Show simple item record

dc.creatorĐurić, Zoran G.
dc.creatorJokić, Ivana
dc.creatorRadulović, Katarina
dc.date.accessioned2017-06-10T15:45:07Z
dc.date.issued2014
dc.identifier.issn1877-7058
dc.identifier.urihttp://dais.sanu.ac.rs/123456789/644
dc.description.abstractThis study presents a theoretical analysis of one of the most promising nanoelectromechanical (NEMS) components – a NEMS oscillator. The analyzed oscillator contains a stretched circular plate, fabricated of two-dimensional crystals (graphene, bBN, MoS2 etc.), as a resonator. The calculation of resonant frequency based on the classical continuum theory of plates and membranes is presented, and then the phase noise theory of the oscillators using a circular plate as a frequency determining element. We assume that thermal and 1/f noise are present in the oscillator circuit. A satisfactory agreement is obtained between our calculations and recent experimental literature data for graphene.en
dc.format87 (2014) 460-463
dc.formatapplication/pdf
dc.languageen
dc.publisherElsevier
dc.relationinfo:eu-repo/grantAgreement/MESTD/Technological Development (TD or TR)/32008/RS//
dc.relationSerbian Academy of Sciences and Arts, Project F-150
dc.rightsopenAccess
dc.sourceProcedia Engineeringen
dc.subjectgraphene oscillator
dc.subjectNEMS oscillator
dc.subjecttwo-dimensional crystal resonator
dc.subjectphase noise
dc.titleResonant Frequency and Phase Noise of Nanoelectromechanical Oscillators Based on Two-dimensional Crystal Resonatorsen
dc.typearticle
dc.rights.licenseBY-NC-ND
dcterms.abstractЂурић, Зоран; Јокић, Ивана; Радуловић, Катарина;
dc.citation.spage460
dc.citation.epage463
dc.citation.volume87
dc.identifier.wos000369531700112
dc.identifier.doi10.1016/j.proeng.2014.11.382
dc.identifier.scopus2-s2.0-84923376830
dc.type.versionpublishedVersion
dc.identifier.fulltexthttp://dais.sanu.ac.rs/bitstream/handle/123456789/644/Djuric_Procedia Engineering_7_2014_460-463.pdf


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record