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 
Abstract-This paper presents a class of integer codes that are 

suitable for use in optical computer networks where the data is 
transmitted serially. The presented codes are constructed with 
the help of a computer and have three desirable properties. First, 
they use integer and lookup table operations, which makes them 
suitable for software implementation. Second, depending on the 
application requirements, the proposed codes can be used as 
lower rate error correction (EC) codes or as high-rate error 
detection (ED) codes. In the EC mode, which is suited for real-
time applications, the receiver can correct all single and double 
errors as well as all triple-adjacent (TA) errors within one b-bit 
byte. On the other hand, if the integrity of data is of high 
importance, the receiver may operate in the ED mode. In that 
case, it is able to detect all quadruple errors, all double TA errors 
within one b-bit byte and all double TA errors within two b-bit 
bytes. Finally, it is important to note that the presented codes can 
be interleaved without delay and without using any additional 
hardware. Owing to this, it is possible to construct simple codes 
capable of detecting/correcting multiple TA and random errors. 
 

Index Terms-Integer codes, optical computer networks, error 
control, single errors, double errors, triple-adjacent errors. 

I. INTRODUCTION 

Optical computer networks (OCNs) are usually classified in 
terms of the area they cover. Thus, for example, optical LANs 
(local area networks) connect computers that are physically 
close together, optical MANs (metropolitan area networks) are 
used to connect optical LANs, while optical WANs (wide area 
networks) are designed to connect computers on a national or 
continental scale (Fig. 1a) [1]. Due to these differences, these 
networks operate at different speeds: optical LANs and MANs 
typically run at 1 Gbps or 10 Gbps, while optical WANs rarely 
have data rates above 1 Gbps (these networks are mostly built 
using leased lines) [1], [2]. 

Although these facts are well documented in the literature, 
it is very rarely mentioned that OCNs share several common 
features. The first of them concerns the high computing power 
of the network nodes (NNs). Namely, from [3] it is known that 
exterior nodes (computers and servers) are always equipped 
with general purpose processors (GPPs), while interior nodes 
(routers and switches) contain network processors (NPs). The 
only difference between these chips is that NPs integrate some 
additional coprocessors [3] (e.g. for cryptographic operations). 
Hence, it can be said that each NN has hardware to perform 
integer, floating-point, logical and memory-based operations 
(e.g. lookup table (LUT) operations). 
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The second common characteristic of almost all OCNs is 
that they use Ethernet packets for internode communication. In 
optical LANs/MANs these packets are used directly, while in 
optical WANs they are encapsulated into different frames (e.g. 
GFP frame [2]). Each Ethernet packet, as it is known, contains 
between 368 and 12000 bits of data, and ends with a 32-bit 
CRC code. Owing to this, the receiver is able to detect up to 
three random errors and all bursts of length up to 32 bits. 

The third and last common feature relates to the behaviour 
of channel errors. In many studies, such as [4]-[8], it has been 
shown that single errors are 10 to 1000 times more frequent 
than any other type of errors. Besides this, in [4]-[8] it was 
shown that the burst error probability decreases exponentially 
with increasing burst length (Fig. 1b). If we add to this the fact 
that some OCNs may have high error rates (between 10-4 and 
10-3) [7] we easily come to the conclusion that the most likely 
errors may occur twice. Therefore, it is reasonable to assume 
that, in OCNs, the vast majority of corrupted packets will 
contain either single, double or triple-adjacent (TA) errors. 

Bearing this in mind, one may conclude that CRC codes are 
not the optimal solution for OCNs. First of all, these codes are 
based on finite field (FF) arithmetic, which is not supported by 
GPPs. For this reason, all NNs are equipped with hardware 
that performs FF operations. The second disadvantage is that 
CRCs cannot efficiently adapt to the application requirements. 
Namely, they are designed to detect the errors, but not to 
correct them. This means that each erroneous packet will be 
recovered through retransmission, which may be unacceptable 
for real-time (RT) applications.  

Motivated by these facts, in this paper, we extend our 
previous work [9]-[14], and present a class of integer codes 
suitable for use in OCNs where the data is transmitted serially. 
Compared to CRCs, our codes have three advantages. First, 
they use integer and LUT operations, which makes them 
suitable for implementation in software. Second, depending on 
the application requirements, the presented codes can be used 
as high-rate error detection (ED) codes or as lower rate error 
correction (EC) codes. In the EC mode, which is suited for RT 
applications, the receiver can correct all single and double 
errors, as well as all TA errors confined to one b-bit byte (TA1 
errors). On the other hand, if the integrity of data is of high 
importance, the receiver may operate in the ED mode. In that 
case, it is able to detect all quadruple errors, all double TA 
errors corrupting one b-bit byte (DTA1 errors) and all double 
TA errors corrupting two b-bit bytes (DTA2 errors). Finally, 
the codes presented in this paper can be interleaved without 
delay and without using any additional hardware. Owing to 
this, it is possible to construct very simple codes capable of 
correcting/detecting multiple TA and random errors. 
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The organization of this paper is as follows: Section 2 deals 

with the construction of integer double error correcting and 
TA1 error correcting (DEC-(TAEC)b) codes. The error control 
procedure for these codes is described in Section 3. Section 4 
is devoted to the application of the proposed codes in OCNs, 
while Section 5 compares these codes with linear DEC-TAEC 
codes. Finally, Section 6 concludes the paper. 

II. CODES CONSTRUCTION 

Definition 1. [14] Let
2 1bZ =  {0, 1, …, 2b – 2} be the ring of 

integers modulo 2b – 1 and let
1

0
2

b n

nn
a




 iB be the integer 

 representation of a b-bit byte, where na {0, 1} and 1 ≤ i ≤ k.  

Then, the code C    (b, k, c), defined as 

+1= : mod 2 1b

k
k b

i

C b, k, c x Z C B B


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  
    
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( ) ( )i i k
                                                                                         (1) 

is an (kb + b, kb) integer code, where x = (B1, B2, ..., Bk, Bk+1) 
1

2 1b

kZ 


 is the codeword vector, c = (C1, C2, ..., Ck, 1) 1

2 1b

kZ 


 is 

 the coefficient vector and Bk+1 2 1
 bZ is an integer. 

Definition 2. Let x = (B1, B2,…, Bk, Bk+1)
1

2 1b

kZ 


 , y = (B1, 

B2, …, Bk, Bk+1)
1

2 1b

kZ 


 and e = (B1 – B1, B2 – B2,  …, Bk – Bk, 

Bk+1 – Bk+1) = (e1, e2,...,   ek,\  ek+1)
1

2 1b

kZ 


 be respectively, the sent 

codeword, the received codeword and the error vector. Then, 
the syndrome S of the received codeword is defined as 

+1

+1
1 1

(mod 2 1) (mod 2 1)i i k i i
 

       
k k

b b

i i

S C B B e C                               (2) 

From (1) and (2) it can be noticed that the byte with all 1s 
has the same integer value as the byte with all 0s (since 2b – 1 
≡ 0 (mod 2b – 1)). This means that we cannot construct codes 
that correct byte errors. However, we can construct codes with 
DEC-(TAEC)b capability. The first step in that direction is to 
define sets of syndromes that correspond to single, double and 
TA1 errors. 

Definition 3. The set of syndromes corresponding to single 
errors is defined as 

 
+1

1
1

= ± 2 (mod 2 1): 0 –1


   
k

r b
i

i

s C r b                                                                                                                                                                                                                                             (3) 

Definition 4. The set of syndromes corresponding to double 
errors is defined as 

   

2 1 2= s d d                                                                                                                                                                                                                                                                                                                      (4)                                                           

where   

 
+1

1
=1

= (± 2 ± 2 ) (mod 2 1): 0 < –1   
k

r s b
i

i

d C r s b                                                                                                                              (5)      

 
+1

2
=1 = +1

= ± 2 ± 2 (mod 2 1) : 0 , –1    
k k

r s b
i j

i j i

d C C r s b                                                                                          (6)   

   Definition 5. The set of syndromes corresponding to TA1 
errors is defined as 

 
+1

2 1 0
3 i

=1

= (± 2 ± 2 ± 2 ) 2 (mod 2 1): 0 – 3    
k

r b

i

s C r b                                                                       (7) 

If we compare the sets s1, s3 and d1, we will observe that 
their intersection is not empty. Moreover, it can be proved that 
the sets s1 and s3 are subsets of d1. 

Theorem 1. For any b ≥ 3 it holds s1  d1 and s3  d1. 

Proof.   To prove that s1  d1, observe that the set d1 can be 

express as the union 

1 i
i
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   Fig. 1. Optical computer networks: (a) the topology and (b) the typical error behavior. 
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From the above it is easy to show that 
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Hence, it is clear that s1  d1. To prove the second part of the 

theorem, note that the set s3 can be express as the union 
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By comparing the sets Q2, Q3, Q4, Q5, Q6, Q7, P1, P3 and P4 we 
conclude that 
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Also, if we compare the sets Q1, Q8, P5 and P2b-7 we see that 
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As a result, it is follows that s3   d1. □ 

Now, when we know that s1  d1 and s3  d1, we can prove 

the following theorem. 
Theorem 2. The codes defined by (1) can correct all single, 

double and TA1 errors iff there exists k mutually different 
coefficients Ci such that 
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where A is the cardinality of A. 

Proof.   Condition   1  of this theorem    says   that   double errors 
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 2 5 2 2 2 .  b bP P P Now, suppose that the coefficients Ci have 

values such that  

2 1 2

1 2 4 5 2 6 2 4 2 3 2 2

2 ( ) ( +1), = 1, 2, ..., 1,

.

j j

b b b b

j k j

   

   

       

– –P P b b

P P P P P P P P
 

In that case, it is easy to show that 
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Similarly, Condition 2 implies that double errors corrupting 

two b-bit bytes generate 2 1  2 ( )b k k+ nonzero syndromes. To 

prove this, observe that the set d2 can be expressed as 
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Obviously, if the coefficients Ci have values such that 
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Finally, Condition 3 is a necessary condition for distinguishing 
double errors confined   to one b-bit byte from those corrupting 
two b-bit bytes. So, (kb + b, kb) integer DEC-(TAEC)b codes 
must satisfy all the conditions 1 to 3. Conversely, if the codes 
satisfy conditions 1 to 3, then we can distinguish double errors 
within one b-bit byte from those corrupting two b-bit bytes. 
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Algorithm 1 The pseudocode for finding the coefficients Ci                                                                                
                                                                                              

 
                                                                                        

We can also correct all single, double and TA1 errors. Hence, 
these codes are (kb + b, kb) integer DEC-(TAEC)b codes. □ 

As a corollary of Theorem 2, we can state the following. 

Theorem 3. The error set for (kb + b, kb) integer DEC-
(TAEC)b codes has 

 
2

2 1 2 2 1 1 2= = = k +      ξ s d d b                        

nonzero elements. 
Proof. The proof follows from Theorem 2. □ 

Theorem 4. For any (kb + b, kb) integer DEC-(TAEC)b 
code it holds that 

1

22 1
.

b-

k

 
  

 
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b
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Proof. From Theorem 3 it is known that the error set ξ has 

 
2

2 ( 1) 1 2b +   k nonzero elements. On the other hand, 

Definition 1 states that the total number of nonzero syndromes 
is equal to 2b – 2. Obviously, if we combine Definition 1 with 
Theorem 3 we get the inequality 

 
2

2 ( 1) 1 2 2 2b +     bk  

where from it follows that 
1

22 1
.
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 
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 
  

b

b
□ 

In Section 1 it was mentioned that the presented codes can 
be also used as high-rate ED codes. However, before showing 
this, we need to prove the following theorem. 

Theorem 5. Any (kb + b, kb) integer DEC-(TAEC)b code, 
when operating as the ED code, is able to detect all quadruple 
errors, all DTA1 errors and all DTA2 errors. 

Proof. From coding theory, it is known that any DEC code  
can detect all quadruple errors. On the other hand, from the 
proof of Theorem 1 we know that some double errors, within a 
b-bit byte, produce the same syndromes as TA1 errors. From 
this we easily conclude that DTA2 errors generate the same 
syndromes as some quadruple errors corrupting two b-bit 
bytes. In the same way, it can be concluded that DTA1 errors 
produce the same syndromes as some quadruple errors 
corrupting one b-bit byte. Therefore, any (kb + b, kb) integer 
DEC-(TAEC)b code, when operating in the ED mode, is able 
to detect all quadruple errors, all DTA1 errors and all DTA2 
errors. □ 

To illustrate the applicability of the above theory, we have 
conducted an exhaustive computer search. Our first goal was 
to find out how the number of the Ci's depends on the byte 
length (Table I), while the second goal was to find the Ci's that 
allow us to construct some practical codes (Table II). The 
pseudocode of our search method is presented in Algorithm 1. 

III. ERROR CONTROL PROCEDURE  

The error control procedure for the proposed codes is very 
similar to those described in [9]-[14]. In short, if it operates in 
the ED mode, the decoder has only one task: to check whether 
the received data are correct or not. As a result, the incoming 
packet will be either dropped (S ≠ 0) or accepted (S = 0). 
However, if it operates in the EC mode, the decoder will try to 
recover the original data. The first step in this direction is to 
obtain the EC data from the syndrome table (ST). After that, in 
the next step, the decoder will execute one of the following 
operation(s):  

TABLE I 
NUMBER OF COEFFICIENTS FOR SOME INTEGER DEC-(TAEC)b CODES. 

 b = 9 b = 10 b = 11 b = 12 b =  13 b = 14 b = 15 b = 16 

Theory 0 1 2 2 4 5 7 10 

Experiment 0 0 1 1 1 2 3 3 

 
TABLE II 

FIRST 96 COEFFICIENTS FOR SOME INTEGER DEC-(TAEC)b CODES.  

b = 16 

53 231 1067      

b = 24 

45 201 477 1109 1319 3129 3453 4847 

9581 10117 11837 15411 17897 28827 44061 52265 

74329 119841 174283 302403 674075 830035   

b = 32 
45 201 477 1109 1319 3129 3453 4847 

9581 10117 11837 15411 17897 18439 23781 29749 

34757 36419 44865 46009 51889 68223 81619 93047 

108053 112279 113181 117189 164183 167119 169211 196783 

201311 209395 256657 264427 275489 282429 310935 354225 

386703 428269 432035 446911 514953 599285 634607 690403 

748103 774457 834335 892067 893141 1013237 1067671 1087365 

1103047 1122449 1191261 1248189 1297563 1342681 1458509 1570785 

1701685 1789337 1904439 2007495 2143923 2240111 2300025 2332779 

2346995 2583965 2597467 3176613 3200875 3218123 3333741 3677993 

3759663 4008735 4245743 4301929 4539051 4637371 5001505 5168905 

5659385 6365959 7104157 7276563 8858289 8994505 9282467 9856101 
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   for errors corrupting one b-bit byte 

1 (mod 2 1), 1 1;i iB B i k     bE                                                                                                                                                                                     (8) 

                      1 2 2 (mod 2 1): 0 < –1    r s bE r s b  

   for errors corrupting two b-bit bytes 

1 mod 2 1 ;( 1),b
i iB B i k    E                                                                                                                                                                                                                       (9) 

     2 mod 2 1;( 1),bB B k +    j j E i j                                                (10) 

 1 2, 2 mod 2 : 0 –1( 1)b    rE E r b  

To generate the ST it is necessary to substitute the values of 
b and Ci into (5)-(6). In this way, exactly |ξ| (Theorem 3) 
relationships between the nonzero syndrome (element of ξ), 
error location(s) (i, j) and error vector(s) (E1, E2) will be 
established (Fig. 2). So, when S ≠ 0, the decoder's task will be 
to find the entry with the first b bits as that of the syndrome S.  
If the ST is sorted, this task will be finished after nTL table 

lookups and nTL comparisons TL 2(1 2)    n log [9]. 

To make this procedure more clear, let us consider it on 
example of the (22, 11) DEC-(TAEC)11 code. (Remark: the 
syndrome table for this code has |ξ| = 880 entries, and thus, it 
will be shown partially.) 

Example 1. Let b = 11, k = 1 and C1 = 45. Now, suppose 
that we want to transmit 9 bits of data, B1 = 100100111012 = 
1181. In that case, the integer value of the second (last) byte 
will be equal to 

+1 2 245 1181 mod 2047) =1970 =11110110010(k   B B  

and the codeword will have the form, x = (B1, B2) = (1181, 
1970) = (100100111012, 111101100102).  

Scenario 1: Suppose that the 6th and 11th bit are received in 
error, y = (B1, B2) = (100101111002, 111101100102) = (1212, 
1970). As explained previously, after calculating the value of 
the syndrome S 

1 1 2 mod 2047 1212 45 1970 mod 2047 1395( ) ( )      S C B B  

the decoder will lookup the ST to find the entry with the first 
11 bits as that of the syndrome S (Table III). After that, in the 
next step, it will execute the operation 

1 1212 2016 (mod 2047) 1181.B     

Scenario 2: Assume that the 4th and 12th bit are received in 
error, y = (B1, B2) = (100000111012, 011101100102) = (1053, 
946). As in the previous case, the decoder will calculate 

1 1 2 mod 2047 1053 45 946 mod 2047 1405( ) ( )      S C B B  

and conclude that the value S   =   1405 indicates an error within 
the first and second byte (Table III). As a result, the following 
procedure will take place 

1

2

1053 128 (mod 2047) 1180,

946 1024 (mod 2047) 1970.

  

  

B

B
 

IV. APPLICATION IN MODERN OCNS 

If we analyze the procedures described above, we will note 
that the decoder uses very simple operations: integer additions, 
integer multiplications and table lookups. As these operations 
are supported by all processors, it is interesting to analyze how 
the proposed codes can be used in modern OCNs. Without 
loss of generality, we will suppose that all nodes (computers, 
routers, etc.) are equipped with six-core processors having the 
same specifications as in [14] (Fig. 3a). Likewise, we will 
assume that each node has two modes of operation: the ED 
mode, in which the data are protected by the six-byte 
interleaved (3104, 3072) code, and the EC mode, in which the 
data are protected with the six-byte interleaved (704, 672) 
code. In that case, regardless of the mode of operation, each 
node will compute the values of six syndromes [14]: 

   Core 1 

      

32
1 6 ( 1 6 +1

1

(mod 2 1)- )+1i i k 


   
k

i

S C B B                                                                                                                                                                                                                                              (11) 

   Core 2 

      

32
2 6 ( 1 6 +2

1

(mod 2 1)- )+2i i k 


   
k

i

S C B B                                                                                                                                                                                                                                   (12) 

             
  

   Core 6 

      

32
6 6 ( 1 6 +6

1

(mod 2 1)- )+6i i k 


   
k

i

S C B B                                                                                                                                                                                                                                   (13) 

The only difference is that, in the EC mode (k = 21), the NNs 
perform much less operations than in the ED mode (k = 96). 
However, when viewed from the throughput standpoint, this is 
not a disadvantage. Namely, from [14] we know that, in the 
case of operating in the EC mode, each node requires one 
second to decode 

9

EC

TL

(3.3 10 ) 192·
=

9.5· + 35· + 3

  k
G

k n


data bits. If we apply this result to the presented theory, we 
can easily conclude that, for k = 21, each node achieves a 
throughput of 14.19 Gbps (Fig. 3b). On the other hand, if they 
operate in the ED mode, the NNs will not lookup the STs or 
perform any EC operation. As a result, the expression (14) 
reduces to 

TABLE III 

THE SYNDROME TABLE FOR THE (22, 11) INTEGER DEC-(TAEC)11 CODE. 

 Element of ξ i E1 j E2 

 
 
 

 Element of ξ i E1 j E2 

 

 Element of ξ i E1 j E2 

1 1 2 1 0 0 291 640 2 1407 0 0 585 1395 1 2016 0 0 
2 2 2 2 0 0 292 641 1 1032 0 0 586 1396 1 512 2 1919 
3 3 2 3 0 0 293 642 1 1919 2 1023 587 1404 1 128 2 1023 
4 4 2 4 0 0 294 643 1 1919 2 1024 588 1405 1 128 2 1024 

                            

287 630 1 2033 0 0 581 1383 1 2039 2 1023 877 2043 2 4 0 0 
288 634 1 256 2 1919 582 1384 1 2039 2 1024 878 2044 2 3 0 0 
289 637 1 128 2 256 583 1391 1 16 2 64 879 2045 2 2 0 0 
290 639 1 32 2 32 584 1394 1 60 0 0 880 2046 2 1 0 0 

 

 

Fig. 2. Bit-width of one syndrome table entry. 
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ED

(3.3 10 ) 192·
=

9.5· + 1

  k
G

k
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   (15) 

where from it is easy to calculate that, for k = 96, each node 
achieves a throughput of 66.62 Gbps. Having this in mind, we 
can draw some general conclusions regarding the application 
of the proposed codes: 

1. All considered codes have the potential to be used in 
10G or slower OCNs (Fig. 3b). In the EC mode, they are able 
to protect between 3072 and 4032 bits. On the other hand, if 
operating in the ED mode, they can protect up to 18432 bits. 

 2. All considered codes are six times interleaved at the 
byte level. This means that the decoder can correct (detect) 
various types of errors, including all (double) TA errors. 

3. All considered codes share the same coefficients (C1 = 
45, C2 = 201, …, C96 = 9856101) (Table II). As a result, and 
depending on the application requirements, the NNs can easily 
switch from one mode to another. In the analyzed case, for 
example, the NNs only need to know whether they will use 21 
(the EC mode) or 96 coefficients (the ED mode). On the basis 
of this information they will also know whether they need to 
lookup the STs or not. 

V. COMPARISON WITH LINEAR DEC-TAEC CODES 

In the coding literature, one can find only two codes with 
DEC-TAEC capability [15], [16]. The first was obtained by 
modifying the DEC-BCH codes and the second by modifying 
the DEC-OLS codes. In both cases, the modifications were 
done at the cost of increased hardware complexity, but without 
adding additional check bits. 

As for the DEC-TAEC BCH codes, they have parameters 
(2u – 1, 2u – 1 – 2 · u), where u ≥ 4. This means that the codes 
of highest-rate are (15, 7), (31, 21) and so on. On the other 
hand, it is known that the DEC-OLS codes are very inefficient 
in terms of redundancy. The parameters of these codes are (m2 
+ 4 · m, m2), where m ≥ 1, which means that they require many 
more check bits than the DEC-TAEC BCH codes. Unlike the 
linear DEC-TAEC codes, the proposed ones are characterized 
by the parameters (kb +    b, kb). Although there is a significant 
difference between experimental and theoretical results (Table 
I), it can be said that the proposed codes are relatively efficient 
in terms of redundancy. This is also seen from the fact that for 
data lengths up to 2048 bits they require 3 to 6 check bits more 
compared to the DEC-TAEC BCH codes, i.e. 9 to 154 check-
bits less than the DEC-TAEC OLS codes (Table IV). 

When it comes to the processing of data bits, the difference 
between the mentioned codes is even more pronounced. First  

of all, we have seen that the proposed codes use integer and 
LUT operations, which makes them suited for implementation 
on modern processors (Table V). Moreover, the analysis from 
Section 4 showed that they have the potential to achieve 
throughputs of several tens of Gbps. This result would be even 
better if multiple integer units (instead of one) per core were 
used (since Haswell all Intel processors have four integer units 
per core [17]). On the other hand, it is known that the linear 
DEC-TAEC codes use FF operations to encode/decode data 
bits. However, as these operations are not supported by GPPs, 
the codes from [15], [16] must be implemented in dedicated 
hardware (the software-based decoders need several tens of 
clock cycles to process one bit [18], [19]). In this regard, it 
should be noted that the DEC-TAEC OLS codes have several 
advantages over the DEC-TAEC BCH codes. One is that they 
can be decoded much faster than the DEC-TAEC BCH codes. 
Another advantage is that the DEC-TAEC OLS decoder can 
be implemented in modular form. This means that each added 
module provides extra correction ability allowing the receiver 
to switch between different EC modes. Although this feature 
is similar to that of the proposed codes, it cannot be efficiently 
exploited in modern OCNs. The reasons for this lie in the high 

  

Fig. 3. (a) Block diagram of six-core processor and (b) theoretical decoding throughputs for some six-byte interleaved integer DEC-(TAEC)32 codes. 
 

TABLE IV 

CHECK-BIT LENGTHS OF THE PROPOSED AND LINEAR DEC-TAEC CODES. 

Codes 
Data word length (bits) 

32 64 128 256 512 1024 2048 
Codes from [15] 12 14 16 18 20 22 24 

Proposed codes 15 17 20 22 25 27 30 

Codes from [16] 24 32 48 64 92 128 184 

 
TABLE V 

COMPARISON OF THE PROPOSED CODES AND LINEAR DEC-TAEC CODES.  

Main 
characteristics 

DEC-TAEC 
BCH codes 

Proposed 
codes 

DEC-TAEC 
OLS codes 

Error correction    
capabilities 

Correction of 
single, double 
and TA errors 

Correction of 
single, double 

and TAb1 errors 

Correction of 
single, double 
and TA errors 

Processing of 
data bits 

Finite field 
operations 

Integer and 
LUT operations 

Finite field 
operations 

Interleaving 

Causes 
extra delay 

and requires 
additional 
hardware 

Do not cause 
extra delay and 
do not require 

additional 
hardware 

Causes 
extra delay 

and requires 
additional 
hardware 

Adaptation 
to the application 

requirements 
Very complex Simple Complex 

Preferred type of 
implementation 

Hardware Software Hardware 
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complexity of the decoder (it is necessary to process up to 
12000 data bits) as well as high redundancy of the DEC-
TAEC OLS codes. 

Finally, the last difference between the mentioned codes 
concerns the error control capabilities. As shown in Section 2, 
the proposed codes were originally designed to correct all 
single, double and TA1 errors. However, in Section 4 we saw 
that they have the ability to be interleaved without delay and 
without using any additional hardware. Thanks to this, it is 
possible to construct codes capable of detecting/correcting 
(multiple) random and TA errors. In addition, these codes can 
easily change the code rate and the mode of operation, which 
is very useful when transmitting different types of data. On the 
other hand, the linear DEC-TAEC codes have the ability to 
correct single, double and TA errors, but cannot easily change 
the code rate and/or the mode of operation. More precisely, 
they could be used for that purpose if different codecs were 
integrated into one chip. This would, however, lead to a 
significant increase in the price of network equipment. The 
similar applies to the use of interleaved codes, which are 
further characterized by delays in the processing of data bits. 

VI. CONCLUSION 

In this paper, we presented a class of integer codes that are 
suitable for use in optical computer networks where the data is 
transmitted serially. The presented codes use integer and table 
lookup operations, which makes them well suited for software 
implementation. Besides this, the presented codes have the 
ability to change the code rate and the mode of operation. In 
the error correction mode, which is suitable for real-time 
applications, the decoder can correct all single and double 
errors as well as all triple-adjacent errors within one b-bit byte. 
On the other hand, in the error detection mode, which is suited 
for non real-time applications, the decoder can detect all 
quadruple errors, all double triple-adjacent errors within one 
b-bit byte and all double triple-adjacent errors within two b-bit 
bytes. Finally, the proposed codes can be interleaved without 
delay and without using any additional hardware. Owing to 
this, it is possible to construct very simple codes capable of 
correcting (detecting) various types of errors, including all 
(double) triple-adjacent errors. 
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