This is the peer-reviewed version of the paper


This work is licensed under a Creative Commons - Attribution-Noncommercial-No Derivative Works 3.0 Serbia
DNA damage and alterations in expression of DNA damage responsive genes induced by TiO\textsubscript{2} nanoparticles in human hepatoma HepG2 cells

JANA PETKOVIĆ\textsuperscript{1}, BOJANA ŽEGURA\textsuperscript{1}, MAGDALENA STEVANOVIĆ\textsuperscript{2}, NATAŠA DRNOVŠEK\textsuperscript{3}, DRAGAN USKOKOVIĆ\textsuperscript{2}, SAŠA NOVAK\textsuperscript{3}, & METKA FILIPIĆ\textsuperscript{1}

\textsuperscript{1}Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia, \textsuperscript{2}Institute of Technical Sciences of the Serbian Academy of Sciences and Arts, Belgrade, Serbia, and \textsuperscript{3}Department for Nanostructured Materials, Jožef Stefan Institute, Jamova 39, Ljubljana, Slovenia

(Received 3 March 2010; accepted 6 July 2010)

Abstract

We investigated the genotoxic responses to two types of TiO\textsubscript{2} nanoparticles (<25 nm anatase: TiO\textsubscript{2}-An, and <100 nm rutile: TiO\textsubscript{2}-Ru) in human hepatoma HepG2 cells. Under the applied exposure conditions the particles were agglomerated or aggregated with the size of agglomerates and aggregates in the micrometer range, and were not cytotoxic. TiO\textsubscript{2}-An, but not TiO\textsubscript{2}-Ru, caused a persistent increase in DNA strand breaks (comet assay) and oxidized purines (Fpg-comet). TiO\textsubscript{2}-An was a stronger inducer of intracellular reactive oxygen species (ROS) than TiO\textsubscript{2}-Ru. Both types of TiO\textsubscript{2} nanoparticles transiently upregulated mRNA expression of \textit{p53} and its downstream regulated DNA damage responsive genes (\textit{mdm2}, \textit{gadd45a}, \textit{p21}), providing additional evidence that TiO\textsubscript{2} nanoparticles are genotoxic. The observed differences in responses of HepG2 cells to exposure to anatase and rutile TiO\textsubscript{2} nanoparticles support the evidence that the toxic potential of TiO\textsubscript{2} nanoparticles varies not only with particle size but also with crystalline structure.

Keywords: TiO\textsubscript{2} nanoparticles, genotoxic, oxidative DNA damage, gene expression, HepG2 cells

Introduction

The increasing use of nano-sized materials during the past several years has stimulated investigations of potential hazards of these useful materials for humans and environment. One of the most widely used nanoparticles (NPs) is composed of titanium dioxide (TiO\textsubscript{2}); however, most of the titania powder is synthesized from the ore ilmenite, FeTiO\textsubscript{3} (Greenwood and Earnshaw 1997). TiO\textsubscript{2} particles larger than submicron-sized (>100 nm) have been classified as biologically inert in both humans and animals (Chen and Fayerweather 1988; Bernard et al. 1990; Hart and Hesterberg 1998) and are widely used as a white pigment in the production of paints, paper, plastics, ceramics, as a welding rod coating material and as a food additive (Nordman and Berlin 1986; Lomer et al. 2002; Gelis et al. 2003; Gurr et al. 2005). Strong absorption of UV light makes TiO\textsubscript{2} a very effective sunscreen for use in cosmetics (Gelis et al. 2003). Because of its photocatalytic properties, TiO\textsubscript{2} is applied in natural and waste water treatment as a disinfectant (Cho et al. 2004). TiO\textsubscript{2} finds applications in therapeutic purposes, being used as a photosensitizer for photodynamic therapy of endobronchial and esophageal cancers (Ackroyd et al. 2001). Nowadays, with the rapid development and advantages of nanotechnology, NPs of TiO\textsubscript{2} (<100 nm) are increasingly replacing their larger counterparts, predominantly because of their high stability, anticorrosion and better photocatalytic properties (Lomer et al. 2002; Gelis et al. 2003; Wang et al. 2007a). However, nanomaterials may differ from the bulk materials, not only in terms of their desirable properties but also in terms of their potential adverse effects.

TiO\textsubscript{2} NPs can cause oxidative stress-mediated toxicity in various tissues and cell types (Zhang and Sun 2004; Gurr et al. 2005; Hussain et al. 2005; Long et al. 2006; Xia et al. 2006), including DNA damage (Dunford et al. 1997; Rahman et al. 2002; Gurr et al. 2005; Wang et al. 2007a, 2007b), inflammation (Borm et al. 2000; Hohr et al. 2002; Warheit et al. 2003).
2

J. Petković et al.

2006; Grassian et al. 2007), fibrosis (Baggs et al. 1997) and pulmonary damage (Bermúdez et al. 2002, 2004; Park et al. 2009). Most of the toxicological studies of TiO2 NPs in mammals have addressed their adverse effects upon exposure by inhalation and, on this basis TiO2 has been classified by the International Agency for Research on Cancer (IARC) as an IARC Group 2B carcinogen “possibly carcinogenic to humans” upon inhalation (IARC 2006). However, oral ingestion is an important exposure route for the general population since TiO2 is used as a food additive, in food contact materials, in toothpaste, capsules, etc. A literature survey revealed only one toxicokinetic study on oral exposure to TiO2 NPs. TiO2 NPs administered as single high-dose gavage (5 g/kg bw) to mice were shown to accumulate predominantly in the liver and spleen, while pathological changes were observed in kidney, liver and heart, along with changes in serum biochemical parameters such as increased lactate dehydrogenase and α-hydroxybutyrate dehydrogenase levels (Wang et al. 2007a). A recent study on the distribution of intravenously (5 mg/kg body weight) administered TiO2 NPs (>10 wt. % less than 100 nm size) to rats showed their highest levels on day one in all organs. The elevated TiO2 levels were retained in the liver for 28 days, in the spleen there was a slight decrease in TiO2 levels from day 1 to days 14 and 28, and in the lung and kidney the levels returned to control levels by day 14. There were no detectable levels of TiO2 in blood cells, plasma, brain, or lymph nodes and there were also no obvious toxic health effects, no immune response, and no change in organ function (Fabian et al. 2008).

The toxicokinetic studies indicated that liver appears to be the target of NP toxicity; therefore, we have applied the experimental model with human hepatoma HepG2 cells to evaluate the genotoxic potential of TiO2 NPs. It has been shown that the biological activities of NPs depend on their physicochemical properties (such as size and crystalline structure), therefore genotoxicity of two types of TiO2 NPs: <25 nm anatase TiO2 particles (TiO2-An) and <100 nm rutile TiO2 particles (TiO2-Ru) has been studied. By means of comet assay and its modified version with lesion specific DNA repair enzymes formamidopyrimidine-DNA glycosylase (Fpg) and endonuclease III (Endo III) that convert oxidized purines and pyrimidines to AP sites and strand breaks, respectively (Collins et al. 1996), we determined TiO2 NPs induction of DNA strand breaks and oxidative DNA damage. In addition we investigated the effect of TiO2 NPs on mRNA expression of tumor suppressor gene p53 and its downstream regulated DNA damage responsive genes, the cyclin-dependent kinase (CDK) inhibitor p21, the E3 ubiquitin ligase mdm2, and the growth arrest and DNA damage-inducible gene gadd45α.

Materials and methods

Chemicals

Eagle Minimal Essential Medium (EMEM), penicillin/ streptomycin, L-glutamine, phosphate buffered saline (PBS), trypsin, fetal bovine serum, non-essential amino acid solution (100×), MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide), tert-butyl hydroperoxide (t-BOOH), benzo(a)pyrene (BaP), ethidium-bromide solution, 2,7-dichlorofluorescein diacetate (DCFH-DA), dimethyl sulfoxide (DMSO) were obtained from Sigma-Aldrich (St Louis, MO, USA). Normal melting-point (NMP) agarose and low melting-point agarose (LMP) were from Gibco BRL (Paisley, Scotland, UK). Enzymes Fpg and Endo III were a gift from Dr Andrew R. Collins (Department of Nutrition, University of Oslo, Oslo, Norway).

Characteristics of TiO2 nanoparticles

Two grades of TiO2 powder with different average particles size (d <25 nm and d <100 nm) and crystalline structure (anatase and rutile) used in this study were obtained from Sigma-Aldrich (St Louis, MO, USA). We denoted them as TiO2-An (Cat. no. 637254: anatase; particle size <25 nm; 99.7% trace metals basis) and TiO2-Ru (Cat. no. 637262: rutile; particle size ~ 10 × 40 nm; 99.5% trace metals basis). Their size, crystalline structure, specific surface area and aggregation or agglomeration were confirmed experimentally.

The size and morphology of TiO2 NPs were observed by field-emission-gun scanning electron microscopy (FEG-SEM) JEOL 7600 F. The powder samples for the examination were coated with carbon (SCD 50 sputter coater). The crystal phase of the powders was identified by X-ray diffraction (XRD), using a Philips PW 1050 diffractometer with Cu-KC1,2 radiation (Ni filter). Measurements were made in the range of 22 = 8–80° with scanning step width of 0.05° and time steps of 2s. UV/Vis (diffuse reflectance) spectroscopic characterization of the samples was recorded on GBC Cintra UV-Vis Spectrophotometer in the wavelength range of 200–800 nm. The specific surface area was determined by gas adsorption using the BET method (Gemini 2370, Micromeritics).
Particle size distribution of TiO\textsubscript{2} NPs in the treatment medium was measured by laser scattering, using a particle size distribution analyzer Horiba LA-920 (Japan). The particles were dispersed in EMEM medium at 30 \(\mu\)g/ml and sonicated using the same conditions as for preparation of particle suspensions for the cell treatments.

\textit{TiO\textsubscript{2} particles, stock solution and treatment media preparation}

Powdered TiO\textsubscript{2} NPs were suspended in PBS at a concentration 1 mg/ml and sonicated for 30 min in an ultrasonic bath (Sonorex, Bandelin electronic, Germany) at a frequency of 60 kHz, voltage of 220 V and an electric current of 0.5 A to ensure uniform suspension. This stock solution was subsequently diluted in the complete cell growth medium to yield concentrations ranging from 1–250 \(\mu\)g/ml. These samples were then sonicated for 30 min to produce a stable, less-agglomerated nanocrystalline suspension before exposure of cells in culture.

\textit{Cell culture}

HepG2 cells were obtained from European Collection of Cell Cultures (ECACC). Cells were grown in EMEM containing 10\% fetal bovine serum, 1\% non-essential amino acid solution, 2 mM L-glutamine and 100 U/ml penicillin plus 100 \(\mu\)g/ml streptomycin at 37°C in a humidified atmosphere with 5\% CO\textsubscript{2}.

\textit{Cytotoxicity assay}

Cytotoxicity was determined with the MTT assay according to Mossman (1983) with minor modifications (Zegura et al. 2003). This assay measures the conversion of MTT to insoluble formazan by dehydrogenase enzymes of intact mitochondria of living cells. The HepG2 cells were seeded onto 96-well microplates (Nunc, Naperville, IL, USA) at a density of 75,000 cells/ml. After 20 h incubation at 37°C in 5\% CO\textsubscript{2} the cells were loaded with 20 \(\mu\)M DCFH-DA for 30 min, DCFH-DA was then removed, and cells treated with 0, 1, 10, 100 and 250 \(\mu\)g/ml of TiO\textsubscript{2} NPs in PBS. Negative (non-treated cells) and positive (0.5 \(\mu\)M \(t\)-BOOH) controls were included in each experiment. For kinetic analysis of ROS formation the plates were maintained at 37°C and the fluorescence intensity (485 nm excitation/530 nm emission wavelengths) of the formed DCF was recorded every 30 min during the 5 h incubation, using a microplate reading spectrofluorimeter (Tecan GENios, Austria).

\textit{Intracellular ROS formation – DCFH-DA assay}

The formation of intracellular ROS was measured using a fluorescent probe, DCFH-DA, as described by Össeni et al. (1999), with minor modifications (Zegura et al. 2004). DCFH-DA readily diffuses through the cell membrane and is hydrolyzed by intracellular esterases to non-fluorescent 2',7'-dichlorofluorescein (DCFH) which, in the presence of ROS, is rapidly oxidized to highly fluorescent 2',7'-dichlorofluorescein (DCF). The DCF fluorescence intensity is proportional to the amount of ROS formed intracellularly. \(\text{H}_2\text{O}_2\) is the principle ROS responsible for the oxidation of DCFH-DA to DCF (LeBel et al. 1992).

The cells were seeded into 96-well, black, tissue culture treated microtiter plates (Nunc, Naperville, IL, USA) at a density of 75,000 cells/ml. After 20 h incubation at 37°C in 5\% CO\textsubscript{2} the cells were loaded with 20 \(\mu\)M DCFH-DA for 30 min, DCFH-DA was then removed, and cells treated with 0, 1, 10, 100 and 250 \(\mu\)g/ml of TiO\textsubscript{2} NPs in PBS. Negative (non-treated cells) and positive (0.5 \(\mu\)M \(t\)-BOOH) controls were included in each experiment. For kinetic analysis of ROS formation the plates were maintained at 37°C and the fluorescence intensity (485 nm excitation/530 nm emission wavelengths) of the formed DCF was recorded every 30 min during the 5 h incubation, using a microplate reading spectrofluorimeter (Tecan, Genios, Austria).

\textit{Comet assay}

HepG2 cells were seeded at a density of 60,000 cells/ml into 12-well microtiter plates (Corning Costar Corporation, Corning, NY, USA). After incubating the cells at 37°C in 5\% CO\textsubscript{2} for 20 h to attach to the plates, the growth medium was replaced with fresh medium containing 0, 1, 10, 100 and 250 \(\mu\)g/ml TiO\textsubscript{2} NPs and incubated for 2, 4 and 24 h. In each experiment positive controls (0.5 mM \(t\)-BOOH and 50 \(\mu\)M BaP) and a vehicle control (cell growth medium containing 10\% PBS) were included.
At the end of the exposure the cells were harvested and the DNA damage determined by the protocol of Singh et al. (1988) with minor modifications (Žegura and Filipič 2004). Images of 50 randomly selected nuclei per experimental point were analyzed with image analysis software Comet Assay IV (Perceptive Instruments, UK). Three independent experiments were performed for each of the treatment conditions. The percent of tail DNA was used to measure the level of DNA damage.

The level of oxidized purines/pyrimidines was determined with the modified comet assay as described by Collins et al. (1996). After the cell lysis the slides were washed three times for 5 min with endonuclease buffer (40 mM HEPES-KOH, 0.1 M KCl, 0.5 mM EDTA, 0.2 mg/ml bovine serum albumin, pH 8.0). Fifty microliter aliquots of Fpg/Endo III solution or enzyme buffer without Fpg/Endo III were added, covered with a cover glass and incubated at 37°C for 30/45 min. The slides were then processed as described above.

One-way analysis of variance (ANOVA, Kruskal-Wallis) was used to analyze the differences between treatments within each experiment. Dunnet’s test was used for comparing median values of percentage tail DNA; P < 0.05 was considered as statistically significant.

mRNA expression analysis

Cells were seeded at a density of 1,000,000 on T-25 flasks (Corning Costar Corporation, Corning, NY, USA) and incubated for 20 h at 37°C and 5% CO₂ to attach. The growth medium was then replaced with fresh medium containing 0, 1, 10, and 100 μg/ml TiO₂ NPs and the cells incubated for 4 and 24 h. In each experiment a positive control (50 μM BaP) and a vehicle control (cell growth medium containing 20 mM NaCl, 0.5 mM EDTA, 0.2 mg/ml bovine serum albumin, pH 8.0). Fifty microliter aliquots of Fpg/Endo III solution or enzyme buffer without Fpg/Endo III were added, covered with a cover glass and incubated at 37°C for 30/45 min. The slides were then processed as described above.

For each experiment a positive control (50 μM BaP) and a vehicle control (cell growth medium containing 20 mM NaCl, 0.5 mM EDTA, 0.2 mg/ml bovine serum albumin, pH 8.0). Fifty microliter aliquots of Fpg/Endo III solution or enzyme buffer without Fpg/Endo III were added, covered with a cover glass and incubated at 37°C for 30/45 min. The slides were then processed as described above.

One-way analysis of variance (ANOVA, Kruskal-Wallis) was used to analyze the differences between treatments within each experiment. Dunnet’s test was used for comparing median values of percentage tail DNA; P < 0.05 was considered as statistically significant.

Results

Characteristics of TiO₂ NPs

The characteristics of the TiO₂ nanopowders used in this study are summarized in Table I. The FEG-SEM examination of the TiO₂ nanopowders (Figures 1A–D) showed that both powders are aggregated, with nearly spherical crystallites for the TiO₂-An (Figures 1A, 1B) and elongated crystallites for the TiO₂-Ru (Figures 1C, 1D). The apparent average crystallite’s sizes are in agreement with specified sizes provided by the manufacturer, i.e., around 25 nm for TiO₂-An and under 100 nm for the TiO₂-Ru, while the aggregates are much larger. The specific surface area was determined to be very similar for both powders, i.e., 129.3 m²/g for TiO₂-An and 116.7 m²/g for TiO₂-Ru, which is well in agreement with the producer’s specifications (Table I). XRD confirmed crystalline structure for both, anatase sample and rutile sample of the TiO₂ NPs (Powder diffraction files). The X-ray diffractogram of rutile shows wider range of reflection and higher level of basic line related to X-ray diffractogram of anatase; which is indicating smaller crystallite size and lower degree of crystallinity of rutile. When Sherrer’s formula for calculating the crystallite size was applied, the size of 10 nm was found for rutile on reflection (110) and of 15 nm for anatase on reflection (101). The reflectance UV spectra of the samples are in accordance with the reported values (Tryba 2008).

The particle size distribution determined by laser scattering particle size distribution analysis showed that in the medium both types of TiO₂ NPs are highly aggregated and agglomerated with an average size of aggregates and agglomerate size at the micron level (TiO₂-An: 915 ± 453 nm; TiO₂-Ru: 1542 ± 760 nm). However, the portion of submicron-sized particles is much lower in the case of the TiO₂-An than in TiO₂-Ru (Figure 1E). Micron-sized aggregates and agglomerates were confirmed also by FEG-SEM (Figures 1A–D).
Table I. Characteristics of the TiO$_2$ powders used in this study.

<table>
<thead>
<tr>
<th></th>
<th>Anatase TiO$_2$-An</th>
<th>Rutile TiO$_2$-Ru</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supplier information</td>
<td>Nanopowder, anatase crystalline structure, particle size $&lt;$$&lt;$25 nm, surface area 200–220 m$^2$/g</td>
<td>Nanopowder, rutile crystalline structure, particle size $<del>$$</del>$10 nm $\times$ 40 nm, surface area 130–190 m$^2$/g</td>
</tr>
<tr>
<td>Measurements of specific surface area (BET)</td>
<td>129.3 m$^2$/g</td>
<td>116.7 m$^2$/g</td>
</tr>
<tr>
<td>FEG-SEM (supplied material)</td>
<td>&lt;25 nm</td>
<td>&lt;100 nm</td>
</tr>
<tr>
<td>Particle size within the agglomerates/aggregates</td>
<td>Spherical crystallites</td>
<td>Elongated crystallites</td>
</tr>
<tr>
<td>XRD</td>
<td>Anatase type: tetragonal crystallographic system; $I4_1$/amd space group (according to JCPDS: 21–1272); characteristic reflections (101) at 25.3; (200) at 48.0, 28</td>
<td>Rutile type: tetragonal crystallographic system; $P4_2/mnm$ space group (according to JCPDS: 34-0180); characteristic reflections (110) at 27.3; (101) at 36.0; (211) at 54.1, 26</td>
</tr>
<tr>
<td>UV-Vis spectroscopy</td>
<td>Anatase: absorption peaks at $\lambda_{\text{max}}$ = 300 nm and $\lambda_{\text{max}}$ = 210 nm</td>
<td>Rutile: absorption peaks at $\lambda_{\text{max}}$ = 305 nm and $\lambda_{\text{max}}$ = 205 nm</td>
</tr>
</tbody>
</table>

FEG-SEM, field-emission-gun scanning electron microscope; XRD, X-ray diffraction; UV-Vis, ultraviolet-visible spectroscopy.

Cytotoxicity of TiO$_2$ NPs

The viability of HepG2 cells exposed to 0, 1, 10, 100 and 250 µg/ml of TiO$_2$-An or TiO$_2$-Ru for 4, 24 and 48 h was not significantly affected (data not shown). Therefore, these concentrations were used in further experiments.

Induction of intracellular ROS formation

To explore whether the TiO$_2$-An and TiO$_2$-Ru NPs induced DNA damage is associated with intracellular ROS formation, we measured the kinetics of their formation in HepG2 cells (Figure 2). After 5 h exposure, TiO$_2$-An induced a significant elevation of intracellular ROS formation at all applied concentrations, with a two-fold increase over control level at the highest concentration, while TiO$_2$-Ru induced a 1.4-fold elevation only at the highest concentration (Figure 2A). Kinetic measurement of the ROS formation during the 5 h exposure showed that the level of TiO$_2$-An induced ROS increased steadily over the control level, while TiO$_2$-Ru induced an increase in the ROS level during the first 90-min exposure, which afterwards increased at the same rate as the control (Figure 2B).

Induction of DNA strand breaks and oxidative DNA damage

In HepG2 cells exposed to TiO$_2$-An NPs we detected slight, however statistically significant ($P < 0.05$) greater amount of DNA strand breaks than in the control, as shown using the comet assay (Figure 3). The greater amount of DNA damage was observed at the highest concentration (250 µg/ml) after 2, 4 and 24 h exposure and after 4 h exposure also at 1 µg/ml. Exposure to TiO$_2$-Ru particles induced significantly more strand breaks only in cells exposed for 4 h to 100 µg/ml TiO$_2$-Ru.

The induction of oxidative DNA damage was studied with the modified comet assay with purified DNA damage specific enzymes, Fpg and Endo III, which recognize and excise oxidized purines and pyrimidines, respectively. The increase of % tail DNA in enzyme treated slides compared to buffer treated thus reflects the amount of oxidized nucleic bases.

In cells exposed to TiO$_2$-An we observed a significant dose-dependent increase of Fpg-sensitive sites at concentrations 10, 100 and 250 µg/ml after 2, 4 and 24 h (Figure 4A). The highest levels of Fpg-sensitive sites were observed after 4 h exposure at concentrations of 100 and 250 µg/ml, which declined slightly after 24 h exposure, but remained significantly different from the control at concentrations 10, 100 and 250 µg/ml. In cells exposed to TiO$_2$-Ru a significant increase of Fpg-sensitive sites was detected only after 24 h exposure to 10 and 100 µg/ml NPs (Figure 4B).

Induction of Endo III-sensitive sites by TiO$_2$ NPs was much lower than that of Fpg-sensitive sites and was not dose-dependent. After 2 h exposure to TiO$_2$-An, the increase of Endo III-sensitive sites was significant at the highest concentration (250 µg/ml), after 4 h of exposure at a concentration 100 µg/ml, and after 24 h of exposure at 10 µg/ml (Figure 5A). In cells exposed to TiO$_2$-Ru, we observed a significant
increase of Endo III-sensitive sites at the highest concentration (250 μg/ml) after 2 h and after 24 h exposure (Figure 5B).

**Effect of TiO₂ NPs on the expression of DNA damage responsive genes**

The mRNA expression of selected DNA damage responsive genes was analyzed after 4 h and 24 h exposure of HepG2 cells to 0, 1, 10 and 100 μg/ml of TiO₂-An and TiO₂-Ru by quantitative real-time PCR (Figure 6).

In cells exposed to TiO₂-An for 4 h (Figure 6A), the mRNA expression of p53 was significantly greater than that of the control cells (P < 0.05) at the highest concentration (100 μg/ml). Under the same conditions, expression of mdm2, p21 and gadd45α was not affected. After 24 h of exposure to TiO₂-An, the level of p53 mRNA expression remained unchanged. The expression of p21 and mdm2 was significantly elevated at the highest concentration, while expression of gadd45α was significantly elevated at 10 and 100 μg/ml (Figure 6B).

In cells exposed to TiO₂-Ru the expression of p53, mdm2, p21 and gadd45α after 4 h was significantly elevated at the highest concentration (100 μg/ml) (Figure 6C). After 24 h exposure to TiO₂-Ru, the expressions of p21, mdm2 and gadd45α were significantly elevated at 10 and 100 μg/ml, while the expression of p53 remained unchanged (Figure 6D).

As the positive control of the test system, we used 50 μM BaP. Exposure of HepG2 cells to BaP for 4 h did not affect expression of p53, mdm2, p21 and

![Figure 1](image1.png)
gadd45α, whereas after 24 h exposure BaP induced 14-fold increase of the expression of p21 and six-fold increase of the gadd45α, while the expression of mdm2 and p53 was not affected (data not shown). These data confirmed expected responsiveness of the system with HepG2 cells.

Discussion and conclusion

In this study, we have shown that in HepG2 cells genotoxic potential of TiO₂ NPs varies with particle size and crystalline structure. Neither TiO₂-An nor TiO₂-Ru affected the viability of HepG2 cells, which is in line with the recent report of Wagner et al. (2009). On the other hand, both types of TiO₂ NPs induced intracellular ROS formation, DNA strand breaks and oxidative DNA damage with TiO₂-An being significantly stronger inducer than TiO₂-Ru. For the first time we showed that exposure to TiO₂ NPs induced changes in the mRNA expression of DNA damage responsive genes, which is characteristic for genotoxic agents.

The TiO₂ powders used in this study differ in particles size as well as in crystalline structure, which could both contribute to the observed differences in their effects. As presented in Figures 1A–E, the particles are highly aggregated and agglomerated, which is in line with a number of previous studies (Limbach et al. 2005; Xia et al. 2006; Falck et al. 2009), and portion of submicron-sized agglomerates in TiO₂-An is much lower than in TiO₂-Ru. This implies that the observed more pronounced effects of the TiO₂-An could be partly ascribed to a higher concentration of the small particles. However, in our opinion supported by literature data, the role of crystalline structure can not be excluded.

For particles with low solubility, such as TiO₂, their capacity to produce ROS is generally proposed to account for their genotoxicity (Schins 2002; Schins and Knaapen 2007). In our experiments we confirmed that both types of TiO₂ NPs induced intracellular ROS formation, which is in agreement with other reports describing ROS induction in bronchial epithelial cells (Gurr et al. 2005; Hussain et al. 2009), lung epithelial cells (Limbach et al. 2005), and also brain microglia (Long et al. 2006). We also observed that the TiO₂-An was significantly stronger ROS inducer than TiO₂-Ru, which corroborates the results of Jiang et al. (2008). The difference in the intrinsic ability of anatase and rutile TiO₂ to induce ROS has been shown to be related to differences in their surface chemistry (Selloni et al. 1998; Vittadini et al. 1998).

TiO₂-An caused weak, however at all exposure times persistent increase in DNA strand breaks, and persistent dose-dependent increase in Fpg-sensitive sites, whereas TiO₂-Ru was practically ineffective (Figure 4). Similar observations have been reported in several previous studies (Gurr et al. 2005; Reeves et al. 2008; Zhu et al. 2009). The fact that TiO₂-An induced significant increase in the level of Fpg-sensitive sites, while Endo III-sensitive sites remained
unchanged suggests that product of TiO₂-induced oxidative DNA damage is 8-hydroxyguanine (8-OH-Gua), although formamidopyrimidines (imidazole ring-opened purines) are also possible substrate for Fpg (Kielbassa et al. 1997). 8-OH-Gua adducts in DNA lead to GC → TA transversion mutations, unless repaired prior to DNA replication (Grollman and Moriya 1993; Olinski et al. 2002). Therefore, persistence of oxidized purines in cells may lead to mutations and cancer (Valko et al. 2006).

Toxicogenomics, the application of expression profiling in toxicological studies, has the potential to allow deeper understanding of the mechanisms of toxicity and can also provide an early and global answer to toxic events (Brown and Botstein 1999; Kolaja and Kramer 2002; Ulrich and Friend 2002; Ellinger-Ziegelbauer et al. 2005). In our study we have measured changes in the expression of four genes that are involved in response to DNA damage: p53 and its downstream targets p21, gadd45α, and mdm2. p53 tumor suppressor is considered to be the major sensor of genotoxic stress and is the link between DNA damage, cell cycle arrest and apoptosis (Levine 1997). The up-regulation of p53 gene after exposure to TiO₂-An and TiO₂-Ru was short-term. On the transcription level this is not unusual, as it is known that DNA damage activates the p53 protein, predominantly through its phosphorylation by DNA damage responsive kinases and, to a lesser extent, through up-regulation of gene expression (Zhou and Elledge 2000). Recently it has been reported that exposure of peripheral blood lymphocytes to TiO₂

Figure 3. DNA strand break induction by TiO₂-An (A) and TiO₂-Ru (B) in HepG2 cells. The cells were treated for 2, 4 and 24 h with TiO₂ NPs (0, 1, 10, 100, 250 μg/ml). 0.5 mM t-BOOH was used as positive control for 2 and 4 h treatments and 50 μM BaP for 24 h treatments. The DNA damage was assessed using the comet assay as described in Materials and methods, and is expressed as % of DNA in the tail. Fifty cells were analyzed per experimental point in each of the three independent experiments. Data are presented as quantile box plots. The edges of the box represent the 25th and 75th percentiles, the median is a solid line through the box, mean values are represented as square (+), and the error bars represent the 95% confidence intervals. *P < 0.05 and ***P < 0.001 denotes a significant difference between TiO₂ NPs-treated and control groups using ANOVA, Kruskal-Wallis with Dunnet’s post test.
NPs (70–85% anatase/15–30% rutile) caused accumulation of p53 protein together with intracellular ROS generation, DNA damage and micronuclei formation (Kang et al. 2008). Under normal conditions the function of p53 is tightly regulated by its interaction with MDM2, an E3 ubiquitin ligase, which mediates ubiquitination of p53 and its proteosome-dependent degradation (Vogelstein et al. 2000). Expression of *mdm2* gene is itself regulated with an autoregulatory loop in which p53 positively regulates *mdm2* expression while MDM2 protein negatively regulates p53 levels and activity (Wu et al. 1993). Both types of TiO2 NPs induced increased expression of *mdm2* gene, although TiO2–Ru was the stronger. Ellinger-Ziegelbauer et al. (2005), who compared the profiles of gene expression induced by genotoxic and non-genotoxic carcinogens in rat liver, found that *mdm2* was specifically up-regulated by genotoxic carcinogens. Up-regulation of *mdm2* has been detected also after exposure of HepG2 cells to microcystine-LR, for which it has been shown to induce DNA damage via ROS formation (Zegura et al. 2008). Following DNA damage, the growth arrest and DNA damage gene *gadd45a* plays a role in controlling the cell cycle G2–M checkpoint, the DNA repair process and apoptosis (Zhan 2005). Induction of *gadd45a* is directly transcriptionally regulated by p53 and it has been reported to be associated with the oxidative stress-induced pathway (Wang et al. 1999). The *gadd45a* gene has been observed to be induced in response to a wide range of genotoxic agents, including BaP (Akerman et al. 2004), mitomycin C (Abbas et al. 2002), cisplatin (Smith et al. 1996), H2O2 (Fornace et al. 1988), microcystin-LR (Zegura et al. 2008), and organophosphorous pesticides (Hreljac et al. 2008). Significantly elevated

Figure 4. Induction of Fpg sensitive sites by TiO2-An (A) and TiO2-Ru (B) in HepG2 cells. The cells were exposed to TiO2 NPs (0, 1, 10, 100 and 250 μg/ml) for 2, 4 and 24 h, then the modified comet assay was performed as described in Materials and methods. The levels of DNA strand breaks and oxidized purines are expressed as percent of tail DNA. Fifty cells were analyzed per experimental point in each of the two independent experiments. Data are presented as quantile box plots (for details see the caption of Figure 3). *P < 0.05, **P < 0.01 and ***P < 0.001 denotes a significant difference between TiO2 NPs-treated and control groups with and without Fpg, respectively, using ANOVA, Kruskal-Wallis with Dunnet’s post test.
expression of gadd45α was induced by both types of TiO₂ NPs after 4 h and 24 h exposure, with TiO₂-Ru being the stronger inducer. Another p53 target is p21, a cyclin-dependent kinase inhibitor, which is responsible for cell cycle arrest following DNA damage (Waldman et al. 1995). TiO₂-Ru induced p21 mRNA expression more strongly than TiO₂-An, as was observed also with mdm2 and gadd45α. Ellinger-Ziegelbauer et al. (2005) found that, in rat liver, p21 was exclusively up-regulated by genotoxic carcinogens.

Exposure of HepG2 cells to TiO₂-Ru NPs induced earlier and higher up-regulation of DNA damage responsive genes than exposure to TiO₂-An NPs. This appears to contradict the higher DNA damaging potential of TiO₂-An NPs observed with the comet assay. However, up-regulation of DNA damage responsive genes in fact reflects a cellular defense response against the consequences of DNA damage. Thus one possible explanation is that, in the cells exposed to TiO₂-Ru NPs, only marginal DNA damage was observed, because the early defense response triggered repair processes that eliminated the DNA damage before it could be detected with the comet assay.

In conclusion, exposure of HepG2 cells to TiO₂ NPs did not affect their viability, but induced increase in oxidative DNA damage, which was associated with intracellular ROS production. Exposure to TiO₂ NPs induced changes in the mRNA expression of p53 and its downstream regulated DNA damage responsive genes p21, gadd45α and mdm2, providing additional evidence that TiO₂ NPs are genotoxic. The observed differences in the responses of HepG2 cells to exposure to TiO₂-An and TiO₂-Ru NPs supports evidence that the toxic potential of TiO₂ NPs depends not only on the size, but also on the crystalline structure.

Figure 5. Induction of Endo III-sensitive sites by TiO₂-An (A) and TiO₂-Ru (B) in HepG2 cells. The cells were exposed to TiO₂ NPs (0, 1, 10, 100 and 250 μg/ml) for 2, 4 and 24 h, then the modified comet assay was performed as described in Materials and methods. The levels of DNA strand breaks and oxidized pyrimidines are expressed as percent of tail DNA. Fifty cells were analyzed per experimental point in each of the two independent experiments. Data are presented as quantile box plots (for details see the caption of Figure 3). *P < 0.05, **P < 0.01 and ***P < 0.001 denotes a significant difference between TiO₂ NPs-treated and control groups with and without Endo III, respectively, using ANOVA, Kruskal-Wallis with Dunnet’s post test.
Acknowledgments

This study was supported by Slovenian Research Agency: Program P1-0245 and young researcher grant to JP. We also thank Dr Zoran Samardžija for FEG-SEM examination of the powders. We thank Anja Pucer for her valuable advice in technical support. We thank Professor Roger Pain for critical reading of the manuscript.

Declaration of interest: The authors report no conflict of interest. The authors alone are responsible for the content and writing of the paper.

References


