

This is the peer-reviewed version of the paper:

Radonjic, A., 2020. Integer Codes Correcting Double Errors and Triple-Adjacent Errors Within a

Byte. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 28, 1901–1908.

https://doi.org/10.1109/TVLSI.2020.2998364

This work is licensed under the Attribution-NonCommercial-NoDerivatives 4.0 International
(CC BY-NC-ND 4.0)

https://doi.org/10.1109/TVLSI.2020.2998364
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

IEEE TRANSACTIONS ON VLSI

1


Abstract-This paper presents a class of integer codes that are

suitable for use in optical computer networks where the data is
transmitted serially. The presented codes are constructed with
the help of a computer and have three desirable properties. First,
they use integer and lookup table operations, which makes them
suitable for software implementation. Second, depending on the
application requirements, the proposed codes can be used as
lower rate error correction (EC) codes or as high-rate error
detection (ED) codes. In the EC mode, which is suited for real-
time applications, the receiver can correct all single and double
errors as well as all triple-adjacent (TA) errors within one b-bit
byte. On the other hand, if the integrity of data is of high
importance, the receiver may operate in the ED mode. In that
case, it is able to detect all quadruple errors, all double TA errors
within one b-bit byte and all double TA errors within two b-bit
bytes. Finally, it is important to note that the presented codes can
be interleaved without delay and without using any additional
hardware. Owing to this, it is possible to construct simple codes
capable of detecting/correcting multiple TA and random errors.

Index Terms-Integer codes, optical computer networks, error
control, single errors, double errors, triple-adjacent errors.

I. INTRODUCTION

Optical computer networks (OCNs) are usually classified in
terms of the area they cover. Thus, for example, optical LANs
(local area networks) connect computers that are physically
close together, optical MANs (metropolitan area networks) are
used to connect optical LANs, while optical WANs (wide area
networks) are designed to connect computers on a national or
continental scale (Fig. 1a) [1]. Due to these differences, these
networks operate at different speeds: optical LANs and MANs
typically run at 1 Gbps or 10 Gbps, while optical WANs rarely
have data rates above 1 Gbps (these networks are mostly built
using leased lines) [1], [2].

Although these facts are well documented in the literature,
it is very rarely mentioned that OCNs share several common
features. The first of them concerns the high computing power
of the network nodes (NNs). Namely, from [3] it is known that
exterior nodes (computers and servers) are always equipped
with general purpose processors (GPPs), while interior nodes
(routers and switches) contain network processors (NPs). The
only difference between these chips is that NPs integrate some
additional coprocessors [3] (e.g. for cryptographic operations).
Hence, it can be said that each NN has hardware to perform
integer, floating-point, logical and memory-based operations
(e.g. lookup table (LUT) operations).

The author is with the Institute of Technical Sciences of the Serbian

Academy of Sciences and Arts, 11000 Belgrade, Serbia.

The second common characteristic of almost all OCNs is
that they use Ethernet packets for internode communication. In
optical LANs/MANs these packets are used directly, while in
optical WANs they are encapsulated into different frames (e.g.
GFP frame [2]). Each Ethernet packet, as it is known, contains
between 368 and 12000 bits of data, and ends with a 32-bit
CRC code. Owing to this, the receiver is able to detect up to
three random errors and all bursts of length up to 32 bits.

The third and last common feature relates to the behaviour
of channel errors. In many studies, such as [4]-[8], it has been
shown that single errors are 10 to 1000 times more frequent
than any other type of errors. Besides this, in [4]-[8] it was
shown that the burst error probability decreases exponentially
with increasing burst length (Fig. 1b). If we add to this the fact
that some OCNs may have high error rates (between 10-4 and
10-3) [7] we easily come to the conclusion that the most likely
errors may occur twice. Therefore, it is reasonable to assume
that, in OCNs, the vast majority of corrupted packets will
contain either single, double or triple-adjacent (TA) errors.

Bearing this in mind, one may conclude that CRC codes are
not the optimal solution for OCNs. First of all, these codes are
based on finite field (FF) arithmetic, which is not supported by
GPPs. For this reason, all NNs are equipped with hardware
that performs FF operations. The second disadvantage is that
CRCs cannot efficiently adapt to the application requirements.
Namely, they are designed to detect the errors, but not to
correct them. This means that each erroneous packet will be
recovered through retransmission, which may be unacceptable
for real-time (RT) applications.

Motivated by these facts, in this paper, we extend our
previous work [9]-[14], and present a class of integer codes
suitable for use in OCNs where the data is transmitted serially.
Compared to CRCs, our codes have three advantages. First,
they use integer and LUT operations, which makes them
suitable for implementation in software. Second, depending on
the application requirements, the presented codes can be used
as high-rate error detection (ED) codes or as lower rate error
correction (EC) codes. In the EC mode, which is suited for RT
applications, the receiver can correct all single and double
errors, as well as all TA errors confined to one b-bit byte (TA1
errors). On the other hand, if the integrity of data is of high
importance, the receiver may operate in the ED mode. In that
case, it is able to detect all quadruple errors, all double TA
errors corrupting one b-bit byte (DTA1 errors) and all double
TA errors corrupting two b-bit bytes (DTA2 errors). Finally,
the codes presented in this paper can be interleaved without
delay and without using any additional hardware. Owing to
this, it is possible to construct very simple codes capable of
correcting/detecting multiple TA and random errors.

Aleksandar Radonjic

Integer Codes Correcting Double Errors and
Triple-Adjacent Errors within a Byte

IEEE TRANSACTIONS ON VLSI

2

The organization of this paper is as follows: Section 2 deals

with the construction of integer double error correcting and
TA1 error correcting (DEC-(TAEC)b) codes. The error control
procedure for these codes is described in Section 3. Section 4
is devoted to the application of the proposed codes in OCNs,
while Section 5 compares these codes with linear DEC-TAEC
codes. Finally, Section 6 concludes the paper.

II. CODES CONSTRUCTION

Definition 1. [14] Let
2 1bZ = {0, 1, …, 2b – 2} be the ring of

integers modulo 2b – 1 and let
1

0
2

b n

nn
a




 iB be the integer

 representation of a b-bit byte, where na {0, 1} and 1 ≤ i ≤ k.

Then, the code C (b, k, c), defined as

+1= : mod 2 1b

k
k b

i

C b, k, c x Z C B B




  
    

  
1

2 1
1

() ()i i k
 (1)

is an (kb + b, kb) integer code, where x = (B1, B2, ..., Bk, Bk+1)
1

2 1b

kZ 


 is the codeword vector, c = (C1, C2, ..., Ck, 1) 1

2 1b

kZ 


 is

 the coefficient vector and Bk+1 2 1
 bZ is an integer.

Definition 2. Let x = (B1, B2,…, Bk, Bk+1)
1

2 1b

kZ 


 , y = (B1,

B2, …, Bk, Bk+1)
1

2 1b

kZ 


 and e = (B1 – B1, B2 – B2, …, Bk – Bk,

Bk+1 – Bk+1) = (e1, e2,..., ek,\ ek+1)
1

2 1b

kZ 


 be respectively, the sent

codeword, the received codeword and the error vector. Then,
the syndrome S of the received codeword is defined as

+1

+1
1 1

(mod 2 1) (mod 2 1)i i k i i
 

       
k k

b b

i i

S C B B e C (2)

From (1) and (2) it can be noticed that the byte with all 1s
has the same integer value as the byte with all 0s (since 2b – 1
≡ 0 (mod 2b – 1)). This means that we cannot construct codes
that correct byte errors. However, we can construct codes with
DEC-(TAEC)b capability. The first step in that direction is to
define sets of syndromes that correspond to single, double and
TA1 errors.

Definition 3. The set of syndromes corresponding to single
errors is defined as

 
+1

1
1

= ± 2 (mod 2 1): 0 –1


   
k

r b
i

i

s C r b (3)

Definition 4. The set of syndromes corresponding to double
errors is defined as

2 1 2= s d d (4)

where

 
+1

1
=1

= (± 2 ± 2) (mod 2 1): 0 < –1   
k

r s b
i

i

d C r s b (5)

 
+1

2
=1 = +1

= ± 2 ± 2 (mod 2 1) : 0 , –1    
k k

r s b
i j

i j i

d C C r s b (6)

 Definition 5. The set of syndromes corresponding to TA1
errors is defined as

 
+1

2 1 0
3 i

=1

= (± 2 ± 2 ± 2) 2 (mod 2 1): 0 – 3    
k

r b

i

s C r b (7)

If we compare the sets s1, s3 and d1, we will observe that
their intersection is not empty. Moreover, it can be proved that
the sets s1 and s3 are subsets of d1.

Theorem 1. For any b ≥ 3 it holds s1  d1 and s3  d1.

Proof. To prove that s1  d1, observe that the set d1 can be

express as the union

1 i
i

d  
2 2

1

b-

=

P

where

 

 

 

 

 

+1
1 0

1
1

+1
1 0

2
1

+1
2 0

3
1

+1
2 0

4
1

3 0
5

(2 2) 2 (mod 2 1): 0 – 2

(2 2) 2 (mod 2 1): 0 – 2

(2 2) 2 (mod 2 1): 0 –3

(2 2) 2 (mod 2 1): 0 –3

(2 2) 2 (mod 2 1): 0 –4

r
i

r
i

r
i

r
i

r
i

P

P

P

P

P











       

       

       

       

       









k
b

i

k
b

i

k
b

i

k
b

i

b

i

C r b

C r b

C r b

C r b

C r b

 

+1

1

+1
3 0

6
1

(2 2) 2 (mod 2 1): 0 –4r
iP



       





k

k
b

i

C r b

 

 

 

+1
3 0

2 7
1

+1
3 0

2 6
1

(2 2) 2 (mod 2 1): 0 2

(2 2) 2 (mod 2 1): 0 2

b r
b i

b r
b i

P

P











       

       





k
b

i

k
b

i

C r

C r

 Fig. 1. Optical computer networks: (a) the topology and (b) the typical error behavior.

IEEE TRANSACTIONS ON VLSI

3

 

 

 

 

+1
2 0

2 5
1

+1
2 0

2 4
1

+1
1 0

2 3
1

+1
1 0

2 2
1

(2 2) 2 (mod 2 1): 0 1

(2 2) 2 (mod 2 1): 0 1

(2 2) 2 (mod 2 1): 0

(2 2) 2 (mod 2 1): 0

b r
b i

b r
b i

b r
b i

b r
b i

P

P

P

P





















       

       

      

      









k
b

i

k
b

i

k
b

i

k
b

i

C r

C r

C r

C r

From the above it is easy to show that

 

 

+1
1

2 3
1

+1
1

1

1 1 2 3

(2 1) (mod 2 1)

2 (mod 2 1) ,

.

b
b i

b
i

b

P

P P












     

  











k
b

i

k
b

i

C

C

s

Hence, it is clear that s1  d1. To prove the second part of the

theorem, note that the set s3 can be express as the union
8

3
1=

  j
j

s Q

where

 

 

 

 

+1
2 1 0

1
1

+1
2 1 0

2
1

+1
2 1 0

3
1

+1
2 1 0

4
1

2 1 0
5

(2 2 2) 2 (mod 2 1): 0 3

(2 2 2) 2 (mod 2 1): 0 3

(2 2 2) 2 (mod 2 1): 0 3

(2 2 2) 2 (mod 2 1): 0 3

(2 2 2) 2 (mod 2

–

–

–

–

i

i

i

i

i

b

b

b

b









        

        

        

        

    









k
r b

i

k
r b

i

k
r b

i

k
r b

i

r

Q C r

Q C r

Q C r

Q C r

Q C 

 

 

 

+1

1

+1
2 1 0

6
1

+1
2 1 0

7
1

+1
2 1 0

8
1

1): 0 3

(2 2 2) 2 (mod 2 1): 0 3

(2 2 2) 2 (mod 2 1): 0 3

(2 2 2) 2 (mod 2 1): 0 3

–

–

–

–

i

i

i

b

b

b

b









  

       

       

       









k
b

i

k
r b

i

k
r b

i

k
r b

i

r

Q C r

Q C r

Q C r

By comparing the sets Q2, Q3, Q4, Q5, Q6, Q7, P1, P3 and P4 we
conclude that

 

 

 

2 7 4

3 6 3

4 5 1 .

Q Q

Q Q

Q Q













P

P

P

Also, if we compare the sets Q1, Q8, P5 and P2b-7 we see that

   

 

 

 

3 0
1 8

+1
3 0 -3

5
1

+1
-3 0

5
1

2 7 5

(2 2) 2 (mod 2 1): 0 3

(2 2) 2 (mod 2 1)

(2 2) (mod 2 1)

.

–i

b
i

b
i

b

b

P

P

P P







        

 
         

 

 
      

 







 







r b

k
b

i

k
b

i

Q Q C r

C

C

As a result, it is follows that s3  d1. □

Now, when we know that s1  d1 and s3  d1, we can prove

the following theorem.
Theorem 2. The codes defined by (1) can correct all single,

double and TA1 errors iff there exists k mutually different
coefficients Ci such that

1

2

1 2

1 2 2 (1 ,

2 2 1 ,

3 ,

d

d

d d

     

  

 

2

2

. (1))

. = ()

.

= b k +

b k k +

where A is the cardinality of A.

Proof. Condition 1 of this theorem says that double errors
confined to a b-bit byte generate - - (   

22 (1) 2 1)b k + nonzero

syndromes. To prove this, let us first observe that 3 2P P and

 2 5 2 2 2 .  b bP P P Now, suppose that the coefficients Ci have

values such that

2 1 2

1 2 4 5 2 6 2 4 2 3 2 2

2 () (+1), = 1, 2, ..., 1,

.

j j

b b b b

j k j

   

   

       

– –P P b b

P P P P P P P P

In that case, it is easy to show that

1 3 2 5
1

2 1 2 (1j
j

d





        
2 2

2()).
b

b= P P P b k +

Similarly, Condition 2 implies that double errors corrupting

two b-bit bytes generate 2 1  2 ()b k k+ nonzero syndromes. To

prove this, observe that the set d2 can be expressed as

2
1

k

i
i=

 d R

where

 

 

 

 

1

1 1
= 2

1

2 2
=3

1

3 3
= 4

= ± 2 ± 2 (mod 2 1):0 , –1

= ± 2 ± 2 (mod 2 1): 0 , –1

= ± 2 ± 2 (mod 2 1): 0 , –1

= ± 2 ± 2 (mod 2 1): 0 , –1

R

R

R

R

    

    

    

   









k+
r s b

j
j

k+
r s b

j
j

k+
r s b

j
j

r s b
k k

C C r s b

C C r s b

C C r s b

C r s b

Obviously, if the coefficients Ci have values such that

1 2

1

2

3

,

4

4 (– 1),

4 (– 2),

4 ,

2

2

2

2

b

b

b

b

 

  

  

  

 

 



k

k

R R R

R k,

R k

R k

R

then

2
1 1

4 (+1 –) 2 12= = ().
k k

2

i i

= b b k k +
 

     id R k i

Finally, Condition 3 is a necessary condition for distinguishing
double errors confined to one b-bit byte from those corrupting
two b-bit bytes. So, (kb + b, kb) integer DEC-(TAEC)b codes
must satisfy all the conditions 1 to 3. Conversely, if the codes
satisfy conditions 1 to 3, then we can distinguish double errors
within one b-bit byte from those corrupting two b-bit bytes.

IEEE TRANSACTIONS ON VLSI

4

Algorithm 1 The pseudocode for finding the coefficients Ci

We can also correct all single, double and TA1 errors. Hence,
these codes are (kb + b, kb) integer DEC-(TAEC)b codes. □

As a corollary of Theorem 2, we can state the following.

Theorem 3. The error set for (kb + b, kb) integer DEC-
(TAEC)b codes has

 
2

2 1 2 2 1 1 2= = = k +      ξ s d d b

nonzero elements.
Proof. The proof follows from Theorem 2. □

Theorem 4. For any (kb + b, kb) integer DEC-(TAEC)b
code it holds that

1

22 1
.

b-

k

 
  

 
  

b

b

Proof. From Theorem 3 it is known that the error set ξ has

 
2

2 (1) 1 2b +   k nonzero elements. On the other hand,

Definition 1 states that the total number of nonzero syndromes
is equal to 2b – 2. Obviously, if we combine Definition 1 with
Theorem 3 we get the inequality

 
2

2 (1) 1 2 2 2b +     bk

where from it follows that
1

22 1
.

b-

k

 
  

 
  

b

b
□

In Section 1 it was mentioned that the presented codes can
be also used as high-rate ED codes. However, before showing
this, we need to prove the following theorem.

Theorem 5. Any (kb + b, kb) integer DEC-(TAEC)b code,
when operating as the ED code, is able to detect all quadruple
errors, all DTA1 errors and all DTA2 errors.

Proof. From coding theory, it is known that any DEC code
can detect all quadruple errors. On the other hand, from the
proof of Theorem 1 we know that some double errors, within a
b-bit byte, produce the same syndromes as TA1 errors. From
this we easily conclude that DTA2 errors generate the same
syndromes as some quadruple errors corrupting two b-bit
bytes. In the same way, it can be concluded that DTA1 errors
produce the same syndromes as some quadruple errors
corrupting one b-bit byte. Therefore, any (kb + b, kb) integer
DEC-(TAEC)b code, when operating in the ED mode, is able
to detect all quadruple errors, all DTA1 errors and all DTA2
errors. □

To illustrate the applicability of the above theory, we have
conducted an exhaustive computer search. Our first goal was
to find out how the number of the Ci's depends on the byte
length (Table I), while the second goal was to find the Ci's that
allow us to construct some practical codes (Table II). The
pseudocode of our search method is presented in Algorithm 1.

III. ERROR CONTROL PROCEDURE

The error control procedure for the proposed codes is very
similar to those described in [9]-[14]. In short, if it operates in
the ED mode, the decoder has only one task: to check whether
the received data are correct or not. As a result, the incoming
packet will be either dropped (S ≠ 0) or accepted (S = 0).
However, if it operates in the EC mode, the decoder will try to
recover the original data. The first step in this direction is to
obtain the EC data from the syndrome table (ST). After that, in
the next step, the decoder will execute one of the following
operation(s):

TABLE I
NUMBER OF COEFFICIENTS FOR SOME INTEGER DEC-(TAEC)b CODES.

 b = 9 b = 10 b = 11 b = 12 b = 13 b = 14 b = 15 b = 16

Theory 0 1 2 2 4 5 7 10

Experiment 0 0 1 1 1 2 3 3

TABLE II

FIRST 96 COEFFICIENTS FOR SOME INTEGER DEC-(TAEC)b CODES.

b = 16

53 231 1067

b = 24

45 201 477 1109 1319 3129 3453 4847

9581 10117 11837 15411 17897 28827 44061 52265

74329 119841 174283 302403 674075 830035

b = 32
45 201 477 1109 1319 3129 3453 4847

9581 10117 11837 15411 17897 18439 23781 29749

34757 36419 44865 46009 51889 68223 81619 93047

108053 112279 113181 117189 164183 167119 169211 196783

201311 209395 256657 264427 275489 282429 310935 354225

386703 428269 432035 446911 514953 599285 634607 690403

748103 774457 834335 892067 893141 1013237 1067671 1087365

1103047 1122449 1191261 1248189 1297563 1342681 1458509 1570785

1701685 1789337 1904439 2007495 2143923 2240111 2300025 2332779

2346995 2583965 2597467 3176613 3200875 3218123 3333741 3677993

3759663 4008735 4245743 4301929 4539051 4637371 5001505 5168905

5659385 6365959 7104157 7276563 8858289 8994505 9282467 9856101

IEEE TRANSACTIONS ON VLSI

5

 for errors corrupting one b-bit byte

1 (mod 2 1), 1 1;i iB B i k     bE (8)

  1 2 2 (mod 2 1): 0 < –1    r s bE r s b

 for errors corrupting two b-bit bytes

1 mod 2 1 ;(1),b
i iB B i k    E (9)

 2 mod 2 1;(1),bB B k +    j j E i j (10)

 1 2, 2 mod 2 : 0 –1(1)b    rE E r b

To generate the ST it is necessary to substitute the values of
b and Ci into (5)-(6). In this way, exactly |ξ| (Theorem 3)
relationships between the nonzero syndrome (element of ξ),
error location(s) (i, j) and error vector(s) (E1, E2) will be
established (Fig. 2). So, when S ≠ 0, the decoder's task will be
to find the entry with the first b bits as that of the syndrome S.
If the ST is sorted, this task will be finished after nTL table

lookups and nTL comparisons TL 2(1 2)    n log [9].

To make this procedure more clear, let us consider it on
example of the (22, 11) DEC-(TAEC)11 code. (Remark: the
syndrome table for this code has |ξ| = 880 entries, and thus, it
will be shown partially.)

Example 1. Let b = 11, k = 1 and C1 = 45. Now, suppose
that we want to transmit 9 bits of data, B1 = 100100111012 =
1181. In that case, the integer value of the second (last) byte
will be equal to

+1 2 245 1181 mod 2047) =1970 =11110110010(k   B B

and the codeword will have the form, x = (B1, B2) = (1181,
1970) = (100100111012, 111101100102).

Scenario 1: Suppose that the 6th and 11th bit are received in
error, y = (B1, B2) = (100101111002, 111101100102) = (1212,
1970). As explained previously, after calculating the value of
the syndrome S

1 1 2 mod 2047 1212 45 1970 mod 2047 1395() ()      S C B B

the decoder will lookup the ST to find the entry with the first
11 bits as that of the syndrome S (Table III). After that, in the
next step, it will execute the operation

1 1212 2016 (mod 2047) 1181.B   

Scenario 2: Assume that the 4th and 12th bit are received in
error, y = (B1, B2) = (100000111012, 011101100102) = (1053,
946). As in the previous case, the decoder will calculate

1 1 2 mod 2047 1053 45 946 mod 2047 1405() ()      S C B B

and conclude that the value S = 1405 indicates an error within
the first and second byte (Table III). As a result, the following
procedure will take place

1

2

1053 128 (mod 2047) 1180,

946 1024 (mod 2047) 1970.

  

  

B

B

IV. APPLICATION IN MODERN OCNS

If we analyze the procedures described above, we will note
that the decoder uses very simple operations: integer additions,
integer multiplications and table lookups. As these operations
are supported by all processors, it is interesting to analyze how
the proposed codes can be used in modern OCNs. Without
loss of generality, we will suppose that all nodes (computers,
routers, etc.) are equipped with six-core processors having the
same specifications as in [14] (Fig. 3a). Likewise, we will
assume that each node has two modes of operation: the ED
mode, in which the data are protected by the six-byte
interleaved (3104, 3072) code, and the EC mode, in which the
data are protected with the six-byte interleaved (704, 672)
code. In that case, regardless of the mode of operation, each
node will compute the values of six syndromes [14]:

 Core 1

32
1 6 (1 6 +1

1

(mod 2 1)-)+1i i k 


   
k

i

S C B B (11)

 Core 2

32
2 6 (1 6 +2

1

(mod 2 1)-)+2i i k 


   
k

i

S C B B (12)



 Core 6

32
6 6 (1 6 +6

1

(mod 2 1)-)+6i i k 


   
k

i

S C B B (13)

The only difference is that, in the EC mode (k = 21), the NNs
perform much less operations than in the ED mode (k = 96).
However, when viewed from the throughput standpoint, this is
not a disadvantage. Namely, from [14] we know that, in the
case of operating in the EC mode, each node requires one
second to decode

9

EC

TL

(3.3 10) 192·
=

9.5· + 35· + 3

  k
G

k n
 (14)

data bits. If we apply this result to the presented theory, we
can easily conclude that, for k = 21, each node achieves a
throughput of 14.19 Gbps (Fig. 3b). On the other hand, if they
operate in the ED mode, the NNs will not lookup the STs or
perform any EC operation. As a result, the expression (14)
reduces to

TABLE III

THE SYNDROME TABLE FOR THE (22, 11) INTEGER DEC-(TAEC)11 CODE.

 Element of ξ i E1 j E2

 Element of ξ i E1 j E2

 Element of ξ i E1 j E2

1 1 2 1 0 0 291 640 2 1407 0 0 585 1395 1 2016 0 0
2 2 2 2 0 0 292 641 1 1032 0 0 586 1396 1 512 2 1919
3 3 2 3 0 0 293 642 1 1919 2 1023 587 1404 1 128 2 1023
4 4 2 4 0 0 294 643 1 1919 2 1024 588 1405 1 128 2 1024

                 

287 630 1 2033 0 0 581 1383 1 2039 2 1023 877 2043 2 4 0 0
288 634 1 256 2 1919 582 1384 1 2039 2 1024 878 2044 2 3 0 0
289 637 1 128 2 256 583 1391 1 16 2 64 879 2045 2 2 0 0
290 639 1 32 2 32 584 1394 1 60 0 0 880 2046 2 1 0 0

Fig. 2. Bit-width of one syndrome table entry.

IEEE TRANSACTIONS ON VLSI

6

9

ED

(3.3 10) 192·
=

9.5· + 1

  k
G

k
 (15)

where from it is easy to calculate that, for k = 96, each node
achieves a throughput of 66.62 Gbps. Having this in mind, we
can draw some general conclusions regarding the application
of the proposed codes:

1. All considered codes have the potential to be used in
10G or slower OCNs (Fig. 3b). In the EC mode, they are able
to protect between 3072 and 4032 bits. On the other hand, if
operating in the ED mode, they can protect up to 18432 bits.

 2. All considered codes are six times interleaved at the
byte level. This means that the decoder can correct (detect)
various types of errors, including all (double) TA errors.

3. All considered codes share the same coefficients (C1 =
45, C2 = 201, …, C96 = 9856101) (Table II). As a result, and
depending on the application requirements, the NNs can easily
switch from one mode to another. In the analyzed case, for
example, the NNs only need to know whether they will use 21
(the EC mode) or 96 coefficients (the ED mode). On the basis
of this information they will also know whether they need to
lookup the STs or not.

V. COMPARISON WITH LINEAR DEC-TAEC CODES

In the coding literature, one can find only two codes with
DEC-TAEC capability [15], [16]. The first was obtained by
modifying the DEC-BCH codes and the second by modifying
the DEC-OLS codes. In both cases, the modifications were
done at the cost of increased hardware complexity, but without
adding additional check bits.

As for the DEC-TAEC BCH codes, they have parameters
(2u – 1, 2u – 1 – 2 · u), where u ≥ 4. This means that the codes
of highest-rate are (15, 7), (31, 21) and so on. On the other
hand, it is known that the DEC-OLS codes are very inefficient
in terms of redundancy. The parameters of these codes are (m2
+ 4 · m, m2), where m ≥ 1, which means that they require many
more check bits than the DEC-TAEC BCH codes. Unlike the
linear DEC-TAEC codes, the proposed ones are characterized
by the parameters (kb + b, kb). Although there is a significant
difference between experimental and theoretical results (Table
I), it can be said that the proposed codes are relatively efficient
in terms of redundancy. This is also seen from the fact that for
data lengths up to 2048 bits they require 3 to 6 check bits more
compared to the DEC-TAEC BCH codes, i.e. 9 to 154 check-
bits less than the DEC-TAEC OLS codes (Table IV).

When it comes to the processing of data bits, the difference
between the mentioned codes is even more pronounced. First

of all, we have seen that the proposed codes use integer and
LUT operations, which makes them suited for implementation
on modern processors (Table V). Moreover, the analysis from
Section 4 showed that they have the potential to achieve
throughputs of several tens of Gbps. This result would be even
better if multiple integer units (instead of one) per core were
used (since Haswell all Intel processors have four integer units
per core [17]). On the other hand, it is known that the linear
DEC-TAEC codes use FF operations to encode/decode data
bits. However, as these operations are not supported by GPPs,
the codes from [15], [16] must be implemented in dedicated
hardware (the software-based decoders need several tens of
clock cycles to process one bit [18], [19]). In this regard, it
should be noted that the DEC-TAEC OLS codes have several
advantages over the DEC-TAEC BCH codes. One is that they
can be decoded much faster than the DEC-TAEC BCH codes.
Another advantage is that the DEC-TAEC OLS decoder can
be implemented in modular form. This means that each added
module provides extra correction ability allowing the receiver
to switch between different EC modes. Although this feature
is similar to that of the proposed codes, it cannot be efficiently
exploited in modern OCNs. The reasons for this lie in the high

Fig. 3. (a) Block diagram of six-core processor and (b) theoretical decoding throughputs for some six-byte interleaved integer DEC-(TAEC)32 codes.

TABLE IV

CHECK-BIT LENGTHS OF THE PROPOSED AND LINEAR DEC-TAEC CODES.

Codes
Data word length (bits)

32 64 128 256 512 1024 2048
Codes from [15] 12 14 16 18 20 22 24

Proposed codes 15 17 20 22 25 27 30

Codes from [16] 24 32 48 64 92 128 184

TABLE V

COMPARISON OF THE PROPOSED CODES AND LINEAR DEC-TAEC CODES.

Main
characteristics

DEC-TAEC
BCH codes

Proposed
codes

DEC-TAEC
OLS codes

Error correction
capabilities

Correction of
single, double
and TA errors

Correction of
single, double

and TAb1 errors

Correction of
single, double
and TA errors

Processing of
data bits

Finite field
operations

Integer and
LUT operations

Finite field
operations

Interleaving

Causes
extra delay

and requires
additional
hardware

Do not cause
extra delay and
do not require

additional
hardware

Causes
extra delay

and requires
additional
hardware

Adaptation
to the application

requirements
Very complex Simple Complex

Preferred type of
implementation

Hardware Software Hardware

IEEE TRANSACTIONS ON VLSI

7

complexity of the decoder (it is necessary to process up to
12000 data bits) as well as high redundancy of the DEC-
TAEC OLS codes.

Finally, the last difference between the mentioned codes
concerns the error control capabilities. As shown in Section 2,
the proposed codes were originally designed to correct all
single, double and TA1 errors. However, in Section 4 we saw
that they have the ability to be interleaved without delay and
without using any additional hardware. Thanks to this, it is
possible to construct codes capable of detecting/correcting
(multiple) random and TA errors. In addition, these codes can
easily change the code rate and the mode of operation, which
is very useful when transmitting different types of data. On the
other hand, the linear DEC-TAEC codes have the ability to
correct single, double and TA errors, but cannot easily change
the code rate and/or the mode of operation. More precisely,
they could be used for that purpose if different codecs were
integrated into one chip. This would, however, lead to a
significant increase in the price of network equipment. The
similar applies to the use of interleaved codes, which are
further characterized by delays in the processing of data bits.

VI. CONCLUSION

In this paper, we presented a class of integer codes that are
suitable for use in optical computer networks where the data is
transmitted serially. The presented codes use integer and table
lookup operations, which makes them well suited for software
implementation. Besides this, the presented codes have the
ability to change the code rate and the mode of operation. In
the error correction mode, which is suitable for real-time
applications, the decoder can correct all single and double
errors as well as all triple-adjacent errors within one b-bit byte.
On the other hand, in the error detection mode, which is suited
for non real-time applications, the decoder can detect all
quadruple errors, all double triple-adjacent errors within one
b-bit byte and all double triple-adjacent errors within two b-bit
bytes. Finally, the proposed codes can be interleaved without
delay and without using any additional hardware. Owing to
this, it is possible to construct very simple codes capable of
correcting (detecting) various types of errors, including all
(double) triple-adjacent errors.

REFERENCES

[1] R. Ramaswani, K. Sivarajan and G. Sasaki, Optical Networks: A
Practical Perspective, 3rd ed., Elsevier, Inc., 2010.

[2] P. Ciccarelli et al., Networking Basics, 2nd ed., John Wiley & Sons, Inc.,
2013.

[3] R. Giladi, Network Processors: Architecture, Programming, and
Implementation, Elsevier, Inc., 2008.

[4] Observations of Error Characteristics of Fiber Optic Transmission
Systems, CCITT Study Group XVIII Contrib. D21, San Diego, CA,
USA, Jan. 1989.

[5] W. D. Grover, “Effect of Error Correcting Code Using DS3 Framing
Bits on Measured Dribble Error Pattern of 565 Mb/s Fibre Optic
Transmission System,” Elect. Lett., vol. 28, no. 20, pp. 1869-1870, Sept.
1992.

[6] T. Ono et al., “Bit Error Statistical Analysis of Optical Transmission
Systems,” in D.W. Faulkner and A.L. Harmer (Eds.), pp. 43-49, IOS
Press, 2000.

[7] D. Mello, E. Offer, and J. Reichert, “Error Arrival Statistics for FEC
Design in Four-Wave Mixing Limited Systems,” in Proc. Opt. Fiber
Commun. Conf. (OFC), Mar. 2003, pp. 529-530.

[8] L. James, “Error Behaviour in Optical Networks,” Ph.D. dissertation,
Dept. Eng., Univ. Cambridge, Cambridge, U.K., 2005.

[9] A. Radonjic and V. Vujicic, “Integer Codes Correcting Burst Errors
within a Byte,” IEEE Trans. Comput., vol. 62, no. 2, pp. 411-415, Feb.
2013.

[10] A. Radonjic and V. Vujicic, “Integer Codes Correcting Spotty Byte
Asymmetric Errors,” IEEE Commun. Lett., vol. 20, no. 12, pp. 2338-
2341, Dec. 2016.

[11] A. Radonjic and V. Vujicic, “Integer Codes Correcting High-Density
Byte Asymmetric Errors,” IEEE Commun. Lett., vol. 21, no. 4, pp. 694-
697, Apr. 2017.

[12] A. Radonjic, “(Perfect) Integer Codes Correcting Single Errors,” IEEE
Commun. Lett., vol. 22, no. 1, pp. 17-20, Jan. 2018.

[13] A. Radonjic and V. Vujicic, “Integer Codes Correcting Burst and
Random Asymmetric Errors within a Byte,” J. Franklin Inst., vol. 355,
no. 2, pp. 981-996, Jan. 2018.

[14] A. Radonjic and V. Vujicic, “Integer Codes Correcting Sparse Byte
Errors,” Cryptogr. Commun., vol. 11, no. 5, pp. 1069-1077, Sept. 2019.

[15] W. Wu et al., “Method of Correcting Adjacent Errors By Using BCH-
Based Error Correction Coding,” US 2013/0262957 A1, Oct. 3, 2013.

[16] S. Liu et al., “Reducing the Cost of Triple Adjacent Error Correction in
Double Error Correction Orthogonal Latin Square Codes,” IEEE Trans.
Device Mater. Rel., vol. 16, no. 2, pp. 269-271, Jun. 2016.

[17] A. Fog, “The Microarchitecture of Intel, AMD and via CPUs: An
Optimization Guide for Assembly Programmers and Compiler Makers,”
Technical University of Denmark, Mar. 8, 2020. [Online]. Available:
https://www.agner.org/optimize/microarchitecture.pdf

[18] J. Cho and W. Sung, “Efficient Software-Based Encoding and Decoding
of BCH Codes,” IEEE Trans. Comput., vol. 58, no. 7, pp. 878-889, July
2009.

[19] A. Subbiah and T. Ogunfunmi, “A Flexible Hybrid BCH Decoder for
Modern NAND Flash Memories Using GPGPUs,” Micromachines, vol.
10, no. 6, pp. 1-15, Jun. 2019.

View publication statsView publication stats

https://patents.google.com/?inventor=Wei+Wu
https://www.agner.org/optimize/microarchitecture.pdf
https://www.researchgate.net/publication/341654339

	Abstract-This paper presents a class of integer codes that are suitable for use in optical computer networks where the dta is transmitted serially. The presented codes are constructed with the help of a computer and have three desirable properties. First, they use integer and lookup table operations, which makes them suitable for software implementation. Second, depending on the application requirements, the proposed codes can be used as lower rate error correction (EC) codes or as high-rate error detection (ED) codes. In the EC mode, which is suited for real-time applications, the receiver can correct all single and double errors as well as all triple-adjacent (TA) errors within one b-bit byte. On the other hand, if the integrity of data is of high importance, the receiver may operate in the ED mode. In that case, it is able to detect all quadruple errors, all double TA errors within one b-bit byte and all double TA errors within two b-bit bytes. Finally, it is important to note that the presented codes can be interleaved without delay and without using any additional hardware. Owing to this, it is possible to construct simple codes capable of detecting/correcting multiple TA and random errors.

	I. INTRODUCTION

	II. Codes Construction

	III. Error Control Procedure

	IV. Application in Modern OCNs

	V. Comparison with Linear DEC-TAEC Codes

	VI. Conclusion

	References

	Word Bookmarks
	OLE_LINK1
	OLE_LINK2
	PointTmp
	OLE_LINK6
	OLE_LINK13
	OLE_LINK14
	OLE_LINK11
	OLE_LINK12
	OLE_LINK10
	OLE_LINK9
	OLE_LINK4
	OLE_LINK5
	OLE_LINK7
	OLE_LINK8
	OLE_LINK3

