
 

 
 
 
 
 
 
 
This is the peer reviewed version of the book chapter:  
 
Radonjić, Aleksandar, Vujičić, Vladimir (2019), “Integer Asymmetric Error 
Control Codes for Short-Range Optical Networks”, Advances in Engineering 
Research. Volume 29, New York: Nova Science, 2019. 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

This work is licensed under a Creative Commons Attribution Non 

Commercial No Derivatives 4.0 license 

 
 



Author name 2

 
 
Chapter  

 
 
 

Integer Asymmetric Error Control Codes for Short-Range Optical Networks 
 
 

Aleksandar Radonjic* 
Institute of Technical Sciences of the Serbian Academy of Sciences and Arts, 

Belgrade, Serbia 
Vladimir Vujicic 

Institute of Technical Sciences of the Serbian Academy of Sciences and Arts, 
Belgrade, Serbia 

 
ABSTRACT 

 
In most communication networks, error probabilities 1 → 0 and 0 → 1 are 
equally likely to occur. However, in short-range optical networks 
(SRONs), such as local and access networks, this is not the case. In these 
networks, photons may fade or fail to be detected, but new photons cannot 
be generated. Hence, if the receiver operates correctly, only asymmetric (1 
→ 0) errors can occur. Motivated by this fact, the authors of this chapter 
have constructed four classes of integer codes capable of correcting 
various types of asymmetric errors. The most attractive feature of all these 
codes is their ability to be implemented "for free" (in software). This is 
achieved by using integer and lookup table operations, which are 
supported by all processors. The aim of this chapter is to overview four 
classes of integer asymmetric codes and to illustrate their potential for use 
in modern SRONs. Topics covered include: fundamentals in the design of 
integer codes, necessary and sufficient conditions for constructing integer 
asymmetric codes and the processor-based strategy for implementation of 
these codes. 
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1. INTRODUCTION 
 
In optical networks (ONs) using on-off keying, the data are directly encoded 

into an optical signal: 1’s are represented by the presence of light pulses (photons) 
and 0’s by their absence [1]. When such a signal propagates through the fiber, it 
suffers from various degradition effects, such as attenuation and dispersion. These 
effects tend to reduce the number of photons (1 → 0 errors) causing partial data 
loss. 

In order to mitigate this problem, the engineers apply two strategies: one for 
long-range ONs (LRONs), and other for short-range ONs (SRONs). The strategy 
for LRONs is based on combined use of error control codes (ECCs) and optical 
amplifiers. After the transmitted signal is protected with ECCs and converted into 
light pulses, it is periodically strengthened with optical amplifiers. These devices 
regenerate the signal, but also add noise. So, if they are often used, the received 
signal may contain pulses at the zero time slots (0 → 1 errors). Unlike in LRONs, 
the signals in SRONs are restored in the electrical domain. This is done using 
repeaters, which convert optical signals to electronic ones, amplify them, and 
again convert them to optical signals. Due to this reason, the regenerated signal is 
always identical or nearly identical to the original one. 

With this in mind, in this chapter, we overview four classes of integer codes 
that are suitable for use in SRONs. The main advantage of these codes, compared 
to classical ECCs (CECCs), is their ability to exploit the high computing power of 
the network nodes (PCs, routers, switches, ONU units, etc.) [1]. This has been 
achieved by using integer and lookup table operations, which are supported by all 
processors. In addition, unlike CECCs, the presented codes can be interleaved 
without delay and without using dedicated hardware. Owing to this, they can be 
transformed into simple codes capable of correcting various combinations of 
asymmetric (1 → 0) errors. 

The organization of this chapter is as follows. Section 2 provides necessary 
and sufficient conditions for constructing four classes of integer codes capable of 
correcting multiple asymmetric errors. The implementation strategy and 
theoretical decoding throughputs for these codes are described and evaluated in 
Section 3, while Section 4 concludes the chapter. 

 
2. INTEGER ERROR CONTROL CODES 

 
Unlike CECCs, integer ECCs (IECCs) [9], [10], [11], [12], are designed to 

correct errors of a given type. This means that we can choose certain types of 
errors and after that construct IECCs capable of correcting them. This 
characteristic can be deduced from their encoding and decoding procedures. 
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2.1. Encoding and Decoding Procedures 

Let
2 1bZ


= {0, 1,…,2b - 2} be the ring of integers modulo 2b – 1 and let Ci be 
integers such that 

 0,1C Z
2 -1bi \ , where 1 ≤ i ≤ k. Now, suppose that the data are divided into k b-bit 

bytes, and that Bi and Ḇi denote integer values of the i-th b-bit byte at the sender 
and receiver side, respectively. In that case, the encoder will compute the check-
byte using the expression 

1 1 2 2
1

[ ] ( 2 1) ( 2 1)
k

b b
k k

i

C B C B C B C B


          B mod modi iC                                                                                  

(1) 
At the receiver, the decoder will perform the same calculation 

1 1 2 2
1

[ ] ( 2 1) ( 2 1)
k

b b
k k

i

C B C B C B C B


          B mod modi iC                                                                        

(2) 
after which the syndrome S will be formed 

+1 +1

1 1

[ ] ( 2 1) ( ) ( 2 1) ( 2 1)
k k

b b b
i i

i i

S B B C e C
 

          B B mod mod modi i iC C                        

(3) 
where Ck+1 = – 1. 
From (3) it is easy to see that the nonzero value of S indicates the presence of 
errors ei. Whether they can be corrected or not depends on the values of the Ci's. 
In this chapter, we will see what conditions the Ci's must satisfy in order to 
construct codes capable of correcting burst asymmetric (BA) errors within a byte, 
random asymmetric (RA) errors within a byte, BA and RA errors within a byte 
and double asymmetric (DA) errors within a codeword. 

2.2. Necessary and Sufficient Conditions for Constructing Asymmetric IECCs 

As explained in the previous section, in modern SRONs, the number of 
received photons never exceeds the number of sent ones. Hence, if the receiver 
operates correctly, only asymmetric errors may occur [2], [3], [4]. The number 
and distribution of these errors depends on the nodes' distance and protocol 
design. Accordingly, it can be said that burst errors (up to five bits) are typical for 
passive networks, while random errors are dominant in local networks [5], [6], 
[7], [8]. Having this in mind, we start this subsection by defining the conditions 
for constructing IECCs capable of correcting t RA errors within a b-bit byte 
(integer Rt/bAEC codes). These codes are suitable for use in Ethernet networks 
using self-synchronous scramblers (e.g. 10GBASE-LR). 

2.2.1.  Integer Rt/bAEC Codes   
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Definition 1. An error is called a t/b RA error if within a b-bit there exist t 
asymmetric errors, where 1 ≤ t < b. 

Definition 2. The set of syndromes corresponding to t/b RA errors is defined 
as 

    2
1 1 2= 2 2 2 mod 2 1 : 0 1,1 ,1 +1m b

i ms C x x x b m t i k                1 xx x

                   (4)                                                        
With these definitions we can prove the following theorem. 

Theorem 1. The codes defined by (1) can correct all t/b RA errors if there 
exist k mutually different coefficients  C 

2 -1
0, 1bi Z \ such that 

1 1) ,
b

s k +
m

 
  

 

=1

= (
t

m
 

where 1s denotes the cardinality of s1. 
Proof. From (4) it is clear that the set s1 can be expressed as 

1s X 
1

1

k+

u
u=

 

where  

    

    
 

2

2

2

1 1

+1

2 2 2 mod 2 1 : 0   – 1,1

2 2 2 mod 2 1 : 0   – 1,1

2 2 2 : 0   – 1,1

m

m

m

b
m

b
k k m

k m

X C x x x b m t

X C x x x b m t

X x x x b m t

               

               

          

 



 

 

1

1

1

1 2

1 2

1 2

xx x

xx x

xx x

 

From this it is easy to see that the syndromes caused by t/b asymmetric errors will 
be nonzero and 
mutually different only if there exist k different coefficients  0,1

2 -1biC Z \ such that 

1 +1

1 +1 .
k k

k k

 

  

 



X X X
X X X

 

In that case, the set s1 will have 
1

1
1

1)
b

s k +
m

 
  

 
 

=1
= = (

k+ t

u
u m

X  

nonzero elements. □  
In order to illustrate the applicability of Theorem 1, we show results of a 
computer-search for codes with parameters t = 3, b = 32 and k ≤ 64 (Table 1). 

2.2.2.  Integer Bl/bAEC Codes 

Table 1. Coefficients for Integer Rt/bAEC Codes with Parameters t = 3, b = 32 and k ≤ 64. 

2 15 31 71 83 89 101 119 
127 139 141 143 149 157 163 167 
173 177 179 181 189 191 199 203 
211 223 227 229 233 239 251 253 
263 269 271 277 281 283 305 307 
313 317 331 339 349 353 359 361 
367 373 379 383 389 395 397 401 
409 421 431 433 443 463 465 467 
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In some SRONs, such as passive optical networks (e.g. 10G PONs), the errors 
tend to occur in bursts. Hence, in these networks, it is preferable to use codes 
capable of correcting l-bit BA errors or l-bit BA errors in a b-bit byte (integer 
Bl/bAEC codes). The first step towards the construction of the latter codes is to 
define the integer values of BA errors confined to a b-bit byte. For that purpose, 
we will rely on the analysis from [9]. In that paper, it was shown that the integer 
value of a l-bit burst error within a b-bit byte is equal to e = ± 2s· (2n ‒ 1), where 0 
≤ s ≤ b ‒ l, 1 ≤ n ≤ 2u-1 and 1 ≤ u ≤ l. With this in mind, we can state the following 
definitions and theorem.  

Definition 3. An error is called l/b BA error if within a b-bit there exists any 
number of asymmetric errors confined to l (< b) adjacent positions. 

Definition 4. The set of syndromes corresponding to l/b BA errors is defined 
as 

  1
2 = – 2 (2 1) 2 1 : 0 – ,1 2 ,1 ,1 + 1s b u

is n C s b l n u l i k              mod
                                

(5) 
Theorem 2. The codes defined by (1) can correct all l/b BA errors if there 

exist k mutually different coefficients  0,1C  bi Z \
2 -1 such that 

2 1 2 2 1s      
-1( + ) ( + ) .l= k b l  

Proof. Observe that the set s2 can be expressed as 

2
1

u
u

s Y
l

=
 

where 

 
 

 

1

2

2 1 ( 2 1) 0 –1, 1 1 ,

2 3 ( 2 1) 0 – 2, 1 1 ,

2 2 1, 2 3, , 2 1 ( 2 1) 0 – ,1 1 .

i

i

i

Y C s b i

Y C s b i

Y C s b l i

          

          

             



1 1

( ) mod : +

( ) mod : +

( ... ) mod : +

s b

s b

s l- l- l b
l

k

k

k

 

Now, suppose that the coefficients  0,1C Z
2 -1bi \ have values such that 

1 2

1

,

1 ,
lY Y Y

Y b

 

 

 

( + )k
         

1 2 ( 1), 2 .hY h l      -2( + ) hk b h            

In that case, it is easy to show that 

2
1

1 2 2 1s Y


      -1= = ( + ) ( + ) .
l

l
u

u
k b l □ 
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The next step in constructing codes capable of correcting l/b BA errors is to find 
the Ci's that satisfy the condition of Theorems 2. For that purpose it is necessary 
to perform an exhaustive search on all possible candidates from the 
set  0,1 .

2 -1b \Z In this chapter, we have restricted ourselves to the codes with 

parameters l = 5, b = 32 and k ≤ 64 (Table 2). 

2.2.3.  Integer Bl/bAEC-Rt/bAEC Codes 

The previous classes of IECCs are designed to correct t/b RA or l/b BA errors. 
For this reason, they have limited practical applicability. One solution to 
overcome this drawback is to design codes with Bl/bAEC-Rt/bAEC capability 
(integer Bl/bAEC-Rt/bAEC codes). Such codes would have the potential to be used 
in both passive optical networks and Ethernet networks using self-synchronous 

scramblers. However, before we move to the mathematical details, let us observe 
that t/b RA errors spaced less than l bits (short t/b RA errors) can be treated as l/b 
BA errors. Hence, in addition to l/b BA errors, we need to consider t/b RA errors 
that are spaced d (l < d < b) bits apart (long t/b RA errors) (Fig. 1). 
Now, we can give the following definition. 

Definition 5. Let 3 ≤ v < l < b and s + l ≤ z ≤ b – 1. Then, the set of syndromes 
corresponding to long t/b RA errors is defined as 

1 2s ε ε 3                                                                                                                                                                                                                                              

(6) 
where 

  1 = – (2 2 ) 2 1 : 1 + 1b
iε C i k     + mods z

                                                                                                                                       
(7) 

  -2
2 1 2= – (2 2 2 2 ) 2 1 : 0 ,1 + 1v b

i v-ε C s x x z i k           1+ + + + modxxs z

                                                                                              
(8) 

Table 2. Coefficients for Integer Bl/bAEC Codes with Parameters l = 5, b = 32 and k ≤ 64. 

2 33 35 37 41 43 47 53 
59 61 67 71 73 79 83 89 
97 101 103 107 109 113 117 127 
131 137 139 149 151 157 163 167 
173 179 181 191 193 197 199 211 
223 227 229 233 239 241 251 255 
257 263 269 271 277 281 283 293 
307 311 313 317 331 337 343 347 

 

      
Fig. 1. Short t/b RA errors and (b) long t/b RA errors. 



Author name 8

Although the expressions (5)-(8) provide a theoretical basis for the construction of 
integer Bl/bAEC-Rt/bAEC codes, they do not give the explicit information about 
the number of nonzero syndromes. Hence, we need the following theorem. 

Theorem 3. The codes defined by (1) can correct all l/b BA and t/b RA errors 
if there exist k mutually different coefficients  0,1C  bi Z \

2 -1 such that 

 

2

1

3

2 3

1. 1 2 2 ,

1
2 1 ,

2

3 .

j

s

i
s

j

s s

 

     
  

      
 




-1

= 0 =2

( + ) ( + ) 1

. ( + )

.

l

b l t

i

= k b l

l
= k b l i  

Proof. The proof for Condition 1 is the same as that given in Theorem 2. 
Hence, it will be omitted. As far as Condition 2 is concerned, it states that that 

long t/b RA errors generate  
1 1

1
2j

i

j

    
     

=0 =2

( + )
b l t

i

l
k b l i syndromes that are nonzero. 

To prove this, note that the set s3 can be expressed as 
1

3s Z 
0

b-l-

u
u=

 

where 

0

2 addends

+1
1

2 addends

– (2 2 2 2 2 ) ( 2 1) 0 1, 1 1

– (2 2 2 2 2 ) ( 2 1) 0 2, 1 1

– (2 2 2

i

i

Z C s b i

Z C s b i

Z





            
    

            
    











– –1

+ + + + + mod : – +

+ + + + + mod : – +

+ + +

f ps e s+l b

t

f ps e s+l b

t

fs e
b l

l k

l k

-1

2 addends

2 2 ) ( 2 1) 0, 1 1iC s i


         
    


+ + mod : +p s+b b

t

k

 

and s < e < f <   < p < s + l + u for any u = 0, 1, …, b – l – 1. Consequently, we 
can write 

 

 

0

1

1
1

2

1 1
2

2
1 1

2

Z

Z

Z

 
   

 
 

   
 

 
   

 



– –1

( + )

( + )

( + )b l

l -
b - l k

t -
l

b - l - k
t -

b -
k

t -

 

wherefrom it follows that 

 
1 1

3
0

1
1 .

2j

i
s Z

j

   



  
      

 
=0 =2

( + )
b l b l t

u
u i

l
= = k b l i  

On the other hand, Condition 3 is a necessary condition for distinguishing l/b BA 
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errors from long t/b RA errors. So, integer codes satisfying conditions 1 to 3 are 
Bl/bAEC-Rt/bAEC codes. □ 

Theorem 4. Let t = 3 and let 1 2 3= s s  be the error set for integer Bl/bAEC-

Rt/bAEC codes. Then, 

   
2

1 2 3

2 3
2 2 1 1 1 .

2 6
ξ s s

           
         

   

2 3
-1 ( ) ( ) + ( )= = ( + ) +l b l b l b l b l b lb - l b k + k +

 
Proof. This theorem follows directly from Theorem 4. 
To illustrate the applicability of Theorem 4, we show results of a computer-

search for the codes with parameters l = 5, t = 3, b = 32 and k ≤ 64 (Table 3). 

2.2.4.  Integer DAEC Codes 

In Ethernet networks not using self-synchronous scramblers (e.g. 10GBASE-
LX4), the errors are randomly distributed. For this reason, in these networks, it is 
desirable to protect the data with DA error correcting (DAEC) codes. These codes 
are able to correct three types of errors: single asymmetric errors, DA errors 
corrupting one b-bit byte and DA errors corrupting two b-bit bytes.  

Definition 6. The set of syndromes corresponding to single asymmetric errors 
is defined as 

    4 = – 2 2 1 : 0 –1,1 +1s b
is C s b i k     mod

                                                                                                                                       
(9) 

Definition 7. The set of syndromes corresponding to DA errors corrupting one 
b-bit byte is defined as 

  5 = (– 2 – 2 ) 2 1 : 0 < –1,1 + 1r s b
is C r s b i k        mod

                                                                                
(10) 

Definition 8. The set of syndromes corresponding to DA errors corrupting two 
b-bit bytes is defined as 

    2 2 2 1 : 0 , –1, 1 + 1r s b
i js C C r s b i j k          6 mod                                                                           

(11) 
Now we are able to state the following theorem. 

Theorem 5. The codes defined by (1) can correct all single asymmetric errors 
and all DA errors if there exist k mutually different coefficients  0,1C  bi Z \

2 -1 such 
that 

Table 3. Coefficients for Integer Bl/bAEC-Rt/bAEC Codes with Parameters l = 5, t = 3, b = 32 and k ≤ 64. 

2 45 71 83 89 101 119 127 
139 141 143 149 157 159 163 167 
173 177 179 181 191 199 211 223 
227 229 233 237 239 251 263 269 
271 277 281 283 301 395 307 313 
317 331 339 349 353 361 367 373 
379 383 389 397 401 409 421 431 
433 443 453 463 467 479 487 499 
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4

5

6

4 5 6

1. 1 ,

1
2 1 ,

2

3 1 ,
2

4

s b

b
s

b
s

s s s



 





  

2

( + )
( ). ( + )

. ( + )

.

= k
b= k

k= k
 

Proof. It can be easily proved that Conditions 1 is the necessary and sufficient 
condition for correcting single asymmetric errors, Condition 2 for correcting DA 
errors within a b-bit byte, and Condition 3 for correcting DA errors corrupting 
two b-bit bytes. Finally, Condition 4 ensures that the syndromes caused by single 
and DA errors are distinguishable. □ 

Theorem 6. Let 2 4 5 6= s s s   be the error set for integer DAEC codes. Then, 
2

2
2 4 5 6 1 1

2 2

b b
ξ s s s    = = ( + ) ( + )k k

 
Proof. This theorem follows from Theorem 5. 
To illustrate the applicability of Theorem 5, we show results of a computer-

search for the codes with parameters b = 32 and k ≤ 64 (Table 4). 

2.3. Error Correction Procedure 

After receiving the incoming packet, the decoder will generate the syndrome 
S. On the basis of its value, it will either accept the packet (S = 0) or try to recover 
the original data (S ≠ 0). In the latter case, the decoder will look up the syndrome 

table to get the error correction data. In the case of IECCs described in Sections 
2.2.1, 2.2.2 and 2.2.3, this table will have E1 = {|s1|,  |s2|,   |ξ1|} entries (Theorems 
1, 2 and 4), where each entry describes the relationship between the nonzero 
syndrome, error location and error vector (Definitions 2, 4 and 5) (Fig. 2). 

Table 4. Coefficients for Integer DAEC Codes with Parameters b = 32 and k ≤ 64. 

19 93 197 485 1111 1771 2247 2625 
3923 4721 6459 7463 10941 13277 14329 15263 

20183 21329 26267 31609 36597 40453 44993 47465 
63449 65371 82467 86767 92563 95947 105581 108297 
110849 131365 138807 150609 152801 177615 197791 203213 
229677 246945 263135 278391 303707 305785 332895 341235 
352515 388459 428269 435293 457423 478493 490611 504469 
545203 571633 590825 595143 674535 715827 740695 742475 

 

      

Fig. 2. Bit-width of one syndrome table entry in the case of IECCs correcting errors within one b-bit byte. 

      

Fig. 2. Bit-width of one syndrome table entry in the case of IECCs correcting errors within one b-bit byte. 
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So, when S ≠ 0, the decoder's task is to find the entry with the first b bits as that of 
the syndrome S. If the syndrome table is sorted in increasing order (according to 
the values of S), this task will be completed after nTL table 
lookups TL 2 1(1 2)n log E     [13]. In the next step, using the error correction data, 

the decoder will execute the operation 
2 1  (mod )b

i i iB B e                                                                                                                                                                              
(12) 
where 1 ≤ i ≤ k + 1 and where ei s1, ei s2 or ei ξ1. The similar procedure 
applies for IECCs described in Sections 2.2.4. In their case, the syndrome table 
has E2 = |ξ2| entries (Theorem 6), where each entry occupies 3 2 1    2+ ( + )b log k bits 

(Definitions 6, 7 and 8) (Fig. 3). 
 
Accordingly, if the syndrome table is sorted in increasing order (according to the 
values of S), the decoder will perform nTL table lookups TL 2 2(1 2)n log E     to 

find the entry where the first b bits matches that of the syndrome S. After that, it 

will execute the operations 
2 1  (mod )b

i i iB B e                                                                                                                                                                                                                                           
(13) 

2 1j j j  (mod )bB B e                                                                                                                                                              

(14) 
where 1 ≤ i < j ≤ k + 1 and where 1) ei, ej ξ2, 2) ei ξ2, ej = 0, or 3) ei = 0 and 
ej ξ2. 
 

3. EVALUATION AND IMPLEMENTATION STRATEGY 
 
From coding theory [14] it is known that practical implementation of CECCs 

is extremely expensive. For that purpose it is necessary to equip each node (PC, 
router, switch, OLT/ONU unit, etc.) with hardware that performs encoding and 
decoding operations. The software implementation is not feasible, since CECCs 
use Galois field arithmetic. This type of arithmetic entirely differs from the 
integer arithmetic of modern processors, which results in the fact that the software 
encoding and decoding of CECCs requires complex and time-consuming 
instructions. 

         

Fig. 3. Bit-width of one syndrome table entry in the case of IECCs correcting errors within two b-bit bytes. 
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Unlike CECCs, IECCs use integer and lookup table operations. Owing to this, 
they have the potential to be implemented "for free", i.e. without any hardware 
assistance. To illustrate this, in this section, we will consider two scenarios: the 
first one, where all nodes are equipped with quad-core processors and the second, 
where they are equipped with eight-core processors. 

3.1. Scenario 1: Network nodes are equipped with quad-core processors 

Suppose that all network nodes are equipped with quad-core processors (Fig. 
4) having the following specifications [15], [16]: 

1) clock rate: CR4 = 3.5·109 Hz, 

2) integer addition/subtraction operation: 1 cycle latency, 
3) integer multiplication operation: 3 cycles latency, 
4) 128-bit shift operation: 1 cycle latency, 
5) modulo reduction operation: 1 cycle latency, 
6) comparison operation: 1 cycle latency, 
7) access to the L1 cache (32 KB per core): 4 cycles latency, 
8) access to the L2 cache (256 KB per core): 11 cycles latency, 
9) access to the L3 cache (16 MB shared): 28 cycles latency. 
In addition, suppose that the coefficients Ci are stored in each of the four L1 

caches and that the syndrome table is placed into the L3 cache. In that case, 
instead of one, the decoder will (in parallel) generate four check-bytes: 

 Core 1 

2 1 2 1 
           32 32

B1 1 1 2 5 4 ( -1)+1 4 ( -1)+11
[ ] (mod ) (mod )

k
k k i ii

C C B C B C B C B                                                      

(15) 
 Core 2 

2 1 2 1 
           32 32

B2 1 2 2 6 4 ( -1)+2 4 ( -1)+21
[ ] (mod ) (mod )

k
k k i ii

C C B C B C B C B                                                                            

         

                                                         Fig. 4. Block diagram of quad-core processor. 
. 
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(16) 
 Core 3 

2 1 2 1 
           32 32

B3 1 3 2 7 4 ( -1)+3 4 ( -1)+31
[ ] (mod ) (mod )

k
k k i ii

C C B C B C B C B                                                                            

(17) 
 Core 4 

2 1 2 1 
           32 32

B4 1 4 2 8 4 ( -1)+4 4 ( -1)+41
[ ] (mod ) (mod )

k
k k i ii

C C B C B C B C B                                                                            

(18) 

If we add to this K/128 = 4·k·b/128 = k shift operations (K - the number of data 
bits) we easily calculate that each processing core requires T1 = 9·k clock cycles 
(k accesses to the L1 cache, k integer multiplications, k - 1 integer additions, 1 
modulo reduction and k shift operations) to compute the value of the check-byte. 
After finishing this task, each core will take T2 = 2 clock cycles (1 integer 
subtraction and 1 modulo reduction) to perform the following operations: 

 Core 1 
                                        32

1 [ ] ( 2 1)S   B1 B1 modC C                                                                                                     

(19) 
 Core 2 
                                        32

2 [ ] ( 2 1)S   B2 B2 modC C                                                                                                                                                                                                                

(20) 
 Core 3 
                                        32

3 [ ] ( 2 1)S   B3 B3 modC C                                                                                                                                                                                                                

(21) 
 Core 4 
                                        32

4 [ ] ( 2 1)S   B4 B4 modC C                                                                                                                                                                              

(22) 

As explained in Section 2.3, if the data are received in error, the decoder will 
additionally perform nTL table lookups, nTL comparisons, 1 integer addition (or 
two integer additions in parallel) and 1 modulo reduction (or two modulo 
reductions in parallel). In our case, four such operations will be executed in 
parallel in T3 = 29·nTL + 2 clock cycles. Hence, if we sum up all processing times, 
we come to the conclusion that the processor requires 

4 1 2 3 TLT = T + T + T = 9· + 29· + 4k n                                                                                                                                      

(23) 
clock cycles to process K data bits, i.e. one second to decode 

9
R4

4
4 TL

(3.5 10 ) 128
=  =

T / 9· + 29· + 4

C k
G

K k n

                                                                                                                                                                                

(24) 
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data bits. By substituting the values of k and nTL in (24) we obtain that Gmin = 
15.91 Gbps and Gmax = 27.46 Gbps. In other words, it can be concluded that all 
codes from Table 5, except (2080, 2048) DAEC code, have the potential to be 
used in 10G networks [1]. In addition, from (15)-(22) we see that the analyzed 
codes can correct asymmetric errors affecting four adjacent 32-bit bytes. This 
feature is very useful, since in practice channel errors often corrupt two adjacent 
bytes [5], [6], [7]. 

3.2. Scenario 2: Network nodes are equipped with eight-core processors 

Suppose now that the network nodes are equipped with eight-core processors 
(Fig. 5) having the following specifications [17], [18]: 

1) clock rate: CR8 = 3.5·109 Hz, 
2) integer addition/subtraction/multiplication operation: 2 cycles latency, 
3) 128-bit shift operation: 1 cycle latency, 
4) modulo reduction operation: 1 cycle latency, 
5) comparison operation: 1 cycle latency, 
6) access to the L1 cache (64 KB per core): 3 cycles latency, 

Table 5. Memory Requirements and Theoretical Decoding Throughputs for Some Four-Byte Interleaved Integer Codes. 

Integer Codes k 

Memory  
Requirements 
for Storing the  
Coefficients Ci 

Memory  
Requirements 
for Storing the 

Syndrome Table 

Number  
of Table 
Lookups 

Minimum 
Theoretical 
Decoding 

Throughput 

(1056, 1024) B5/32AEC Code 32 4 x 128 B 0.14 MB 1 ≤ nTL ≤ 15 19.72 Gbps 

(1056, 1024) R3/32AEC Code 32 4 x 128 B 1.58 MB 1 ≤ nTL ≤ 19 17.01 Gbps 

(1056, 1032) B5/32AEC-R3/32AEC Code 32 4 x 128 B 1.63 MB 1 ≤ nTL ≤ 19 17.01 Gbps 

(1056, 1032) DAEC Code 32 4 x 128 B  7.53 MB 1 ≤ nTL ≤ 21 15.91 Gbps 

(2080, 2048) B5/32AEC Code 64 4 x 256 B 0.27 MB 1 ≤ nTL ≤ 16 27.46 Gbps 

(2080, 2048) R3/32AEC Code 64 4 x 256 B 3.17 MB 1 ≤ nTL ≤ 20 24.72 Gbps 

(2080, 2048) B5/32AEC-R3/32AEC Code 64 4 x 256 B 3.25 MB 1 ≤ nTL ≤ 20 24.72 Gbps 

(2080, 2048) DAEC Code 64 4 x 256 B 29.76 MB 1 ≤ nTL ≤ 23 --------1 
     1The size of the syndrome table exceeds the capacity of the cache. 



Chapter title 15

7) access to the L2 cache (256 KB per core): 8 cycles latency, 
8) access to the L3 cache (32 MB shared): 25 cycles latency. 

Given this, suppose that the data word has K = 8·b·k = 256·k bits and that the 
coefficients Ci are stored in each of the eight L1 caches. In addition, assume that 
that the syndrome table is placed into the L3 cache. In that case, instead of one, 
we will have eight check-bytes. Their values are calculated as follows:  

 Core 1 

2 1 2 1 
           32 32

B1 1 1 2 9 8 ( -1)+1 8 ( -1)+11
[ ] (mod ) (mod )

k
k k i ii

C C B C B C B C B                                                                                                                                 

(25) 
 Core 2 

2 1 2 1 
           32 32

B2 1 2 2 10 8 ( -1)+2 8 ( -1)+21
[ ] (mod ) (mod )

k
k k i ii

C C B C B C B C B                                                                                              

(26) 
 Core 3 

2 1 2 1 
           32 32

B3 1 3 2 11 8 ( -1)+3 8 ( -1)+31
[ ] (mod ) (mod )

k
k k i ii

C C B C B C B C B                                                                                                                       

(27) 
 Core 4 

2 1 2 1 
           32 32

B4 1 4 2 12 8 ( -1)+4 8 ( -1)+41
[ ] (mod ) (mod )

k
k k i ii

C C B C B C B C B                                                                                                                      

(28) 
 Core 5 

2 1 2 1 
           32 32

B5 1 5 2 13 8 ( -1)+5 8 ( -1)+51
[ ] (mod ) (mod )

k
k k i ii

C C B C B C B C B                                                                                                               

(29) 
 Core 6 

2 1 2 1 
           32 32

B6 1 6 2 14 8 ( -1)+6 8 ( -1)+61
[ ] (mod ) (mod )

k
k k i ii

C C B C B C B C B                                                                                                                      

(30) 

         
                                                            Fig. 5. Block diagram of eight-core processor. 

. 
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 Core 7 

2 1 2 1 
           32 32

B7 1 7 2 15 8 ( -1)+7 8 ( -1)+71
[ ] (mod ) (mod )

k
k k i ii

C C B C B C B C B                                                                                             

(31) 
 Core 8 

2 1 2 1 
           32 32

B8 1 8 2 16 8 ( -1)+8 8 ( -1)+81
[ ] (mod ) (mod )

k
k k i ii

C C B C B C B C B                                                                                                                      

(32) 

If we add to this K/128 = 2·k shift operations, we calculate that each processor 
requires T5 = 9·k clock cycles (k accesses to the L1 cache, k integer 
multiplications, k - 1 integer additions, 1 modulo reduction and 2·k shift 
operations) to compute the check-byte. After finishing this task, the processor will 
take T6 = 3 clock cycles (1 integer subtraction and 1 modulo reduction) to 
generate the syndromes 

 Core 1 
                                        32

1 [ ] ( 2 1)S   B1 B1 modC C                                                                                                         

(33) 
 Core 2 
                                        32

2 [ ] ( 2 1)S   B2 B2 modC C                                                                                                                                                                                                                

(34) 
 Core 3 
                                        32

3 [ ] ( 2 1)S   B3 B3 modC C                                                                                                                           

(35) 
 Core 4 
                                        32

4 [ ] ( 2 1)S   B4 B4 modC C                                                                                                                                                                                                                

(36) 
 Core 5 
                                        32

5 [ ] ( 2 1)S   B5 B5 modC C                                                                                                                                                             

(37) 
 Core 6 
                                        32

6 [ ] ( 2 1)S   B6 B6 modC C                                                                                                                                                                                                                

(38) 
 Core 7 
                                        32

7 [ ] ( 2 1)S   B7 B7 modC C                                                                                                                                                                                       

(39) 
 Core 8 
                                        32

8 [ ] ( 2 1)S   B8 B8 modC C                                                                                                                                                                                                                

(40) 

As in the previous scenario, if the data are received in error, the decoder will 
perform nTL table lookups, nTL comparisons, 1 integer addition (or two integer 



Chapter title 17

additions in parallel) and 1 modulo reduction (or two modulo reductions in 
parallel). In this particular case, eight such operations will be executed in parallel 
T7 = 26·nTL +   6 clock cycles. So, if we sum up all processing times, we come to 
the conclusion that the processor requires 

8 5 6 7 TLT = T + T + T = 9· + 26· + 9k n                                                                                                                                                                                                     

(41) 
clock cycles to process K data bits, i.e. one second to decode 

9
R8

8
8 TL

(3.5 10 ) 256
=  =

T / 9· + 26· + 9

C k
G

K k n

                                                                                                                                                                                

(42) 
data bits. By substituting the values of k and nTL in (42) we easily calculate that 
Gmin = 34.01 Gbps and Gmax. = 57.29 Gbps (Table 6). In this scenario, unlike the 
previous one, all considered codes (Table 6) have the potential to be used in 10G 
networks. Moreover, we see that most of them could be candidates for use in 40G 
networks. In addition, unlike the previous scenario, in this one, the data bytes are 
interleaved to a depth of eight. This additionally reduces the probability that some 
errors may be undetected or miscorrected. 

4. CONCLUSION 
 
In this chapter, we have reviewed four classes of integer codes capable of 

correcting multiple asymmetric errors. We have shown that these codes have two 
important characteristics: first, they use processor-friendly operations, and 
second, they can be interleaved without delay and without using dedicated 
hardware. Thanks to these, they have potential to be implemented "for free" in 
short-range optical networks. To illustrate this, we have shown that the four-byte 
and eight-byte interleaved codes, implemented on the four-core and eigth-core 
processor, respectively, achieve theoretical throughputs of several tens of Gbps. 
In the future, we plan to extend our approach to codes capable of correcting 
symmetric errors. Unlike the presented ones, these codes would have the potential 
to be used in long-range optical networks. 

 

Table 6. Memory Requirements and Theoretical Decoding Throughputs for Some Eight-Byte Interleaved Integer Codes. 

Integer Codes k 

Memory  
Requirements 
for Storing the  
Coefficients Ci 

Memory  
Requirements 
for Storing the 

Syndrome Table 

Number  
of Table 
Lookups 

Minimum 
Theoretical 
Decoding 

Throughput 

(1056, 1024) B5/32AEC Code 32 8 x 128 B 0.14 MB 1 ≤ nTL ≤ 15 41.74 Gbps 

(1056, 1024) R3/32AEC Code 32 8 x 128 B 1.58 MB 1 ≤ nTL ≤ 19 36.25 Gbps 

(1056, 1032) B5/32AEC-R3/32AEC Code 32 8 x 128 B 1.63 MB 1 ≤ nTL ≤ 19 36.25 Gbps 

(1056, 1032) DAEC Code 32 8 x 128 B 7.53 MB 1 ≤ nTL ≤ 21 34.01 Gbps 

(2080, 2048) B5/32AEC Code 64 8 x 256 B 0.27 MB 1 ≤ nTL ≤ 16 57.29 Gbps 

(2080, 2048) R3/32AEC Code 64 8 x 256 B 3.17 MB 1 ≤ nTL ≤ 20 51.90 Gbps 

(2080, 2048) B5/32AEC-R3/32AEC Code 64 8 x 256 B 3.25 MB 1 ≤ nTL ≤ 20 51.90 Gbps 

(2080, 2048) DAEC Code 64 8 x 256 B 29.76 MB 1 ≤ nTL ≤ 23 48.47 Gbps 
     . 
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