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Abstract - This paper presents two types of integer codes capable of correcting burst
asymmetric errors within a byte. The presented codes are constructed with the help of a
computer and are very efficient in terms of redundancy. The results of a computer search
have shown that, for practical data lengths up to 4096 bits, the presented codes use up to
two check-bits less than the best burst asymmetric error correcting codes. Besides this, it is
shown that the presented codes are suitable for implementation on modern processors.
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1. Introduction

Most classes of channel codes have been developed for use on binary symmetric channel,
where the error probabilities I — 0 and 0 — 1 are equal. However, in certain systems the error
statistics are different. For instance, in optical networks without optical amplifiers (e.g. access
networks) photons may fade or fail to be detected, but new photons cannot be generated. Hence,
if the receiver operates correctly, only asymmetric (1 — 0) errors can occur [1], [2]. On the
other hand, in WOM memories, such as digital optical disks, 1 — 0 errors are not possible. The
reason is that in these systems the 1's correspond to the holes burned into the coating [3]. So,
once a | is written in a bit position, it cannot be changed back into a 0.

With this in mind, in this paper, we present two types of integer codes capable of correcting
[-bit burst asymmetric errors within a b-bit byte (B;,A errors). The first type of codes (type-I
integer B;,AEC codes) is designed to correct "negative" (1 — 0) B;,A errors, while the second
type of codes (type-II integer B;,AECcodes) can correct "positive" (0 — 1) B;»A errors. Like all
other integer codes [4]-[11], the presented ones can be interleaved without delay and without
using dedicated hardware. Owing to this, they can be transformed into simple codes capable of

correcting (multiple) burst asymmetric (BA) errors.

2. Codes Construction

At the beginning, let us remind the general definition of integer error control codes (IECCs).

Definition 1. [9] Let Z,, = {0, 1,..., 2" -2} be the ring of integers modulo 2" - 1 and let

b1 .
B; = znzo a,"2" pe the integer representation of a b-bit byte, where a, € {0, 1} and 1 <i<k.



Then, the code C(b, k, c), defined as

201
i=1

k
C(b, k) Z{(Bl,Bz, B, B,)eZ: Z C,-B,=B,,, (mod 2"~ 1)} (1)

is an (kb + b, kb) IECC, where ¢ = (Cy, Cy, ..., Cy, 1) EZ?}] is the coefficient vector and
B+ € Zzb_l is an integer.

To construct type-I and type-II integer B;,AEC codes, it is necessary to know the integer
values of both types of B;,A errors. For that purpose, we will rely on the analysis from [4]. In
that paper, it was shown that the integer value of a /-bit burst error within a b-bit byte is equal to
e=+2"2m - 1), where 0< r<b—1,1 <m<2""and 1 <x <1/ Based on this it is easy to
conclude that the integer values of "negative" and "positive" B;,A errors are respectively equal
toe=—2"-2n-1)ande =2"-2n-1),where 0<s<b—1,1<n<2""and | <u </ Knowing

this, we are able to construct both types of integer B;,AEC codes.

2.1. Type-I integer BipAEC codes
Definition 2. Let x = (B, B,..., By, Bi+1) € Z;f_ll , ¥ = (B1, Bs,..., By, Bi+1) € Z;T_ll and e =
v—x=(B1—B1, Bo—Bs,...,Bx — Bk, Bit1 —Bi+1) = (e1,€2,..., €1, €x+1) € Z;tll be respectively, the sent
codeword, the received codeword and the error vector. Then, an (kb + b, kb) IECC is said to be
type-1 integer B, AEC code if it can correct error vectors from the set E = {(e’, 0,..., 0, 0),..., (0,
0,..¢,0),(0,0,..0,—¢)} wheree € {-2"-2n-1):0<s<b-11<n< 2l 1<u< [}.
Definition 3. The error set for (kb + b, kb) type-I integer B;,AEC codes is defined by

@;1,1{: s;Us, (2)
where

s ={[-2"@n-1)-C](mod 2"~1): 0<s <h-L1<n <2 I<u<l1<i<k| 3)
s2={[ 2 (2n-1)](mod 2°~1): 0<s <b—1,1<n <2 1<y sz} )

From the above it is clear that type-I integer B;,AEC codes cannot be constructed without
knowing the values of the C/'s. This fact, however, does not prevent us to state the following
theorem.

Theorem 1. The codes defined by (1) can correct all "negative” BipA errors iff there exist k
mutually different coefficients C;€ Z,, \{0,1} such that

|G| =[27 0= 142)-1 ] (k+1)
where |A | denotes the cardinality of A.

Proof. Observe that the set €, can be expressed as
21
(:b,z,k = U Z,
i=l

where



Z,={[-2(1)-C, | (mod 2"~ 1): 0< s < b1, 1<i <k},

{[ (1) | (mod 2~ 1): Ogssb—l},

z,={[-2-(3)-C;] (mod 2"~ 1): 0< s <h-2,1<i<kl,
([

2°(3)] (mod 2'-1): 0<s sb—z},

Zyy={[-27(2"+1,243,..,2-1)-C, | (mod 2'~1): 0< s <h— L, 1<i <k,
Z,= {[2 (27+1,2743,..,2'-1) | (mod 2'~1): 0< s < b - 1}.

Now, suppose that the coefficients C;€ Z,, \{0,1} have values such that

Az
|lZII|:k-b,

|Zz|:b°

| Zy| = k- 2" (b=h+1),2<h <1,
|2, |= 2" (b=h+1),2<h <L,

In that case, it is easy to show that

|§b”,’k| = i |Z,|= [21-1.(b—l+2)—1].(k+1).

Conversely, if the codes satisfy the above condition, then we correct all "negative" B,,A errors.

Therefore, these codes are (kb + b, kb) type-I integer B,,AECcodes. O

2.2. Type-II integer BiAEC codes

Using the same method as above, we can construct type-II integer B;,AECcodes.

Definition 4. Let x = (B, B,..., By, Bi+1) € Z;f_ll , ¥ = (B1, Bs,..., By, Bi+1) € Z;:_ll and e =
y—x=(B1—B1, Bo—Ba,...,Bi —Bi, Bii1 —Bi1) = (e1,€a,.... €k, €x+1) € Z;f_l, be respectively, the sent
codeword, the received codeword and the error vector. Then, an (kb + b, kb) IECC is said to be
type-II integer BipAEC code if it can correct error vectors from the set E = {(e", 0,..., 0, 0),...,
0,0, ....e",0),(0,0,...0,—e")} wheree € {2°-2n-1):0<s<b-1,1<n<2"',1<u<l}.

Definition 5. The error set for (kb + b, kb) type-II integer Bi,AEC codes is defined by

Su=sUs, o
where

S3={[2s. (zn_l)-Cl.:'(mode—l): 0<s<b-11<n<2""1<u Sl,lSiSk} (6)
s;={[~2"@n-D](mod 2'~1): 0<s <h-L1<n <2 1< <1} (7)



As in the previous section, we can state the following.

Theorem 2. The codes defined by (1) can correct all "positive" BiyA errors iff there exist k
mutually different coefficients C;€ Z,, \{0,1} such that

Enal=[2 b=1+2)-1]-(k+1).
Proof. The proof is basically the same as in Theorem 1. Hence, it is omitted. O

Since the sets f,; 1 and f; 1+ have the same cardinality, we can state the theorem that relates

to both types of codes.
Theorem 3. For any (kb + b, kb) integer B, AEC code it holds that

b_
k<|— 2-2 =1
2T (b-1+2)-1

Proof. From Definition 1 we know that the total number of nonzero syndromes is equal to

2> _ 2. On the other hand, from Theorems 1 and 2 we know that the sets f;,_,/,k and fl:l,k have

[2“ “(b-1+ 2)—1] -(k+1) nonzero elements. Hence, we obtain the inequality
(27 (0-1+2)-1]-(k+1) < 2" -2

wherefrom it follows that

b
k<| =5 22 ~1|.n
27 (b-1+2)-1

The last step in constructing both types of codes is to find the C/'s that satisfy the conditions

of Theorems 1 and 2. For that purpose it is necessary to perform an exhaustive search on all
possible candidates from the set Z,,\{0,1}. In this paper, we have restricted ourselves to the

codes with parameters 3 </ <5 and 6 < b < 16. The obtained results are shown in Tables 1-3.

Table 1. Number of coefficients for some integer B;,AEC codes obtained via computer search.

b=6|b=7|b=8|b=9|b=10b=11(b=12|b=13|b=14|b=15|b=16

Theoretical bound 2 4 8 15 28 51 94 173 | 320 | 594 | 1109
=3 Type-I codes 0 1 4 7 12 25 36 98 172 | 297 | 601
Type-II codes 0 1 4 7 12 25 37 98 174 | 297 | 601
Theoretical bound 0 1 2 8 15 27 50 93 171 | 317 | 589
=4 Type-I codes 0 0 0 1 3 10 12 38 68 129 | 226
Type-II codes 0 0 0 2 4 9 12 36 67 126 | 225
Theoretical bound 0 1 2 2 4 11 27 50 92 170 | 315
=5 Type-I codes 0 0 0 0 1 10 20 41 76
Type-II codes 0 0 0 0 1 3 5 11 19 41 77




Table 2. Coefficients for type-I integer B,,AEC codes with parameters 3 </<5, b =16 and k£ < 128.

=3

2 9 11 13 17 19 23 25 29 31 37 41 43 47 49 53

59 61 67 71 73 79 81 83 89 97 99 101 | 103 | 105 [ 107 [ 109

113 | 117 | 121 | 127 | 131 | 137 | 139 | 143 [ 149 | 151 | 153 | 157 | 163 | 167 | 169 | 173

179 | 181 | 187 | 191 | 193 | 197 | 199 | 207 [ 209 | 211 | 221 | 223 | 225 | 227 | 229 | 233

239 | 241 | 247 | 251 | 253 | 261 | 263 | 271 | 275 [ 277 | 279 | 281 | 283 | 285 | 289 | 307

311 | 313 | 317 [ 319 | 323 | 325 | 331 [ 337 | 341 | 347 | 349 | 353 [ 359 | 361 | 367 | 369

373 | 377 | 379 | 383 | 387 | 389 | 391 | 401 | 403 | 407 | 409 | 419 | 421 | 423 | 425 | 431

433 | 437 | 441 | 443 | 449 | 451 | 457 | 463 | 467 | 473 | 477 | 479 | 481 | 499 | 503 | 509

=4

2 17 19 21 23 25 29 31 37 41 43 47 53 59 61 67

71 73 79 81 83 89 97 101 | 103 | 107 | 109 | 113 | 121 [ 127 | 131 | 149

151 | 157 | 163 | 167 | 169 | 173 | 179 [ 181 [ 191 | 199 | 211 | 223 | 227 | 229 | 233 | 239

241 | 245 | 251 | 269 [ 271 | 277 | 283 | 289 [ 307 | 311 | 317 | 323 | 331 | 337 | 349 | 353

357 | 359 | 361 [ 383 | 391 | 409 | 419 | 429 | 431 | 433 | 437 | 449 | 467 | 483 | 493 | 499

509 | 521 | 551 | 557 | 563 | 575 | 577 | 579 | 593 | 601 | 609 [ 629 | 647 | 653 | 661 [ 673

683 | 697 | 701 [ 713 | 727 | 733 | 743 | 761 | 773 | 787 | 809 | 817 | 883 | 887 | 893 | 899

901 | 907 | 929 [ 983 | 989 | 999 [ 1009 [ 1013 | 1019 | 1049 | 1051 [ 1061 | 1069 | 1073 | 1087 | 1091

101 | 107 | 113 | 117 | 127 | 137 | 149 | 157 | 163 | 179 | 227 | 233 | 251 | 271 | 283 | 289

311 | 313 | 347 [ 349 | 383 | 449 | 453 | 545 | 557 | 563 | 593 [ 631 | 651 | 859 | 877 | 905

911 | 941 | 969 [ 1009 | 1011 | 1061 | 1235 [ 1249 | 1259 | 1613 | 1787 [ 1889 | 2019 | 2187 | 2317 [ 2489

3071 | 3571 [ 4651 | 4903 | 7577 | 8051 [10751|10867]|11677]15103|24431[24567

Table 3. Coefficients for type-II integer B;,AEC codes with parameters 3 </<5,b=16 and k < 128.

=3

9 11 13 17 19 23 25 29 31 37 41 43 47 49 53 59

61 67 71 73 79 81 83 89 97 99 101 | 103 | 105 | 107 | 109 11

117 | 121 | 127 | 131 | 137 | 139 | 143 | 149 | 151 | 153 | 157 | 163 | 167 | 169 | 173 | 179

181 | 187 | 191 | 193 | 197 | 199 | 207 [ 209 | 211 | 221 | 223 | 225 | 227 | 229 | 233 | 239

241 | 247 | 251 | 253 | 261 | 263 | 271 | 275 | 277 | 279 | 281 | 283 | 285 | 289 | 307 | 311

313 | 317 | 319 [ 323 | 325 | 331 | 337 [ 341 | 347 | 349 | 353 [ 359 | 361 | 367 | 369 [ 373

377 | 379 | 383 [ 387 | 389 | 391 | 401 [ 403 | 407 | 409 | 419 [ 421 | 423 | 425 | 431 [ 433

437 | 441 | 443 | 449 | 451 | 457 | 463 | 467 | 473 | 477 | 479 | 481 | 499 | 503 | 509 | 517

I=4

17 19 21 23 25 29 31 37 41 43 47 53 59 61 67 71

73 79 81 83 89 97 101 103 | 107 [ 109 | 113 | 121 | 127 [ 131 | 149 | 151

157 | 163 | 167 | 169 | 173 | 179 | 181 [ 191 | 199 | 211 | 223 | 227 | 229 | 233 | 239 | 241

245 | 251 | 269 | 271 [ 277 | 283 | 289 | 307 | 311 [ 317 | 323 | 331 | 337 | 349 | 353 | 357

359 | 361 | 383 [ 391 | 409 | 419 | 429 | 431 | 433 | 437 | 449 | 467 [ 483 | 493 | 499 | 509

521 | 551 | 557 [ 563 | 575 | 577 | 579 | 593 | 601 | 609 | 629 [ 647 | 653 | 661 | 673 [ 683

697 | 701 | 713 [ 727 | 733 | 743 | 761 [ 773 | 787 | 809 | 817 | 819 [ 883 | 887 | 893 | 899

901 | 907 | 929 | 983 | 989 | 999 | 1009 [ 1013 | 1019 | 1049 | 1051 [ 1061 | 1069 | 1073 | 1087 | 1091

33 35 37 41 43 47 53 59 61 67 71 73 79 83 89 97

101 | 107 | 113 | 117 | 127 | 137 | 149 | 157 | 163 | 179 | 227 | 233 | 251 | 271 | 283 | 311

347 | 349 | 357 [ 383 | 449 | 453 | 521 | 545 | 557 | 563 | 593 | 723 [ 739 | 743 | 837 | 859

877 | 905 | 911 [ 967 | 1009 | 1045 | 1061 [ 1289 | 1559 | 1613 | 1787 | 1889 | 2021 | 2027 | 2321 | 2387

2489 | 3677 [ 3821 | 4093 | 4693 | 5299 | 6143 | 6653 | 6971 | 10069 [ 11677 2355124503




3. Error Correction Procedure

From Definition 1 it is easy to conclude that there exists only one syndrome. It is generated

using the expression
S=B,,,— B, (mod 2°-1) (8)

after which the decoder will either accept the recieved codeword (S = 0) or try to recover the

original one (S # 0). In the latter case, the decoder will lookup the syndrome table to get the
fi:l,k| =

error correction data. From Theorems 1-2, we see that the syndrome table has |§; 1,k| =

|fb,,,k|=[21_1'(b—l+2)—1]'(k+1) entries, where each entry describes a unique relationship

between the syndrome (element of the set & ;x), error location (7) and error vector (e) (Fig. 1).

Element of the set &

blk

Error location (i) Error vector (e)

e ﬂogz(k+1)-‘ - ) —————
Fig. 1. Bit-width of one syndrome table entry.
So, if the elements of &, are sorted in increasing order, the decoder will find the appropriate

entry after np table lookups and nr. comparisons (I<n, < Vng |§b,z,k|J+ 2) [12]. In the next

step, using the error correction data, the decoder will execute the operation
B;=B—e(mod2'-1), 1<i<k+]; 9)

- +
wheree=e ore=e".

4. Evaluation and Implementation Strategy

By analyzing the data from Table 1 we note that both types of codes protect approximately
the same number of data bits. More precisely, for values b =6, 7, 8, 11 and 15 type-I codes are
slightly more rate-efficient than type-II codes, while for values b =9, 10 and 12 the situation is
reversed. In all other cases (b = 13, 14 and 16), the mentioned codes are equally effecient in
terms of code rate.

In addition to the above, Table 1 shows the theoretical bounds on the number of the C;'s.
Although these bounds may indicate that the proposed codes are rate-inefficient, the truth is
quite the opposite. This confirms the results of the comparison of the proposed codes with the
best burst asymmetric error correcting codes [11]. Unlike the proposed codes, these codes use
[+ log, K+ (1/2)- log, log, K check bits, where K is the number of data bits. From this it is easy
to show that, for practical data lengths up to 4096 bits, the proposed codes require one or two
check-bits less than the codes from [11] (Table 4). The similar applies when comparing the

proposed codes with integer codes capable of correcting /-bit burst errors within a b-bit byte [4].



Table 4. Check-bit lengths of the proposed codes and the codes from [4] and [11].

Data word Type-I Integer Type-II Integer

length BIAEC Codes | BUAEC Codes | Codesfrom[4] | Codes from [11]
(inbits) (/=3 |/=4|1=5|1=3|1=4|1=5|1=3|1=4]1=5|1=3]|1=4]1=5
K=128 | 11 12 | 13| 11 12 | 13121314 ] 12] 13| 14
K=256 | 11 13 | 14 | 11 13 | 14 | 13 [ 14 | 15 13| 14 | 15
K=512 | 13 | 14 | 15| 13 | 14 | 15| 13| 15 | 16 | 14 | 15 | 16
K=1024 | 13 [ 15 | 16 | 13 [ 15 | 16 | 14 | 16 | 17 | 15 | 16 | 17
K=2048 | 14 | 16 | 17 | 14 | 16 | 17 | 15 | 17 | 18 | 16 | 17 | 18
K=4096 | 15 | 17 | 18 | 15 [ 17 | 18 | 16 | 18 | 19 | 17 | 18 | 19

In this case, for all values of / and K, except / = 3 and K = 512, the proposed codes require one

or two check-bits less than the codes from [4].

Besides being rate-efficient, the proposed codes are extremely suitable for implementation

on modern processors. To illustrate this, suppose that the decoder implemented on a ten-core

processor (Fig. 2) with the following specifications [13], [14]:

1)
2)
3)
4)
5)
6)
7)
8)
9)

clock rate: CR =3.1- 10° Hz,

integer addition/subtraction operation: 1 cycle latency,
integer multiplication operation: 3 cycles latency,
128-bit shift operation: 1 cycle latency,

modulo reduction operation: 1 cycle latency,
comparison operation: 1 cycle latency,

access to the L1 cache (64 KB per core): 4 cycles latency,

access to the L2 cache (256 KB per core): 12 cycles latency,
access to the L3 cache (25 MB shared): 34 cycles latency.
|
<7 By | Bo| Bs Bs| Bs| Be By | Bs| Byg| Big| e
Core 1| | Core2| | Core3| | Core4| | CoreS||Core6| | Core7| | Core8 || Core9| |Corel0
L1 L1 L1 L1 L1 L1 L1 Ll L1 L1
L2 L2 L2 L2 L2 L2 L2 L2 L2 L2
I Shared L3 Cache ‘
| Bus Interface ‘
A
\ 4
’ Off-Chip Components ‘

Fig. 2. Block diagram of ten-core processor.

In addition, let us suppose that the data word has K = 10-b-k = 160k bits, that the coefficients C;

(Tables 2 and 3) are stored in each of the ten L1 caches and that the syndrome table is placed in

each of the ten L2 caches. In that case, the decoder will perform the following operations:



o Corel

16
k+1 le i Bioinys (mod 27°-1) )
o Core?2
(2) 16
Bk+l le i BlO'(i-])+2 (m0d2 —1) (11)
e Corel0
16
k+1 le ; BlO‘(i-1)+10 (mod 27°-1) W)

If we add to this K/128 shift operations, we conclude that the decoder requires T; = 8-k + K/128
clock cycles (k accesses to the L1 cache, & integer multiplications, k£ — 1 integer additions, K/128
shift operations and 1 modulo reduction) to compute all check-bytes. After finishing this task,
the decoder will take T, = 2 clock cycles (1 integer subtraction and 1 modulo reduction) to

calculate the values:

e Corel
D=1B" ~BY ] (mod 2'°-1) (13)

o Core?2
'=[B{?,~B\] (mod 2~ 1) (14)

e Core 10
s = BIY B (mod 2"~ 1) (15)

As explained in the previsous section, if the data are received in error, the decoder will perform
nt table lookups, n1;, comparisons, 2 integer additions and 1 modulo reduction. In our case, ten
such operations will be executed in parallel in Tz = 13-n. + 3 clock cycles. So, if we sum up all

the processing times, we come to the conclusion that the decoder requires

T, y= L +TT +T,=8k+K/128+13-n; +5 (16)
clock cycles to process K data bits, i.e. one second to decode
Gy (3.1-10%)-160-k
T /K 8k+160-k/128+ 13- +5 (17

data bits. By substituting the values of k and n1pmax (Table 5) in (17) we obtain that G, = 40.08
Gbps and Gax = 49.70 Gbps. This means that all considered codes have the potential to be used
in various real-time systems (e.g. 10G and 40G networks). In addition, from (10)-(15) we
observe that all analyzed codes are interleaved at the byte level. Thanks to this, they are able to

correct (mulitple) BA errors up to / bits.



Table 5. Memory Requirements and Theoretical Decoding Throughputs
for Some Ten-Byte Interleaved Integer B;,cAEC Codes.

Memory Memory Minimum
. : Number .
Cod k / Requirements | Requirements £ Tabl Theoretical
ode for Storing the | for Storing the E K © Decoding

Coefficients C; | Syndrome Table OOoKUpS Throughput

(1040, 1024) | 64 | 3 10x 128 B 18.70 KB 1 <np<13| 41.43 Gbps
(1040, 1024) | 64 | 4 10x 128 B 35.17 KB 1 <np <14| 40.75 Gbps
(1040, 1024) | 64 | 5 10x 128 B 65.59 KB 1 <np, <15| 40.08 Gbps
(2064, 2048) | 128 3 10x 256 B 38.06 KB 1 <np <14| 49.70 Gbps
(2064, 2048) [ 128 4 10x 256 B 71.60 KB 1 <np<15| 49.46 Gbps
(2064, 2048) | 128 5 10x 256 B 133.52 KB 1 <np<16| 49.20 Gbps

5. Conclusion

This paper proposed two types of integer codes capable of correcting burst asymmetric
errors within a byte. The proposed codes are constructed with the help of a computer and are
very efficient in terms of redundancy. The results of an exhaustive search have shown that, for
practical data lengths up to 4096 bits, the proposed codes use up to two check-bit less than the
corresponding codes of similar properties. Besides this, the proposed codes have the ability to be
interleaved without delay and without using additional hardware. In this way, it is possible to
construct simple codes capable of correcting (multiple) burst asymmetric errors. Such codes

could be applied to various practical channels, especially to those that display asymmetric errors.
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