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Abstract: A novel method combining a traditional immersion precipitation 

process for making membranes with photopolymerization and crosslinking of 

functional monomers included in the casting solution was used to prepare 

asymmetric polyethersulfone membranes with submicron particles 

incorporating glycidyl methacrylate copolymer. In order to introduce sulfonic 

groups epoxide rings of glycidyl methacrylate were opened using two methods. 

The first method was functionalization with sodium sulfite, and the second 

method was functionalization with sulfuric acid and then grafting with 2-

acrylamido-2-methylpropane sulfonic acid. Obtained membranes were 

characterized using infrared spectroscopy, conductometric titration and water 

permeability measurements. Scanning electron microscopy and atomic force 

microscopy were used to investigate the surface morphology and topology of 

membrane. Dynamic adsorption of Rhodamine B as a model dye was used to 

demonstrate suitability of these novel membranes for membrane adsorption 

since the adsorption capacity for dye cations was much better for both 

functionalized membrane with sodium sulfite and grafted membrane with 2-

acrylamido-2-methylpropane sulfonic acid compared to the nonfunctionalized 

membrane. 

Keywords: membrane formation; grafting; sulfonic acid; epoxide opening; 

polyethersulfone; glycidyl methacrylate. 

INTRODUCTION 

Phase inversion techniques are the most important and commonly used 

processes for preparing membranes from a large number of polymers1. Among 

these techniques, immersion precipitation is the preferred membrane formation 
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2 TOMKOVIĆ et al. 

method because it allows preparation of a wide range of membranes by varying 

the composition and properties of the initial polymer solution. In order to obtain 

flat membrane sheet a thin film of solution comprising at least one polymer, one 

good solvent, and additives is cast on a suitable support and immersed into a 

nonsolvent coagulation bath where it undergoes phase separation into a polymer-

rich and a polymer-lean phase2,3. 

Polyethersulfone (PES) and PES-based membranes show outstanding 

chemical, thermal, and mechanical stability as indicated by its high glass 

transition temperature (Tg = 230 °C), which leads to its frequent use for 

preparation of asymmetric membranes by immersion precipitation1. The main 

disadvantage of PES membranes is related to its relatively hydrophobic character 

and these membranes are prone to easy fouling by adsorption of nonpolar solutes, 

hydrophobic particles or bacteria4. In order to improve membrane wettability and 

performance in filtration of aqueous solutions used for bioseparations, or for 

more efficient ultrafiltration, various methods have been used for modification of 

PES membranes5,6. These methods are: bulk material modification prior to 

preparing membranes, surface modification of prepared membranes, and 

blending of PES membranes with another material to introduce desired 

functionalities4,7. Surface modification of polymeric membranes can be 

performed by surface coating and grafting induced by electron beam or gamma 

ray irradiation, plasma induced-grafting, ozone-induced grafting, thermal-

induced grafting, redox-grafting techniques, surface-initiated atom transfer 

radical polymerization, etc. Membranes can be also prepared and modified using 

photoirradiation method8. Combination of immersion precipitation process and 

photopolymerization has been used to make asymmetric PES membranes with 

adsorbent particles incorporating crosslinked glycidyl methacrylate (GMA) 

copolymer9,10. This method was also used for preparation of asymmetric 

membranes with interpenetrating proton-conducting morphology11. 

The strong interest in polymers based on GMA is mainly due to the ability of 

epoxide groups to enter into a large number of chemical reactions leading to 

numerous possible chemical modifications which enables a broad range of 

applications for these polymers12. GMA represents a very attractive platform for 

the introduction of complex functional groups13, due to an easy transformation of 

epoxy group under mild reaction conditions into various functionalities14. There 

are a numerous publications on ring-opening of the epoxy groups with various 

reagents, such as amines and hydroxylamine, sulfuric acid, phosphoric acid, 

iminodiacetic acid, sodium sulfite, and others15. The high reactivity of the epoxy 

group is due to the considerable strain in the three-membered ring, which is also 

affected by its position, the presence of other polar groups, the type of solvent, 

and temperature12. Macroporous copolymers based on GMA are very attractive 

as adsorbents in biochemical and chemical separations. 
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 NOVEL NEGATIVELY-CHARGED MEMBRANE ADSORBERS 3 

The sulfonic acid (SO3H) is a strongly acidic ion-exchange group which can 

be introduced into polymeric materials in several ways: sulfonation with 

concentrated sulfuric acid, copolymerization with monomers containing SO3H 

group, ring opening of the epoxides with sodium sulfite, or using different 

grafting procedures16. A grafting method catalyzed with cerium (IV) has often 

been used for surface modification providing that the substrate onto which the 

grafting occurs contains hydroxyl groups that are transformed into free radicals17. 

A single radical is formed on the oxygen atom of the hydroxyl group leading to 

surface-initiated polymerization while the undesirable competing reactions in the 

bulk solution are largely suppressed. 

 Ce(IV) + RCH2OH  Ce(III) + H+ + RCH2O• 

In this study, combination of photopolymerization and liquid phase inversion 

was used to prepare negatively-charged membrane adsorbers. Polymerized 

methacrylate network in a PES solution was created using photoirradiation, and 

then it was converted into a porous asymmetric membrane with embedded 

particles by immersion in a water bath. In our previous work, the epoxide groups 

were transformed into amine groups by functionalization with diethylene 

triamine and the dynamic adsorption of Orange G9 or copper10 from dilute 

aqueous solutions was used to show efficient capturing of these species by amine 

groups. In this work, the epoxide groups were transformed into sulfonic groups 

by functionalization with sodium sulfite (SS) or by grafting with 2-acrylamido-2-

methylpropane sulfonic acid (AMPS). Dynamic adsorption of Rhodamine B from 

a dilute aqueous solution was used to demonstrate efficient capturing of basic 

species by negatively-charged sulfonic groups. 

EXPERIMENTAL 

Chemicals and reagents 

PES (Ultrason E 7020P, Mw 92,000, polydispersity index 3) was kindly provided by 

BASF. GMA (reagent grade), trimethylolpropane trimethacrylate (TMPTMA), N-methyl-2-

pyrrolidone (NMP, 99 % purity), polyvinyl pyrrolidone (PVP, Mw 25,000), SS (reagent 

grade), isopropyl alcohol (IPA), sulfuric acid (H2SO4), nitric acid (HNO3), ammonium cerium 

(IV) nitrate (ACN), AMPS (99 %), Rhodamine B, sodium hydroxide (NaOH), hydrochloric 

acid (HCl), sodium chloride (NaCl), and phenolphtalein were received from Sigma-Aldrich. 

The photoinitiator (PI), bis(2,4,6-trimethylbenzoyl)-phenylphosphineoxide (Irgacure 819), 

was kindly obtained by Ciba SC. All chemicals were used without previous purification. Tap 

water was used in the coagulation bath for precipitation of membranes. Milli-Q deionized 

water was used for pure water permeability tests. 

Membrane preparation 

Membranes were prepared using the following procedure. A 25 % by weight solution of 

PES in NMP was made by mixing at 80 °C overnight. A 25 % by weight solution of PVP was 

prepared by dissolving PVP in NMP at 80 °C. A solution of 1.27 g GMA and 0.45 g 

TMPTMA in 8.39 g NMP was made by mixing components in an amber vial cooled with ice 
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4 TOMKOVIĆ et al. 

and protected from ambient light. The solution for making membranes was prepared by 

mixing 1.25 g PES and 0.23 g PVP solutions with the freshly prepared solution of monomers. 

Before the casting, 1 % of PI based on the total weight of monomers was added to the 

solution. The initial concentration of PES in all solutions was 11 % by weight excluding the 

PVP additive. The concentration of GMA was calculated to be 3 mmol g-1 of final dry 

membrane at a theoretical 100 % reactant conversion. The concentration of crosslinker 

(TMPTMA) in the solution was 15 mole percent based on the GMA concentration. In our 

previous work9, we found that this composition provided optimal balance of membrane 

strength and pure water permeability. The prepared solution was transparent confirming 

complete miscibility of the components. 

Prepared solution was cast on a glass plate using a 7.62 cm-wide film applicator with a 

200 µm gap (BYK-Gardner), then put in an experimental enclosure blanketed with nitrogen 

gas and exposed to UV irradiation through a glass window on top of the enclosure for 10 

minutes. The exposure doze, mainly in the UVA region, was 4.5 J cm-2, as measured by YK-

35UV light meter. UV exposure initiated photopolymerization and crosslinking of GMA to 

create a gel in the cast film. Finally, after UV curing, cast film was immersed in water bath 

and phase separation occurred by instantaneous liquid-liquid demixing mechanism. After 

allowing at least 10 min to complete phase separation and solidification, obtained membrane 

was further extracted in distilled water overnight. 

Opening of epoxide rings 

We used two methods to open epoxide rings. In the first method, functionalization of 

membranes with SS was performed by immersing membranes in a solution containing SS, 

IPA, and distilled water under reflux conditions. In the second method, the epoxide groups of 

membranes comprising crosslinked polyGMA particles were hydrolyzed using sulfuric acid to 

produce diol groups before grafting the membranes with AMPS. Reaction conditions are 

given in Table I. Chemical reactions of functionalizations of given membranes using SS and 

H2SO4 are presented on Figures 1 and 2. 

TABLE I. Reaction conditions of ring opening reaction 

Reactant Medium Temperature, °C Reaction time, h 

SS SS:IPA:water mass ratio = 10/15/75 80 6 

H2SO4 0.5 M solution 60 4 

 
Fig. 1. Ring opening using SS. 
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 NOVEL NEGATIVELY-CHARGED MEMBRANE ADSORBERS 5 

 
Fig. 2. Ring opening using sulfuric acid. 

Grafting of AMPS 

In order to graft the membranes with AMPS, we dissolved 0.137 g of ACN in 25 mL of 

water. Then, we added 0.116 g of 25 mmol L-1 nitric acid followed immediately by the 

addition of 5,175 g of AMPS dissolved in 25 mL of water. The membranes previously 

converted into diol form were immersed in the freshly prepared solution of ACN and AMPS. 

This mixture was purged with nitrogen and the polymerization was allowed to proceed for 5 h 

at 60 °C under reflux conditions. Shematic overview of AMPS-grafting is presented on Fig. 3. 

 
Fig. 3. Shematic overview of AMPS-grafting. 

Membrane characterization 

Pure water permeability of membrane samples was measured with a Millipore stirred 

cell, Model 8050 (13.4 cm2 effective membrane area) using deionized water at 1 bar pressure 

difference. 

Fourier transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR) 

analysis was conducted with Thermo Scientific Nicolet 6700 instrument equipped with Smart 

ATR Diamond accessory. 
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6 TOMKOVIĆ et al. 

Scanning electron microscopy (SEM) analysis was performed with JEOL JSM-6610 L 

instrument using W filament as an electron source. Air-dried membrane samples were 

fractured after cooling in liquid nitrogen and sputtered with gold. 

Atomic force microscopy (AFM) analysis was conducted with AFM instrument 

(AutoProbe CP Research, TM microscopes) in noncontact mode. Root mean squared (Ra) 

roughness values were calculated by applying the software package Veeco SPMLab NT 

Ver.6.0.2 on 2d pictures (0.8 x 0.8 μm). 

Conductometric titration was used to determine concentration of sulfonic groups. A 

membrane sample weighing around 0.1 g was cut into small pieces, than immersed in 10 mL 

of 0.1 M HCl and mixed for 30 min. After thorough rinsing with deionized water until the 

conductivity reduced to 1-2 µS cm-1, 50 ml of 0.001 M NaCl was added and the solution was 

stirred for 10 min before measuring the initial pH value. 0.01 M NaOH was added slowly 

from the burette while stirring and the conductivity was measured 15-30 sec after each 

addition. Sulfonic groups in the membrane sample gradually changed from acidic to the 

sodium form reducing the solution conductivity until the minimum was reached at neutral pH. 

Then, the concentration of sulfonic groups was calculated from the volume of NaOH solution 

used for titration and the weight of dried membrane sample. 

Separation performance for membranes functionalized with SS and grafted with AMPS 

was determined by filtration of a 50 mg L-1 aqueous solution of Rhodamine B using a 

Millipore stirred cell, Model 8050. For nonfunctionalized membrane and membrane 

functionalized with SS, transmembrane pressure was 0.5 bar, and for membrane grafted with 

AMPS this pressure was 1 bar. Membrane samples were placed in the cell with bottom side 

facing the feed solution. The concentration of dye in the filtrate was determined by UV-Vis 

spectroscopy using Thermo Scientific Evolution 60 instrument at 550 nm where a maximum 

in light absorption was observed. 

RESULTS AND DISCUSSION 

SEM analysis 

SEM image of the cross-section of the PES membrane made with initial 

concentration of 3 mmol g-1 GMA and 15 mol % TMPTMA in Fig. 4 (left) shows 

a typical asymmetric structure with a thin selective skin layer on top over much 

thicker porous support. Based on the results of elemental analysis reported 

earlier9, degree of conversion (polymerization yield) for the reaction between 

GMA and TMPTMA for this membrane was 80 %. Fig. 4 (right) reveal clusters 

of submicron particles incorporated within the PES membrane structure in the 

middle section. Structures seen in this figure result from complex interplay of 

phenomena occurring during membrane formation, which was discussed in our 

previous work9,10. Photoirradiation leads to GMA polymerization and 

crosslinking with TMPTMA, and as a result, an organogel is formed. During this 

step, phase separation between polymer-rich (PES) and methacrylate-rich phases 

is likely to occur. As a result, irradiated films were hazy indicating some degree 

of localized phase separation between macromolecular species. All irradiated 

films turned immediately white upon immersion into a water bath indicating that 
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 NOVEL NEGATIVELY-CHARGED MEMBRANE ADSORBERS 7 

the membranes were formed by an instantaneous liquid-liquid demixing 

mechanism. 

 
Fig. 4. SEM images of the cross-section of an asymmetric PES membranes with initial 

concentrations of 3 mmol g-1 GMA and 15 mol % TMPTMA: full view (left) and middle 

section (right).9 

Submicron particles shown in SEM image are actually agglomerates of 

nodules, which were formed by coalescence prior to solidification18. Formation 

of nodular structures can be explained as follows. As discussed in literature19, 

diffusional exchange between solvent and nonsolvent driven by large chemical 

potential gradients leads to formation of macrovoids when polymer concentration 

is low and the composition in front of formed nuclei remains stable for a 

relatively long period. When the composition of the casting solution is located in 

the metastable region or close to the bimodal curve, macrovoids will not be 

formed, so the composition in front of formed nuclei enters the metastable region 

immediately20,21. 

Another phenomenon that affects creation of nodules is caused by the 

presence of an additional polymeric component (PVP) in the casting solution. 

The presence of PVP slows down the relaxation of polymer chains and leads to 

the phase separation of polymeric species by a spinodal decomposition 

mechanism forming a submicron nodular structure in the top surface layer20. In 

the case of membranes described in this work, UV curing creates a network of 

crosslinked polyGMA mixed with PES molecules, and after immersion in the 

water bath, which creates thermodynamically unstable conditions, these 

polymeric species also separate by spinodal decomposition. As Radovanovic et 

al. explained9, formed nodules are probably mixtures of polymeric species with 

compositions dependent on the extent of phase separation during the UV curing 

step, because the spinodal decomposition process is faster than diffusion of 

polymer molecules. In the middle section of membrane molecules had more time 

to diffuse prior to solidification and nodules coalesce to form agglomerates. 

These nodules are connected to the pore walls by polymer chains, which are 

formed during an incomplete demixing of polymers throughout phase separation. 
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8 TOMKOVIĆ et al. 

Water permeability measurements 

Pure water permeability of the nonfunctionalized membrane, composed of 

11 % by weight of PES, 3 mmol g-1 GMA, 15 mol % TMPTMA, and 2 % by 

weight of PVP, was 988 L h-1 m-2 bar-1. After functionalization with SS pure 

water permeability was 462 L h-1 m-2 bar-1 and 403 L h-1 m-2 bar-1 for membranes 

grafted with AMPS. These values are typical for ultrafiltration membranes. Our 

previous experiments with filtration of bovine serum albumin using the 

nonfunctionalized membrane have shown that the selective skin layer of this 

membrane has the effective pore radius of 4.85 nm9. As one can see, water 

permeability significantly reduced after SS functionalization and grafting with 

AMPS. This might be related to the swelling of nodules containing relatively 

high concentrations of negatively-charged sulfonic groups which could cut down 

the flow to a certain extent due to a reduction in the effective pore size. 

FTIR-ATR analysis 

Fig. 5 presents the FTIR-ATR spectra of the nonfunctionalized membrane 

and the membrane functionalized with SS. Strong carbonyl peaks at 1724 cm-1 

originate from both GMA and TMPTMA, while epoxide peaks at 907 cm-1 come 

from GMA. Both spectra exhibit the following peaks characteristic for PES: 1147 

cm-1 for symmetric SO2 stretching, as well as the aromatic bands at 1238, 1485, 

and 1577 cm-1. After functionalization with SS, sulfonic group was introduced 

and as shown by the corresponding peak at 1043 cm-1. 

 
Fig. 5. The effects of functionalization with SS on FTIR-ATR spectra of PES membrane with 

embedded GMA particles: nonfunctionalized membrane (bottom), 

functionalized with SS (top). 
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 NOVEL NEGATIVELY-CHARGED MEMBRANE ADSORBERS 9 

FTIR-ATR spectra of PES membranes before and after treatment with 

H2SO4 and after grafting with AMPS are shown in Fig. 6. Characteristic carbonyl 

peaks at 1723 cm-1 originating from both GMA and TMPTMA and epoxide 

peaks at 907 cm-1 coming only from GMA are present. In addition, broad peaks 

at 3400 cm-1 characteristic for hydroxyl groups can be seen for both treated 

membranes in a small window included in Fig. 6. All spectra also contain peaks 

characteristic for PES: 1149 cm-1 for symmetric SO2 stretching, and 1238, 1485, 

and 1577 cm-1 for aromatic bands. In addition, there is peak at 1043 cm-1 

resulting from the sulfonic group introduced by grafting with AMPS. 

 
Fig. 6. FTIR-ATR spectra for nonfunctionalized membrane (bottom), membrane after 

functionalization with H2SO4 (middle) and after grafting with AMPS (top). 

AFM analysis 

AFM images of the top membrane surfaces were used to investigate 

membrane surface topology. AFM images obtained for nonfunctionalized PES 

membrane and membrane functionalized with SS showed that surface 

topographies were quite similar. Fig. 7 presents a membrane before and after 

grafting with AMPS. The surface topographies of these membranes are also very 

similar with nodules ranging from 20 to 50 nm with a slight increase in surface 

roughness from 5.36 to 8.23 nm after grafting. This increase in surface roughness 

might be a result of additional sulfonic groups grafted on the surface of the 

membrane. 
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10 TOMKOVIĆ et al. 

 
Fig. 7. AFM images of the top surface of PES membrane with initial concentrations of 

3 mmol g-1 GMA and 15 mol % TMPTMA: nonfunctionalized (left)10 and membrane after 

grafting with AMPS (right). 

Conductometric titration 

Conductometric titration was used to determine the concentration of sulfonic 

groups in PES membranes functionalized with SS and grafted with AMPS. The 

results are listed in Table II and compared to the theoretical value of 2.4 mmol g-1 

(80 % polymerization yield starting from the initial GMA concentration of 3.0 

mmol g-1). Both concentrations are significantly lower than the theoretical value, 

which indicates that epoxide groups buried inside the nodules are not easily 

accessible for reaction. Relatively low value for membrane grafted with AMPS 

compared to the membrane functionalized with SS may have been a result of 

differences in molecular sizes of reactants. Lower conversions due to steric 

effects are often observed in polymer functionalization with larger molecules22. 

TABLE II. Concentration of sulfonic acid groups from conductometric titration 

Membrane Sulfonic group concentration, mmol g-1 

Nonfunctionalized PES membrane 0.00 

Membrane functionalized with SS 0.79 

Membrane grafted with AMPS 0.29 

Theoretical concentration of sulfonic groups 2.40 

Dynamic adsorption of cationic dye 

In order to investigate the separation performances of nonfunctionalized PES 

membranes, functionalized membranes with SS, and membranes grafted with 

AMPS, a series of screening experiments using Rhodamine B as a model 

adsorbate was conducted and the results are shown in Fig 8. Rhodamine B is 

cationic dye, which has been used in pharmaceutics, cosmetics fields, and textile 

industry. The molecular weight of its chloride form is 479 g mol-1 and it has one 

ammonium group per molecule which can bind electrostatically with sulfonic 

groups. The longest dimension of the Rhodamine B molecule has been reported 

as 1.77 nm23. Due to its smaller molecular size than the pores present in the 
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selective top surface of the membrane, dye adsorption occurs primarily by 

electrostatic binding between the dye ammonium groups and sulfonic groups in 

the functionalized membrane and not by a sieving mechanism. Dynamic 

adsorption experiments were conducted using transmembrane pressure ranging 

from 0.5 to 1 bar. As one can see in Fig. 8, instantaneous dye breakthrough 

occured with the nonfunctionalized membrane. This membrane captured only a 

minor fraction of the dye by nonspecific adsorption on the membrane material 

itself. PES membranes exhibit slightly negative charges in dilute aqueous 

solutions24, which might explain adsorption of Rhodamine B by the 

nonfunctionalized membrane. The lowest concentrations of Rhodamine B in the 

permeate were observed for a membrane grafted with AMPS. Both the 

membrane functionalized with SS and the membrane grafted with AMPS had 

much greater adsorption capacity for dye cations compared to the 

nonfunctionalized membrane. 

 
Fig 8. Filtration of Rhodamine B solution (feed concentration 50 mg L-1, transmembrane 

pressure 0.5-1 bar) through nonfunctionalized PES membrane, PES membrane functionalized 

with SS and PES membrane grafted with AMPS. 

CONCLUSIONS 

Combination of traditional liquid phase inversion process for making 

asymmetric membranes and photopolymerization was used for preparation of 

asymmetric PES membranes with submicron particles comprising GMA. Casting 

solution was exposed to a source of UV irradiation to polymerize the monomers 

and after immersion of the irradiated film into the water bath, phase separation 
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between polymer-rich and polymer-lean phases was induced. This novel process 

led to the creation of asymmetric PES membranes with adsorbent particles 

comprising crosslinked GMA copolymer. Two methods were used in order to 

open epoxide rings and introduce sulfonic groups. In the first method obtained 

membranes were functionalized with SS, and in the second membranes were 

hydrolyzed using sulfuric acid to produce diol groups and then grafted with 

AMPS. 

SEM images of the membrane cross-section revealed clusters of submicron 

particles embedded within the PES support matrix. Functionalization with SS and 

grafting with AMPS converted these submicron particles into microadsorbers by 

introducing sulfonic groups through the epoxide ring opening. FTIR-ATR spectra 

demonstrates presence of characteristic peaks originating from GMA, AMPS, SS 

and PES in final membranes. AFM images showed that the surface topographies 

of initial and grafted membranes are quite similar. In order to determine the 

concentration of sulfonic groups in PES membranes functionalized with SS and 

grafted with AMPS, conductometric titration was used. Separation performance 

of obtained membranes was examined by a series of experiments using 

Rhodamine B as a model dye. The dye retention in these dynamic adsorption 

experiments was highest for PES membranes grafted with AMPS. 

Acknowledgements. This work has been funded by Serbian Ministry of Education, 

Science and Technological Development through the projects TR32008 and III 43009. The 

authors would like to thank Ciba SC for providing the photoinitiator. 

И З В О Д  
НОВИ НЕГАТИВНО НАЕЛЕКТРИСАНИ МЕМБРАНСКИ АДСОРБЕРИ НАПРАВЉЕНИ 
КОМБИНАЦИЈОМ ФОТОПОЛИМЕРИЗАЦИЈЕ И ПОТАПАЊА У ВОДЕНО КУПАТИЛО 

ТАЊА ТОМКОВИЋ1, ФИЛИП РАДОВАНОВИЋ1, БРАНИМИР ГРГУР2, АЛЕКСАНДРА НАСТАСОВИЋ1, ДАНА 

ВАСИЉЕВИЋ-РАДОВИЋ1 и АНТОНИЈЕ ОЊИА3 

1Институт за хемију, технологију и металургију, Универзитет у Београду, Његошева 12, 11000 

Београд, 2Технолошко–металуршки факултет, Универзитет у Београду, Карнегијева 4, 11000 Београд 

и 3Институт за нуклеарне науке „Винча“, Универзитет у Београду, п. фах 522, Србија 

Нови поступак прављења мембрана заснован на комбинацији традиционалног пос-
тупка потапања у водено купатило и фотополимеризације и умрежавања функционал-
них мономера у почетном раствору примењен је за прављење асиметричних мембрана 
од полиетарсулфона са уграђеним субмикронским честицама које садрже кополимер 
глицидил-метакрилата. У циљу уградње сулфонских група примењене су две методе 
отварања епоксидних прстенова: функционализација натријум-сулфитом и функцио-
нализација сумпорном киселином праћена калемљењем 2-акриламидо-2-метилпропан-
сулфонском киселином. Добијене мембране су карактерисане помоћу инфрацрвене 
спектроскопије, кондуктометријске титрације и мерењем пропустљивости воде. Повр-
шинска морфологија и топологија мембрана је испитана скенирајућом електронском 
микроскопијом и микроскопијом атомских сила. Динамичка адсорпција боје родамин Б 
показала је да се овај нови тип мембрана може користити за мембранску адсорпцију 
пошто је капацитет адсорпције за катјоне боје био знатно већи за мембрану функ-
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 NOVEL NEGATIVELY-CHARGED MEMBRANE ADSORBERS 13 

ционаклизовану натријум-сулфитом и за мембрану калемљену 2-акриламидо-2-метил-
пропансулфонском киселином него за нефункционализовану мембрану. 

(Примљено 5. августа, ревидирано 2. октобра, прихваћено 6. октобра 2015) 
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