Show simple item record

dc.creatorMarković, Smilja
dc.creatorSimatović, Ivana Stojković
dc.creatorAhmetović, Sanita
dc.creatorVeselinović, Ljiljana
dc.creatorStojadinović, Stevan
dc.creatorRac, Vladislav
dc.creatorŠkapin, Srečo Davor
dc.creatorBogdanović, Danica Bajuk
dc.creatorČastvan, Ivona Janković
dc.creatorUskoković, Dragan
dc.date.accessioned2019-07-02T12:06:55Z
dc.date.available2019-07-02T12:06:55Z
dc.date.issued2019
dc.identifier.issn2046-2069
dc.identifier.urihttps://pubs.rsc.org/en/content/articlelanding/2019/ra/c9ra02553g
dc.identifier.urihttp://dais.sanu.ac.rs/123456789/6272
dc.description.abstractZnO nanopowders were produced using microwave processing of a precipitate and applied as a photoanode for photoelectrochemical water splitting. Two different surfactants, cetyltrimethylammonium bromide (CTAB) as the cationic and Pluronic F127 as the non-ionic one, were employed to in situ adjust the surface-to-bulk defect ratio in the ZnO crystal structure and further to modify the photo(electro)catalytic activity of the ZnO photoanode. The crystal structure, morphological, textural, optical and photo(electro)catalytic properties of ZnO particles were studied in detail to explain the profound effects of the surfactants on the photoanode activity. The ZnO/CTAB photoanode displayed the highest photocurrent density of 27 mA g−1, compared to ZnO (10.4 mA g−1) and ZnO/F127 photoanodes (20 mA g−1) at 1.5 V vs. SCE in 0.1 M Na2SO4 under visible illumination of 90 mW cm−2. A significant shift of the overpotential toward lower values was also observed when photoanodes were illuminated. The highest shift of the overpotential, from 1.296 to 0.248 V vs. SCE, was recorded when the ZnO/CTAB photanode was illuminated. The ZnO/CTAB photoanode provides efficient charge transfer across the electrode/electrolyte interface, with a longer lifetime of photogenerated electron–hole pairs and reduced possibility of charge recombination. The photoconversion efficiency was improved from 1.4% for ZnO and 0.9% for ZnO/F127 to 4.2% for ZnO/CTAB at 0.510 mV. A simple procedure for the synthesis of ZnO particles with improved photo(electro)catalytic properties was established and it was found that even a small amount of CTAB used during processing of ZnO increases the surface-to-bulk defect ratio. Optimization of the surface-to-bulk defect ratio in ZnO materials enables increase of the absorption capacity for visible light, rendering of the recombination rate of the photogenerated pair, as well as increase of both the photocurrent density and photoconversion efficiency.
dc.languageen
dc.publisherRoyal Society of Chemistry
dc.relationinfo:eu-repo/grantAgreement/MESTD/Integrated and Interdisciplinary Research (IIR or III)/45004/RS//
dc.rightsopenAccess
dc.sourceRSC Advances
dc.subjectZnO nanopowders
dc.subjectmicrowave processing
dc.subjectphotoanodes
dc.subjectphotocatalytic properties
dc.titleSurfactant-assisted microwave processing of ZnO particles: a simple way for designing the surface-to-bulk defect ratio and improving photo(electro)catalytic properties
dc.typearticleen
dc.rights.licenseBY-NC
dcterms.abstractУскоковић, Драган; Шкапин, Сречо Давор; Рац, Владислав; Стојадиновић, Стеван; Веселиновић, Љиљана; Aхметовић, Санита; Марковић, Смиља; Симатовић, Ивана Стојковић; Частван, Ивона Јанковић; Богдановић, Даница Бајук;
dc.citation.spage17165
dc.citation.epage17178
dc.citation.volume9
dc.citation.issue30
dc.identifier.wos000471912700025
dc.identifier.doi10.1039/C9RA02553G
dc.identifier.scopus2-s2.0-85067467088
dc.identifier.fulltexthttp://dais.sanu.ac.rs/bitstream/id/19670/Markovic_RSC-Advances_2019.pdf


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record