased from E. Merck, Darmstadt, Germany, edible bovine gelatin (crystal, 

~220 g Bloom) obtained from Delhaize Group, and 25% aqueous ammonia solution (NH4OH) p.a. supplied 

by NRK Inženjering, Belgrade, Serbia. All chemicals were used without further purification. The aqueous 

solutions used for the synthesis were prepared with distilled water. 

The following chemicals were used for toxicological assessment: Eagle Minimal Essential Medium and fetal 

bovine serum (FBS) were obtained from Gibco, Life Technologies, Paisley, UK; non-essential amino acids, 

ethanol, methanol, dimethylsulphoxide (DMSO), phenazine methosulfate (PMS), tert-butyl hydroperoxide 

(TBHP), benzo(a)pyrene (BaP) from Sigma, St. Louis, MO, USA; penicillin/streptomycin, FBS, L-

glutamine and phosphate-buffered saline (PBS) from PAA Laboratories, Dartmouth, NH, USA; etoposide 

(ET) from Santa Cruz Biotechnology, St. Cruz, USA; low melting point agarose (LMP), normal melting 

point agarose (NMP), 2’,7’-dichlor-fluorescein-diacetate (DCFH-DA) and trypsin from Invitrogen™, Life 

Technologies, Carlsbad, CA, USA; triton X-100 from Fisher Sciences, New Jersey, USA; thiazolyl blue 
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tetrazolium bromide (MTS) from Promega (Madison, USA) and GelRed™ from Biotium, Fremont, CA, 

USA. All other chemical reagents were of the purest grade available, and all solutions were made using 

Milli-Q water. 

2.2. Synthesis of GM ZnO NPs 

GM ZnO NPs were synthesized using the modified wet precipitation method at the gel/liquid interface in the 

open reactor under atmospheric pressure. 0.878 g of Zn(CH3COO)2·2H2O was dissolved in 100 mL of 

distilled water. The required amount of bovine gelatin was mixed with distilled water to obtain 40 g of 5 

wt%, 10 wt%, or 15 wt% gelatin solution. The mixture was mildly stirred at a rate of 200 rpm for 30 min at 

40 °C to fully dissolve gelatin crystals while avoiding gelatin degradation. After this period, 4 mL of 25% 

NH4OH solution was added, and the stirring was continued for 1 min to homogenize the mixture. The 

obtained solution was transferred to a Petri dish with a diameter of 150 mm to form a flat, homogeneous 

layer. The dish with the solution was then capped and refrigerated at 7 °C for 1 h to cross-link the gel. The 

dish with formed gel was subsequently moved to a flat surface at ambient temperature, and the aqueous 

solution containing zinc ions was slowly poured over the surface of the gel. After 24 h of precipitation at 

ambient temperature, a dense rough layer of white solid was obtained at the gel/liquid interface. The solution 

on the top was decanted, and the white solid layer was then mechanically peeled off from the surface of the 

gel and broken into pieces using the stream of distilled water. The aqueous suspension containing the 

precipitate was washed with distilled water and centrifuged at ~7370 g for 5 min three times to remove 

residual impurities. The obtained slurry was oven-dried at 75 °C for 24 h under atmospheric pressure. The 

dry precipitate was subsequently calcinated at 400 °C for 1 h under atmospheric pressure to improve the 

crystallinity of ZnO and partially decompose the gelatin. 

GM ZnO NPs synthesized at the surface of hydrogels with 5 wt%, 10 wt%, and 15 wt% of gelatin content 

will be designated in the further text as ZnO-5, ZnO-10, and ZnO-15, respectively. 

2.3. Characterization of GM ZnO NPs 



7 

 

Characterization of synthesized GM ZnO NPs was performed by X-ray powder diffraction (XRD), scanning 

electron microscopy (SEM), Fourier-transform infrared spectroscopy-attenuated total reflectance (FTIR-

ATR), thermal analyses (differential thermal analysis (DTA) and thermogravimetry (TG)), photon 

correlation spectroscopy (PCS), zeta potential measurements, and inductively coupled plasma-mass 

spectrometry (ICP-MS). 

XRD data were collected using a Philips PW-1050 diffractometer, operated at 40 kV/20 A with Cu Kα1, 2 

radiation. The diffraction peaks were recorded over a 2θ range of 10-70 ° with a step of 0.05 ° and a 

counting time of 5 s per step. The observed crystal phases were acknowledged by comparing the recorded 

data with the one reported in the Joint Committee of Powder Diffraction Standards (JCPDS) database.  

The microstructure of the GM ZnO nanopowders with thin gold coating was imaged using the field emission 

scanning electron microscope FE-SEM, TESCAN MIRA 3 XMU, operated at 20 keV. 

FTIR-ATR spectra of the powders were recorded using the Thermo Scientific Nicolet iS10 FTIR 

Spectrometer instrument equipped with Smart iTX ATR Diamond accessory. The spectra were acquired 

over the spectral range of 400-4000 cm
-1

 with the resolution of 0.5 cm
-1

 and subsequently normalized to the 

highest absorption band intensity. 

The thermal stability of the air-dried powders was investigated using the simultaneous TG/DTA analysis 

with the instrument Setsys, SETARAM Instrumentation, Caluire, France in the temperature range from 40 

°C up to 800 °C in the air atmosphere under the flow rate of 20 mL min
-1

. The sample powder was initially 

stabilized at 40 °C for 5 min and then heated to 800 °C with a controlled heating rate of 10 °C min
-1

. All TG 

and DTA curves were normalized per sample mass. 

The average particle size (Zavg) and polydispersity index (PDI) in the tested samples were determined by 

PCS using a ZetasizerNano ZS90 (Malvern Instruments, Worcestershire, United Kingdom) equipped with 

He-Ne laser light of 633 nm wavelength. Aqueous suspensions (100 μg mL
-1

) of ZnO-5, ZnO-10, and ZnO-

15 powders were prepared in deionized water using a Sonorex RK 102 H ultrasonic bath (Bandelin, 

Germany). The detection of scattered light was performed at an angle of 90 °. All measurements were 
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performed consecutively in triplicate at a temperature of 25 ± 0.1 °C. Recorded measurement data were 

analyzed with Dispersion Technology Software, and the obtained results are reported in the form mean value 

± standard deviation. 

The zeta potential () of ZnO-5, ZnO-10, and ZnO-15 powders was measured using a ZetasizerNano ZS90 

(Malvern Instruments, Worcestershire, United Kingdom). Before the measurements, the operating 

conditions were confirmed and adjusted using a calibrated latex dispersion supplied by the instrument 

manufacturer. Aqueous suspensions (100 μg mL
-1

) of the tested materials were prepared in deionized water 

using a Sonorex RK 102 H ultrasonic bath (Bandelin, Germany) and transferred to a disposable folded 

capillary DTS1070. Each measurement was carried out in triplicate at 25 ± 0.1 °C. The results of zeta 

potential measurements are presented as mean value ± standard deviation.  

The solubility of GM ZnO NPs was determined by measuring the content of zinc ions in the solution. 

Quantification of zinc was carried out using the ICP-MS instrument (ICP-MS, iCAP Qc, Thermo Scientific, 

United Kingdom). Suspensions of ZnO-5, ZnO-10, and ZnO-15 powders (100 μg mL
-1

) were prepared in 

physiological saline solution (0.9% NaCl) and sustained for 24 h at 37 ± 1 °C (Vaciotem, JP Selecta, Spain) 

before the measurements.    

2.4. Cell culture 

Human hepatocellular carcinoma cells (HepG2) were obtained from the European Collection of 

Authenticated Cell Cultures (Salisbury, UK; Cat. N° 85011430). The cells were grown at 37 °C and 5% CO2 

in Eagle Minimal Essential Medium supplemented with 10% FBS, 2 mmol L
-1

 L-glutamine, 1% non-

essential amino acids, and 100 IU mL
-1

 penicillin/streptomycin. Cells were routinely checked for 

mycoplasma (MycoAlert™, Lonza, Walkersville, USA). The experiments were performed on HepG2 cells 

between cell passages 15 and 20. 

2.5. Determination of cytotoxicity (MTS assay) 

HepG2 cells were seeded at a density of 8000 cells per well (40000 cells mL
-1

) into 96-well plates (Nunc, 

Naperville IL, USA) for 24 h at 37 °C and 5% CO2. The viability of HepG2 cells after 24 h of exposure to 
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GM ZnO NPs (ZnO-5, ZnO-10, and ZnO-15) at graded concentrations (0.01, 0.1, 1, 10, and 100 µg mL
-1

) 

was tested with the MTS assay. MTS and PMS solutions were mixed in the ratio 20:1. The final solution was 

added 1:5 to treated cells that were incubated for additional 3 h. Subsequently, the biological reduction of 

the tetrazolium to the formazan by viable cells was analyzed by measuring the absorbance of the control and 

exposed cells at the wavelength of 490 nm using a spectrofluorimeter (Synergy™ Mx, BioTek Instruments). 

Experiments were performed in five replicates. Etoposide (ET; 125 µg mL
-1

) was used as a positive control. 

Statistical significance between treated groups and the solvent control was determined by one-way analysis 

of variance (ANOVA), with Dunnett's Multiple Comparison test; P < 0.05 was considered as statistically 

significant. 

2.6. Determination of intracellular ROS formation (DCFH-DA assay)  

The formation of intracellular ROS was measured using a fluorescent probe, DCFH-DA as described by 

Osseni et al. (1999) with minor modifications (Petković et al. (2011)). Briefly, HepG2 cells were seeded at a 

density of 15000 cells per well (75000 cells mL
-1

) into black 96-well plates (Nunc, Naperville IL, USA) for 

24 h at 37 °C and 5% CO2. After the incubation, the cells were exposed to DCFH-DA (20 µmol L
-1

) in PBS 

for 30 min. Subsequently, DCFH-DA was removed, and cells were treated with GM ZnO NPs (ZnO-5, ZnO-

10, and ZnO-15) at graded concentrations of 0, 0.1, 1, 10, and 100 µg mL
-1

 in PBS. The negative control 

(non-treated cells), solvent control (1% ethanol), and positive control (TBHP; 0.5 mmol L
-1

) were included 

in each experiment. For kinetic analyses, the plates were maintained at 37 °C, and the fluorescence intensity 

was determined every 30 min using a microplate reading spectrofluorimeter (Synergy™ Mx, BioTek 

Instruments) at the excitation and emission wavelengths of 485 and 530 nm, respectively. Each experiment 

was performed in five replicates. 

The statistical significance between control (solvent) and exposed groups was determined using Kruskal–

Wallis one-way ANOVA with Dunnett's Multiple Comparison test; P < 0.05 was considered as statistically 

significant. 

2.7. Determination of genotoxicity (alkaline comet assay) 
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The formation of DNA strand breaks in HepG2 cells due to the exposure to GM ZnO NPs (ZnO-5, ZnO-10, 

and ZnO-15) at concentrations of 0, 0.1, 1, 10, and 100 µg mL
-1

 was analyzed with the alkaline comet assay 

according to Singh et al. (1988) with details described in Møller et al. (2020). After 24 h of exposure, the 

cells were washed with PBS, trypsinized, and centrifuged. 30 µl of cell suspension was mixed with 1% LMP 

agarose, added to fully frosted slides precoated with 1% NMP agarose, and lysed (2.5 M NaCl, 100 mmol L
-

1
 EDTA-Na2, 10 mmol L

-1
 Tris, 1% Triton X-100; pH 10; 1 h at 4 °C). After the lysis, the slides were placed 

in electrophoresis buffer (1 mmol L
-1

 M EDTA-Na2, 300 mmol L
-1

 NaOH; pH 13; 20 min at 4 °C) for DNA 

unwinding, and electrophoresis was conducted at 1 V cm
-1

 (20 min at 4 °C). Finally, the slides were 

neutralized (0.4 M Tris buffer; pH 7.5; 15 min at 4 °C). For DNA damage analysis, the gels were stained 

with GelRed Nucleic Acid Stain (1:3333), and the images observed using the fluorescence microscope 

(Eclipse 800, Nikon) and image analysis software Comet IV (Perceptive Instruments, Bury St Edmunds, 

UK). Fifty randomly selected nuclei were analyzed per experimental point, and the DNA damage was 

expressed as the percentage of DNA in the comet tail. The experiments were repeated three times 

independently. Benzo(a)pyrene (BaP; 30 µmol L
-1

) was used as a positive control. One-way ANOVA was 

used to analyze the differences in the percentage of tail DNA between solvent control and exposed cells. For 

comparing the exposed groups to the control group Dunnett's Multiple Comparison test was used; P < 0.01 

was considered as statistically significant. 

3. Results 

3.1. Thermal analysis (TG/DTA) of GM ZnO NPs 

TG and DTA curves (Fig. 1) were recorded starting from the GM ZnO NP powders before calcination to 

estimate their thermal stability. According to the DTA curves, two processes occur during the heating, which 

correspond to water loss and gelatin degradation. Loss of adsorbed and bound water occurs from 40 °C up to 

about 240 °C, which is also reflected in the 13% of weight loss appearing in the TG curves. Gelatin 

degradation starts at 240 °C and reaches its peak on average at around 343 °C. As shown by DTA curves, 

the entire process of gelatin degradation occurs through three stages comprising various degrees of 

decomposition, oxidation, and gasification [25, 80]. These stages are related to the approximate temperature 
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ranges from 240 °C to 400 °C, 400 °C to 490 °C, and from 490 °C to 800 °C. The first stage corresponds to 

the mass loss of 18%, the second stage to the mass loss of 3%, and the final stage to the mass loss smaller 

than 1%. 

According to DTA curves, gelatin degradation peak position shifts towards higher temperatures with a 

decrease in the gelatin content of the hydrogel during the synthesis of NPs. This shift is more than 10 °C for 

ZnO-5 compared to the peak positions for ZnO-10 and ZnO-15. Similar trends can be observed for 

temperatures at the onsets of other characteristic processes or their stages. Improvement in the thermal 

stability of GM ZnO NPs can be explained by the stronger interaction of the ZnO surface and adsorbed 

gelatin during the synthesis at the hydrogel surface with lower gelatin content. 

3.2. XRD characterization of GM ZnO NPs 

Recorded diffractograms of the synthesized GM ZnO NPs (Fig. 2) confirmed that the only crystalline phase 

present in the prepared samples is the one originating from the ZnO hexagonal wurtzite structure crystallized 

on the surface of the gelatin matrix. All reflections appear to be in good agreement with JCPDS-no. 89-7102 

[81]. 

Diffraction patterns originating from impurities were not detected, which indicates a pure hexagonal ZnO 

phase. The occurrence of the broad diffraction peaks with high intensity verifies the crystalline nature of 

ZnO NPs. All prepared samples have overall similar XRD patterns with some differences in crystallite size 

and relative peak intensity level. After fitting the diffraction peaks corresponding to the crystallographic 

directions [100], [002], and [101] the mean crystallite size was estimated to be below 12.1 nm in all samples 

(for fitting and calculation details refer to Online Resource 1). The average crystallite size of ZnO-5 

powder was found to be slightly larger than for ZnO-10 and ZnO-15 powders. Intensity level deviations are 

caused by the random orientation of crystallographic planes. As evidenced by XRD measurements, gelatin 

modification did not induce changes in the crystal structure of ZnO NPs. 

3.3. SEM characterization of GM ZnO NPs 



12 

 

The overall morphology of the prepared GM ZnO NPs is similar in all samples (Fig. 3). SEM images show 

the sheet-shaped GM ZnO NPs with irregular edges stacked into flake-like structures and larger aggregates 

of submicron size. Almost no difference can be observed in the microstructure of ZnO-10 and ZnO-15 

powders. ZnO-5 powder exhibits a slightly larger particle size and softer agglomerates. 

3.4. FTIR-ATR characterization of GM ZnO NPs 

We recorded the FTIR-ATR spectrum of the pure air-dried gelatin film (with initial gelatin content of 10 

wt%) and the FTIR-ATR spectra of GM ZnO NPs after calcination (Fig. 4). Gelatin film exhibited multiple 

bands characteristic of peptides or proteins. Inter-atomic vibration bands in the fingerprint region (below 

1000 cm
−1

) are characteristic for metal oxides [82]. Such distinct bands were detected in our ZnO NPs 

together with the absorption bands corresponding to residual acetate impurities and organic residues after 

gelatin decomposition and oxidation. 

Fig. 4a shows the FTIR-ATR spectrum of pure air-dried gelatin film. Gelatin absorption bands at 3322, 

3089, 1652, and 1558 cm
-1

 can be attributed to amide A, amide B, amide I, and amide II, respectively [83]. 

The absorption band at 3322 cm
-1

 overlaps with the broad H-O-H stretching band of adsorbed water. C-H 

stretching is indicated by the bands at 2964 and 2882 cm
-1

, while the band at 1456 cm
-1

 can be attributed to 

C-H bending. Absorption bands at 1404, 1339, 1244, and 1204 cm
-1

 correspond to the amide III region. 

Bands at 1244 and 1404 cm
-1

 in this region are overlapped with the C-O stretching bands of carboxyl 

groups. The remaining absorption bands at 1083 cm
-1

 and 668 cm
-1

 were attributed to the C-O stretching of 

carbohydrate residues [84] and out-of-plane N-H bending (amide V band [83]), respectively. 

Fig. 4b illustrates the FTIR-ATR spectra of GM ZnO NPs synthesized using hydrogels with different gelatin 

content (ZnO-5, ZnO-10, and ZnO-15). The absorption band at 3363 cm
-1

 corresponds to the O-H stretching 

of adsorbed water, while the bands at 2960, 2927, and 2856 cm
-1

 are C-H stretching modes. Bands at 1652 

and 1552 cm
-1

 are amide I and amide II, while the bands at 1506 and 1354 cm
-1

 can be attributed to 

asymmetric and symmetric N-O stretching [85], respectively. Absorption bands at 1393, 1245, and 1044 cm
-

1
 appear due to the C-O stretching, while the bands at 1428 and 942 cm

-1
 indicate O-H bending of carboxyl 

groups. The bands at 830 and 738 cm
-1

 were assigned to the =C-H and C-H out of plane bending, 
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respectively. The remaining absorption bands correspond to the Zn-O stretching lattice vibrations for the 

octahedral (692 cm
-1

) and tetrahedral (514 and 472 cm
-1

) coordination. 

3.5. Determination of particle size, zeta potential, and solubility of GM ZnO NPs 

Obtained results of particle size measurements by PCS reveal high values of PDI and the formation of 

submicron-sized agglomerates in aqueous suspension for all GM ZnO NP powders. All mean values of zeta 

potential are lower than 20 mV indicating the limited stability of GM ZnO NPs in aqueous suspension. 

Results of particle size and zeta potential measurements are listed in Table 1. 

Table 1. Average particle size (Zavg), polydispersity index (PDI), and zeta potential () of GM ZnO NP 

powders suspended in deionized water at 25 ± 0.1 °C reported with the corresponding standard deviation. 

Sample powder Zavg (nm) PDI  (mV) 

ZnO-5 447.3 ± 19.5 1 18.0 ± 1.4 

ZnO-10 449.9 ± 37.5 0.738 ± 0.157 18.5 ± 1.5 

ZnO-15 325.4 ± 56.1 0.744 ± 0.228 15.7 ± 1.2 

 

The quantity of zinc formed by the dissolution of GM ZnO NPs in physiological saline solution after 24 h of 

incubation at 37 ± 1 °C was similar for all powders and can be represented in the form of cumulative mean ± 

standard deviation as 9.58 ± 2.93 μg mL
-1

.    

3.6. Biocompatibility studies 

3.6.1. In vitro cytotoxicity of GM ZnO NPs 

The cytotoxic activity of GM ZnO NPs (0, 0.01, 0.1, 1, 10, and 100 µg mL
-1

) was determined with the MTS 

assay after 24 h of exposure in HepG2 cells (Fig. 5). The viability of HepG2 cells exposed to ZnO-10 and 

ZnO-15 was significantly decreased only at the highest tested concentration (100 µg mL
-1

) on average to 80 

and 87%, respectively, compared to control, while ZnO-5 did not influence cell viability. The viability of 

cells in the solvent control did not differ significantly from that of non-treated control cells (data not shown). 
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Based on these results, the concentrations that did not decrease cell viability for more than 25% were used in 

further experiments for the determination of ROS formation and DNA damage induction. 

3.6.2. Induction of intracellular ROS by GM ZnO NPs 

The induction of intracellular ROS formation by GM ZnO NPs was determined by the fluorescent probe 

DCFH-DA. The probe is hydrolyzed by intracellular esterases to a non-fluorescent product DCFH, which in 

the presence of ROS rapidly oxidizes to the highly fluorescent 2’,7’-dichlorofluorescein (DCF). The DCF 

fluorescence intensity is proportional to the amount of ROS formed intracellularly. The results showed that 

none of the studied GM ZnO NPs increased the formation of ROS during a 2.5 h period (Fig. 6). The 

positive control (0.5 mmol L
-1

 TBHP) induced about an 8-fold increase in DCF fluorescence over the 

control cells after 2.5 h of exposure, confirming the expected performance of the test system. 

3.6.3. Induction of DNA strand breaks 

HepG2 cells were exposed to graded doses (0.1, 1, 10, and 100 µg mL
-1

) of GM ZnO NPs for 24 h and the 

induction of DNA strand breaks detected by the comet assay was compared to evaluate the genotoxic 

potential of GM ZnO NPs. All GM ZnO NPs induced DNA damage only at the highest tested concentration 

of 100 µg mL
-1

 (Fig. 7). 

4. Discussion 

4.1. Proposed mechanism of GM ZnO NPs formation 

The formation of the GM ZnO NPs is primarily driven by the diffusion of ammonia through the porous 

gelatin hydrogel matrix. The matrix exhibits complex porosity patterns that strongly depend on gelatin 

content in the hydrogel [86]. Zinc aquo complexes undergo deprotonation in the presence of excess hydroxyl 

ions produced by the hydrolysis of ammonia diffusing towards the interfacial region. This process enables 

the nucleation and growth of templated ZnO nanocrystals. Formation of ZnO NPs involving Zn(CH3COO)2 

and NH4OH as precursors is a complex process that can be described by the set of chemical reactions 

revealing different pathways for ZnO precipitation [87].   
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Surface pores of the gelatin hydrogel play a crucial role in controlling the nucleation and subsequent self-

organization of precipitated ZnO nanocrystals. Hydrogel pores facing the aqueous Zn(CH3COO)2 solution 

above can serve as a template and stabilizer of nanocrystals, while abundant polar groups of gelatin 

molecules (-COOH and -NH2) can act as coordination sites [25]. 

The initial electrostatic interaction between the zinc aquo complex and polar groups of gelatin facilitates the 

adsorption of gelatin onto the surface of ZnO. Diffusion of ammonia towards the gel/liquid interface 

weakens the cross-linking ability of gelatin at the surface presumably due to the localized pH increase, and 

thus further aids the detachment of gelatin macromolecules from the hydrogel structure. After nucleation at 

the provided coordination sites, the growth of ZnO crystals is mainly directed perpendicularly to the c-axis 

because of gelatin adsorption on polar surfaces as reported in previous studies [24, 25], which results in the 

initial nanosheet particle morphology. Further assembly of nanosheets into aggregates is dictated by their 

size and the structure of porosity at the gelatin hydrogel surface. 

4.2. Synthesis parameters and physicochemical characterization of GM ZnO NPs 

We propose the simple and cost-effective synthesis of GM ZnO NPs as a means to design safer nanomaterial 

with low toxicity. NPs precipitate at the interface of Zn(CH3COO)2 solution and gelatin hydrogel containing 

NH4OH. The diffusion of a precursor through the porous hydrogel matrix towards the gel/liquid interface 

controls precipitation synthesis. Gelatin content in the hydrogel indirectly affects particle size and 

aggregation, as it defines the porosity patterns and mean pore size of the hydrogels. Nindiyasari et al. (2014) 

qualitatively studied the porosity of the gelatin hydrogel structure. They observed that pore walls become 

thicker, while the overall pore size becomes reduced with the increase in gelatin content. According to their 

findings, pore sizes in hydrogels with gelatin content of 5 wt% or higher are expected to be in the μm range. 

The estimated size of the pores is sufficiently large for the efficient diffusion of ammonia as well as the 

aggregation of NPs through self-assembly. 

Gelatin content in the hydrogel also determines the degree of physical cross-linking and the surface density 

of coordination sites templating ZnO precipitation. Hydrogels with higher gelatin content have more densely 

packed coordination sites and stronger cross-linking. Hence, an increase in gelatin content leads to a greater 
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number of NPs which can be formed at the surface while the adsorption interactions of gelatin 

macromolecules with ZnO become weaker. TG/DTA analysis in our study revealed that GM ZnO NPs 

grown on the surface of hydrogels with the lowest gelatin content have the best thermal stability, which 

indicates the strongest adsorption interactions between gelatin and ZnO in this case. Differences in the 

thermal stability of the GM ZnO NPs are also reflected in the FTIR-ATR spectra of NP powders calcinated 

under the same conditions. 

TG/DTA analysis additionally provides an important insight into the optimal calcination temperature which 

can result in partial decomposition and removal of gelatin, while ensuring that only the small amount of 

strongly bound organic residues acts as NP modifier. 

FTIR-ATR spectra of calcinated powders indicate the presence of ZnO and organic residues containing 

mainly short carbon backbones with some amount of oxidized nitrogen functionalities. With the increase of 

gelatin content in the hydrogel, a gradual change can be observed in the intensity of several absorption bands 

corresponding to organic residues after calcination. These changes in the spectra can be attributed to the 

different extents of gelatin degradation at the NP surface after thermal treatment. 

Results of particle size measurements using PCS reflect the strongly polydisperse nature and very broad size 

distribution of GM ZnO NPs in aqueous suspension with average PDI values above 0.7. The obtained PDI 

values are comparable with PDI values of ZnO NPs obtained by some green synthesis methods [88, 89]. GM 

ZnO NPs exhibit a positive surface charge indicated by the mean zeta potential values in the approximate 

range from 15 mV to 19 mV. This range of zeta potential values indicates incipient instability and a 

tendency to form aggregates [90], which is in accordance with the results of particle size measurements by 

PCS. Uncoated synthesized ZnO NPs with wurtzite crystal structure typically exhibit positive surface charge 

and zeta potential values that can reach around 25 mV after coating at neutral pH [91]. Therefore, 

modification of ZnO NPs with gelatin residues did not significantly alter their colloidal stability in aqueous 

suspension. 

We measured the solubility of GM ZnO NPs in physiological saline solution (0.9% or 154 mM NaCl) after 

24 h at 37 °C. The physiological saline solution was our medium of choice because its osmolarity 
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corresponds with the osmolarity of the extracellular liquid and its constituents (Na
+
 and Cl

− 
ions) dominate 

in the extracellular liquid. Measured solubility of GM ZnO NPs is comparable with the solubility of 

unmodified ZnO NPs in relevant media for biological applications such as Dulbecco’s Modified Eagle’s 

Medium and nanopure water under similar experimental conditions [92]. Hence, the presence of gelatin 

residues also does not seem to significantly affect the solubility of GM ZnO NPs.      

Research on nanoparticle-protein interactions shows that protein corona can significantly affect the behavior 

and toxicity of NPs [93, 94]. Hence, initial gelatin interactions with ZnO NPs require more detailed 

investigation which is beyond the scope of this study. As gelatin represents the mixture of peptides and 

proteins [95] such interactions are difficult to analyze and should be a topic for further research. 

Relevant comparisons can be made between our method for the synthesis of ZnO NPs and standard co-

precipitation synthesis methods or predominant green synthesis methods based on biological extracts of 

plants and algae. Co-precipitation methods are typically performed in bulk solution at elevated temperature, 

and they produce agglomerated NPs with limited biocompatibility due to the use of harsh chemicals as 

precursors in large amounts [7, 8]. Phytochemical synthesis methods are eco-friendly and the obtained ZnO 

NPs commonly exhibit good biocompatibility. However, there are also some disadvantages imposing 

limitations on the wider use of phytochemical methods. These methods require long preprocessing times to 

isolate and characterize the biological extract, biological extract usually has a limited lifetime and complex 

chemical composition, exact synthesis mechanisms are still not elucidated, and resulting ZnO NPs exhibit a 

broad size distribution [8, 96]. 

Our synthesis method exploits the possibility of chemical precipitation at the interface between the gelatin 

hydrogel and aqueous electrolyte enabling the simultaneous synthesis of ZnO NPs and their modification 

with gelatin components. After a short thermal processing step, we obtain GM ZnO NPs that are highly 

biocompatible and exhibit low toxicity. The method relies on well-known precipitation mechanisms and the 

use of commercially available standardized gelatin, which opens the possibility to easily scale up the 

fabrication. While our synthesis approach does not offer significant improvements in terms of size 
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distribution and particle aggregation, it is simple, cost-effective, and successfully combines the useful 

features of precipitation and phytochemical methods.        

The approach of ZnO NP precoating using supplemented cell culture medium [71] can be used to achieve 

the low toxicity levels of resulting ZnO NPs that are comparable to our approach in terms of cell viability 

and ROS generation. However, the use of supplemented cell culture medium significantly increases the cost, 

complexity, and duration of the fabrication process required to obtain modified ZnO NPs with low toxicity. 

Our approach enables the use of low-cost and readily available gelatin while incorporating the required ZnO 

NP modification already in the initial synthesis stage thus eliminating the need for the additional 

modification step. 

The synthesis approach presented in this study is not necessarily limited to the fabrication of GM ZnO NPs. 

Its use should be further evaluated for the gelatin modification of other NPs that can be synthesized via 

precipitation under similar experimental conditions. 

4.3. Toxicity evaluation of GM ZnO NPs 

We investigated the cytotoxic and genotoxic effects of three types of GM ZnO NPs (ZnO-5, ZnO-10, and 

ZnO-15) in the human hepatocellular carcinoma (HepG2) cell line. This cell line was selected for studying 

the toxic activities of ZnO NPs because it is widely used in toxicological studies as one of the test systems of 

choice. The HepG2 cells express wild-type tumor suppressor TP53 [97], which makes them a suitable model 

for studying p53 regulated response to DNA damage, have a known karyotype [98] and have retained the 

activity of several phase I and II metabolic enzymes involved in the metabolism and detoxification of 

xenobiotics substances [99]. In vitro toxicity studies with ZnO NPs have demonstrated that their toxic 

effects are mainly related to the generation of ROS with the induction of oxidative stress [100, 101], which 

consequently induces damage to cellular macromolecules, including DNA [100–104], while at higher 

concentrations exposure to ZnO NPs is associated with apoptotic death [100]. It was previously reported that 

ZnO NPs after 24 h of exposure decreased the viability of HepG2 cells at doses ≥ 10 µg mL
-1

 [105] and ≥ 14 

µg mL
-1

 [100], human peripheral blood lymphocytes at doses ≥ 1 mmol L
-1

 (≈ 80 µg mL
-1

) [101], nasal 

mucosa cells at doses ≥ 5 µg mL
-1

 [103], human lung epithelial cells (L-132) at doses ≥ 25 µg mL
-1

 [106], 
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human monocytes (THP-1) at ≥ 10 µg mL
-1

 [106], and human colon carcinoma cells (Caco-2) [107]. Divya 

et al. (2018) synthesized gelatin-coated ZnO NPs for biomedical applications using a co-precipitation 

method involving thermal treatment. The synthesized gelatin-coated ZnO NPs significantly reduced the 

viability of HepG2 cells at doses ≥ 25 µg mL
-1

, while at the dose of 100 µg mL
-1

, viability was reduced by 

nearly 90% compared to the control. The GM ZnO NPs synthesized in this study, namely ZnO-10 and ZnO-

15 slightly reduced cell viability at 100 µg mL
-1

, but the decrease was less than 20% compared to control. 

ZnO-5 did not affect cell survival under applied exposure conditions. 

The induction of ROS was measured in HepG2 cells after a short time of exposure up to 150 min using a 

DCFH-DA fluorescent probe. The results showed that GM ZnO NPs at applied conditions did not induce 

ROS formation. On the contrary, ZnO NP-induced oxidative stress has been demonstrated in HepG2 cells 

exposed to 20 µg mL
-1

 [100] and in mouse podocytes [108] exposed to 10, 50, and 100 µg mL
-1

 of ZnO NPs 

for 6 h. ZnO NP-induced ROS formation has also been reported in other cell lines. In the human embryonic 

kidney (HEK-293) ZnO-NPs induced ROS formation was observed at concentrations > 25 µg mL
-1

 after 48 

h of incubation [109]. ZnO-NP induced ROS formation detected by DCF probe was demonstrated also in 

RAW 264.7 with an immediate strong increase in fluorescence whereas no increase of DCF fluorescence 

was observed in BAES-B cells [110]. 

The comet assay was applied to assess DNA damage in HepG2 cells after exposure to GM ZnO NPs. 

Genotoxic effects induced by GM ZnO NPs have been observed only at very high concentrations of 100 µg 

mL
-1

 that are not relevant for human exposure. Genotoxic effects of ZnO NPs were detected in many of the 

previously published studies. The formation of DNA strand breaks by ZnO NPs has been reported at 

concentrations that were lower from those used in the present study: in HepG2 cell (14 µg mL
-1

; 6 h) [100], 

in human peripheral blood lymphocytes (≥ 40 µg mL
-1

; 24 h) [101], human nasal mucosa cells (≥ 0.1 µg mL
-

1
; 24 h) [103], human colon carcinoma (Caco-2) cells (6.4 µg mL

-1
; 24 h) [107], human alveolar epithelial 

(A549) (0.1 and 3 µg mL
-1

; 3 and 24 h, respectively) and lymphoblastoid TK6 cells (0.42 µg mL
-1

; 3 h) 

[104]. Most of these studies demonstrated that DNA damage is ROS mediated [100, 101, 104, 107]. The low 

genotoxic potential of GM ZnO NPs can be ascribed to the lack of their ability to induce ROS formation. 
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The toxicity of ZnO NPs draws the attention of biomedical researchers as it presents a major issue 

preventing the wider use of these promising materials. Functionalization of ZnO NPs is one of the proposed 

approaches for toxicity reduction that can enhance NP selectivity while retaining the intended NP activity 

[2]. However, the effectiveness of the specific functionalization approach must be experimentally verified as 

the activity of ZnO NPs can result from complex mechanisms.  

For example, the antibacterial activity of ZnO NPs may rely on similar mechanisms as the ones responsible 

for toxicity in HepG2 cells. Hence, there is a possibility that reduced toxicity of GM ZnO NPs can be 

correlated with diminished antibacterial activity. Even in such a case, GM ZnO NPs that exhibit a lack of 

antibacterial activity and low toxicity levels can be good candidates for the dietary supplementation of zinc. 

GM ZnO NPs with weak antibacterial properties may enable the preservation of the microbiota within the 

gastrointestinal tract, which is an important requirement for NP-based dietary supplements [87].    

Our findings suggest that the reduction in toxicity of ZnO NPs is correlated with the strength of adsorption 

interactions between the gelatin hydrogel and ZnO NP surface. Hence, the potency of GM ZnO NPs may be 

adjusted via the changes in hydrogel gelatin content to find the optimal balance between the toxicity and 

selective activity of modified ZnO NPs.  

5. Conclusions 

We proposed the concept of using biocompatible organic residues produced by gelatin decomposition for 

surface modification of ZnO NPs to reduce their toxicity in biomedical applications. Our goal in this study 

was to fabricate modified ZnO NPs that are safe by design. 

An innovative, simple, and cost-effective method for the precipitation synthesis of GM ZnO NPs at the 

interface of gelatin hydrogel and an aqueous electrolyte was described. The properties of obtained NPs can 

be modulated by the changes in hydrogel properties which are mainly directly determined by gelatin content. 

GM ZnO NPs fabricated using the proposed method did not induce ROS formation at doses relevant for 

human exposure and exhibited no cytotoxic nor significant genotoxic activity towards HepG2 cells. 

Adsorption interactions between the gelatin hydrogel and ZnO nanocrystals together with the appropriate 



21 

 

thermal treatment conditions for the partial decomposition of gelatin at the NP surface proved to be crucial 

factors in achieving reduced toxicity.  

Our future research will be focused on investigating the antibacterial activity of fabricated GM ZnO NPs to 

assess their potential for biomedical applications and dietary supplementation. 
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Figure captions 

Fig. 1 Thermograms of GM ZnO NP powders before calcination: (a) TG curves and (b) DTA curves of GM 

ZnO NP powders synthesized at the surface of hydrogels with different gelatin content (ZnO-5, ZnO-10, and 

ZnO-15) 

Fig. 2 XRD of the GM ZnO NP powders synthesized at the surface of hydrogels with different gelatin 

content (ZnO-5, ZnO-10, and ZnO-15) 

Fig. 3 SEM images of the GM ZnO NP powders synthesized at the surface of hydrogels with different 

gelatin content (ZnO-5 (a, b, c), ZnO-10 (d, e, f), and ZnO-15 (g, h, i)) 

Fig. 4 FTIR-ATR spectra of (a) pure gelatin film with 10 wt% of gelatin content (Gel 10 wt%) and (b) GM 

ZnO NP powders synthesized at the surface of hydrogels with different gelatin content (ZnO-5, ZnO-10, and 

ZnO-15) 

Fig. 5 The viability of HepG2 cells treated with GM ZnO NPs (0.01, 0.1, 1, 10, and 100 µg mL
-1

) for 24 h: 

(a) ZnO-5, (b) ZnO-10, and (c) ZnO-15. The asterisks denote a significant difference between solvent 

control and treated cells (*P < 0.05; ** P < 0.05; ***P < 0.001). The line denotes 25% decrease of cell 

viability. Positive control (PC): 125 µg mL
-1

 ET. The data are presented as mean values ± standard deviation 

Fig. 6 Induction of ROS formation by GM ZnO NPs ((a) ZnO-5, (b) ZnO-10, and (c) ZnO-15) in HepG2 

cells. The HepG2 cells were pretreated with DCFH-DA (20 µmol L
-1

) for 30 min and then exposed to 

different concentrations of NPs (0.1, 1, 10, and 100 µg mL
-1

). TBHP (0.5 mmol L
-1

) was used as the positive 

control (PC). DCF fluorescence intensity was measured at 30 min intervals for 150 min. The data are 

presented as mean values ± standard deviation 
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Fig. 7 DNA damage induced by GM ZnO NPs in HepG2 cells. Cells were exposed to (a) ZnO-5, (b) ZnO-

10, and (c) ZnO-15 GM ZnO NPs (0.1, 1, 10, and 100 µg mL
-1

) for 24 h. BaP (30 µmol L
-1

) was used as a 

positive control (PC). The DNA damage was assessed with the alkaline comet assay and is expressed as a 

percentage of tail DNA. Fifty cells were analyzed per experimental point in each of the three independent 

experiments. Data are presented as quantile box plots. The edges of the box represent the 25th and 75th 

percentiles; the median is a solid line through the box, and the 95% confidence intervals are shown. 

Significant difference (one-way ANOVA; Dunnett’s Multiple Comparison test) between NP-exposed cells 

and the solvent control (0) is indicated by ***P < 0.001, and ****P < 0.0001 

Programs used to create the artwork 

Fig. 1: MATLAB R2016b, Inkscape 1.0.1, GIMP 2.8.20 

Fig. 2: MATLAB R2016b, Inkscape 1.0.1, GIMP 2.8.20 

Fig. 3: MATLAB R2016b, Inkscape 1.0.1, GIMP 2.8.20 

Fig. 4: MATLAB R2016b, Inkscape 1.0.1, GIMP 2.8.20 

Fig. 5: GraphPad Prism V6, Inkscape 1.0.1, GIMP 2.8.20 

Fig. 6: GraphPad Prism V6, Inkscape 1.0.1, GIMP 2.8.20 

Fig. 7: GraphPad Prism V6, Inkscape 1.0.1, GIMP 2.8.20 
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