Structural and electrical properties of ferroelectric poly(vinylidene fluoride) and mechanically activated ZnO nanoparticle composite films
Authorized Users Only
2018
Authors
Peleš, Adriana
Aleksić, Obrad S.
Pavlović, Vera P.

Đoković, Vladimir

Dojčilović, Radovan

Nikolić, Z.
Marinković, F.
Mitrić, Miodrag

Blagojević, Vladimir A.

Vlahović, Branislav

Pavlović, Vladimir B.

Article (Published version)

Metadata
Show full item recordAbstract
The influence of the mechanical activation of ZnO nanoparticle fillers on the structural and electrical properties of the matrix of poly(vinylidenefluoride)-ZnO (PVDF-ZnO) films was investigated. Transmission electron microscopy and scanning electron microscopy analyses showed that mechanical activation in a high energy planetary ball mill reduces the size of ZnO particles. X-ray diffraction and Raman spectroscopy revealed that PVDF crystallized predominantly as the γ-phase. Non-activated ZnO filler reduces the degree of the crystallinity of the matrix and promotes crystallization of α-phase of PVDF in the film, while the fillers activated for 5 and 10 min induce crystallization of β-phase, indicating that mechanical activation of the filler can be used as a general method for fabrication of PVDF composites with increased content of piezoelectric β-phase crystals. Dielectric spectroscopy measurements show that polymer composite with the high content of β-phase (with ZnO filler activate...d for 5 min) exhibits the highest value of dielectric permittivity in 150-400 K range of temperatures. Kinetic analysis shows combined effects of increased surface area and increased concentration of surface defects on the interactions between polymer chains and activated nanoparticles. © 2018 IOP Publishing Ltd.
Keywords:
crystallization / dielectric properties / mechanical activation / polymer composites / PVDF / ZnOSource:
Physica Scripta, 2018, 93, 105801-Publisher:
- IOP Publishing
Projects:
- Size-, shape- and structure- dependent properties of nanoparticles and nanocomposites (RS-172056)
- Directed synthesis, structure and properties of multifunctional materials (RS-172057)
- United States National Science Foundation (NSF) / Centers of Research Excellence in Science and Technology (CREST), Grant HRD-0833184
- United States National Aeronautics and Space Administration (NASA), Grant NNX09AV07A
DOI: 10.1088/1402-4896/aad749
ISSN: 0031-8949 (Print); 1402-4896 (Online)