Show simple item record

dc.creatorLojpur, Vesna
dc.creatorMančić, Lidija
dc.creatorRabanal, Maria Eugenia
dc.creatorDramićanin, Miroslav
dc.creatorTan, Z.
dc.creatorHashishin, Takeshi
dc.creatorOhara, Satoshi
dc.creatorMilošević, Olivera
dc.date.accessioned2017-06-10T15:45:07Z
dc.date.issued2013
dc.identifier.issn0925-8388
dc.identifier.urihttp://dais.sanu.ac.rs/123456789/359
dc.description.abstractNanocrystalline up-converting Y2O3:Yb3+, Er3+ phosphor particles were processed in a dispersed system-aerosol, generated ultrasonically at 1.3 MHz from common nitrate precursor solution having fixed ytterbium-to-erbium concentration ratio. The appropriate process parameters: residence time 21 s, carrier gas (air) flow rate 1.6 dm3/min, synthesis temperature 900 °C, led to the formation of un-agglomerated spherical nanostructured secondary particles, having mean particle size of approx 450 nm, composed of primary nanoscaled (20 nm) subunits. In order to reach targeting phase crystallinity, the as-prepared particles were additionally annealed at 1100 °C in air for 12, 24 and 48 h, respectively. Particle structure, morphology and purity were analyzed by X-ray powder diffraction (XRPD), scanning electron microscopy (FESEM/SEM), analytical and high resolution transmission electron microscopy (TEM/HRTEM) in combination with energy dispersive X-ray analysis and Fourier Transform Infrared Spectroscopy (FTIR). All samples crystallized in a cubic bixbyte-structure, space group Ia-3. The crystallite size changed with annealing time from 30 nm in as-prepared sample to 135 nm in sample annealed for 48 h, respectively. Emission spectra were assigned to the following trivalent erbium f–f electronic transitions: 2H9/2 → 4I15/2 (blue: 407–420 nm), (2H11/2, 4S3/2) → 4I15/2 (green: 510–590 nm), and 4F9/2 → 4I15/2 (red: 640–720 nm). The significant improvement of the emission decay times were observed after thermal treatment and this effect is correlated further with the structural and morphological particles characteristics. For the annealing time of 12 h a quite high emission decay times were achieved (blue: 0.14 ms, green: 0.32 ms and red: 0.39 ms).en
dc.format580 (2013) 584-591
dc.languageen
dc.publisherElsevier
dc.relationinfo:eu-repo/grantAgreement/MESTD/Basic Research (BR or ON)/172035/RS//
dc.relationUniversity Carlos III (Madrid, Spain) and the Santander Bank Chairs of Excellence Programme
dc.relationJSPS 2011/2012 fellowship, Japan
dc.rightsrestrictedAccess
dc.sourceJournal of Alloys and Compoundsen
dc.subjectaerosol processing
dc.subjectnanoparticles
dc.subjectY2O3
dc.subjectup-conversion
dc.subjectdecay time
dc.titleStructural, morphological and luminescence properties of nanocrystalline up-converting Y1.89Yb0.1Er0.01O3 phosphor particles synthesized through aerosol routeen
dc.typearticle
dc.rights.licenseARR
dcterms.abstractТан, З.; Лојпур, Весна; Милошевић, Оливера; Охара, Сатосхи; Хасхисхинд, Т.; Драмићанин, Мирослав; Рабанал, Мариа Е.; Манчић, Лидија;
dc.citation.spage584
dc.citation.epage591
dc.citation.volume580
dc.identifier.wos000324525800092
dc.identifier.doi10.1016/j.jallcom.2013.07.125
dc.identifier.scopus2-s2.0-84882315913
dc.type.versionpublishedVersion


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record