The Hydrothermal Synthesis of 1D Biomedical Hydroxyapatite Nanostructures

Zoran Stojanović, Ljiljana Veselinović, Nenad Ignjatović, Miroslav Miljković, Dragan Uskoković

1 Institute of Technical Sciences of SASA Knez Mihajlova 35/4, Belgrade, Serbia
2 Laboratory for Electron Microscopy, Faculty of Medicine University of Niš, Dr. Zoran Đinđić Boulevard 81, Niš, Serbia

The 1D hydroxyapatite (HAp) nanostructures such as nanowires and nanotubes, have drawn interest of biomedical researchers in field of scaffold and tissue engineering, drug delivery and biocomposites. Due to improvement of mechanical properties and large surface area they have found applications in bone tissue engineering. The target of this work is utilization of controlled precursor preparation and hydrothermal process for synthesis of such structures on a gram scale.

Synthesis Methods and Results

1. One pot synthesis of HAp using Ca-acetate precursor

Mixing Ca – acetate and ammonium – dihydrogen phosphate solutions

Urea

Hydrothermal treatment 120 °C

Sample treated 20 h
Sample treated 96 h

2. Synthesis of HAp using Ca oleate via monetite platelets

Synthesis of platelets in water – ethanol solution With/without addition of DMF

Drying

Mixing with urea solution

Hydrothermal treatment 120 °C

Monetite synthesized without DMF

Monetite synthesized with DMF

HAp structures synthesized via DMF monetite platelets

HAp structures synthesized via nonDMF monetite platelets

Size distributions of presented samples HAp obtained by laser diffraction method

Conclusion

The 2 key parameters seems to influence on whether nanowires will form during hydrothermal process or not. The first parameter is crystal structure of precursor calcium phosphate, i.e. monetite. Orientation of crystal facets in monetite platelets seems to be important for formation of 1D structures. The second parameter is time of hydrothermal treatment, i.e. time for urea decomposition reaction and concentration of OH ions. When concentration of precursor is too high or urea concentration (read OH conc.) is too low the alteration of monetite to HAp is incomplete. All synthesis are conducted on 120 °C and same urea concentration, also concentration of precursor, are varied within 0.03 to 0.04 mol dm⁻³. Since amount of data is insufficient for final conclusion, more run needs to be done to establish controlled synthesis of monetite platelets and HAp nanowires and nanotubes.

Contact: Zoran Stojanović zoran.stojanovic@itn.sanu.ac.rs and zoran05@gmail.com