Serbian Ceramic Society Conference
ADVANCED CERAMICS AND APPLICATION VIII
New Frontiers in Multifunctional Material Science and Processing

PROGRAM AND THE BOOK OF ABSTRACTS

Serbian Academy of Sciences and Arts, Knez Mihailova 35
Serbian Ceramic Society Conference
ADVANCED CERAMICS AND APPLICATION VIII
New Frontiers in Multifunctional Material Science and Processing

Serbian Ceramic Society
Institute of Technical Science of SASA
Institute for Testing of Materials
Institute of Chemistry Technology and Metallurgy
Institute for Technology of Nuclear and Other Raw Mineral Materials

PROGRAM AND THE BOOK OF ABSTRACTS

Serbian Academy of Sciences and Arts, Knez Mihailova 35
Serbia, Belgrade, 23-25. September 2019
P19

Electrical Characteristics of Ho doped BaTiO₃ Ceramics Using New Measurement Method

Miloš Đorđević¹, Vesna Paunović¹, Vojislav V. Mitić¹,², Danijel Danković¹, Milić Pejović¹
¹University of Niš, Faculty of Electronic Engineering,
Aleksandra Medvedeva 14, Niš, Serbia
²Institute of Technical Sciences of SASA, Belgrade, Serbia

In this paper, electrical characteristics of Ho₂O₃ doped BaTiO₃ ceramics were shown, using new method for measuring samples. The BaTiO₃ doped samples were sintered at 1320°C for 4 hours. The concentration of the additives were from 0.05 to 1.0 at% Ho. The density was ranged from 83% to 91% of theoretical density (TD). The samples of BaTiO₃ ceramics doped with Ho₂O₃ are characterized by spherical and irregular polygonal grains. The average grain size for samples doped with low content of Ho₂O₃ (0.05 at% Ho) ranged from 10 μm to 30 μm. An increase in dopant concentration causes a decrease in the average grain size in the investigated samples. So it is for samples doped with 1.0 at% Ho, grain size range between less than 1 μm – 2 μm. The variation of dielectric permittivity with temperature were measured in the temperature range from 30°C to 180°C and the frequency range from 100 Hz to 1 MHz. For measurement electrical characteristic a new method was used, which implemented to automate the sampling and to enable measurement without a human factor. The software application is connected via USB communication to a microcontroller, which measures the temperature in the furnace. When the temperature reaches the defined value, the microcontroller sends information to the software application. Then the application through GPIB communication activates the LCR meter, which measures the defined parameters of the tested samples. Based on parameters such as dielectric constant (εᵣ), tangent losses (tan δ) and impedance, the characteristics of the tested samples were determined. Using the Curie-Weiss law and modified Curie-Weiss law, based on the measured values of the parameters, the Curie constant and the exponent of nonlinearity were determined.

P20

Evolution of structural and functional properties of the Fe/BaTiO₃ system under the influence of mechanochemical activation and heating treatment

N. Stojanović¹, A. Kalezić-Glišović¹, A. Janićijević², A. Marićić¹
¹Joint Laboratory for Advanced Materials of SASA, Section for Amorphous Materials, Faculty of Technical Sciences Čačak, University of Kragujevac, Svetog Save 65, 32 000 Čačak, Serbia
²Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11120 Belgrade, Serbia

Powdery mixtures of 30 mass % Fe and 70 mass % BaTiO₃ were activated in the planetary ball mill within the time intervals of 30 min to 300 min. The activated powder was pressed under 392 MPa pressure, into disc-shaped samples with 8 mm diameter and thickness of 1.5 mm. The pressed samples of activated powder were sintered at the temperature of 1200°C in the air atmosphere for two hours.
XRD analysis showed that with the rise of activation time, BaTiO₃ (110) reflection decreases in intensity, whereas the intensity of (200) reflection rises, with barium-titanate changing its crystallinity from orthorhombic and tetragonal to cubic symmetry due to the impact of the crystalline grains size, varying from 39 nm to 137 nm.
The system shows the highest relative content of Fe₂O₃ for 90 min activation time. Further increase in the activation time leads to a decrease in FeO and Fe₃O₄ content and the growth of pure iron content from tactivation = 150 min. In the sample activated for 270 min, the Fe content reaches the highest relative value followed by the local maximum of 0.13% in microstrain value and the locally minimal dislocation density of 674 nm⁻², indicating the incorporation of iron from its oxide phases into the barium-titanate matrix.