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The aim of this study was to determine changes in clinical and biomechanical measures of 

spasticity after administering galvanic vestibular stimulation in patients with a complete 

spinal cord injury (SCI). The spasticity in the lower limbs was assessed using the Modified 

Ashworth Scale and the pendulum test in seven SCI patients (grade A on the ASIA 

Impairment Scale) before (0
−
), immediately after (0

+
), and at 5 and 30 min after the real 

versus sham galvanic vestibular stimulation (15 s each, anode over the right mastoid). 

Overall, the changes in spasticity were not significantly different between the real and sham 

galvanic vestibular stimulation. However, the Modified Ashworth Scale and the pendulum 

test indicated a reduction in spasticity in two out of seven patients. The results suggest that 

galvanic vestibular stimulation may modify spasticity in some patients with complete SCI, 

presumably through the residual vestibulospinal influences. Future studies should determine 

clinical and neurophysiological profiles of responders versus nonresponders and optimize 

parameters of galvanic vestibular stimulation.  

 

Introduction 

 

Spasticity is a motor disorder caused by an imbalance between inhibitory and excitatory 

supraspinal inputs controlling the segmental network (Trompetto et al., 2014). Spasticity is 

present in about 65% of patients with a traumatic spinal cord injury (SCI) at the time of 

rehabilitation discharge (Holtz et al., 2017) and increasing over time to 85% (Jorgensen et al., 

2017; DiPiro et al., 2018). About 35–55% of SCI patients take some antispasticity medication 

(Holtz et al., 2017; DiPiro et al., 2018) and the majority report that the spasticity negatively 

affects daily functioning (van Cooten et al., 2015) and quality of life (Adams and Hicks, 

2005). Many treatments exist for spasticity, including physical therapy modalities, 



 

pharmacological interventions, botulinum toxin injections, intrathecal drug delivery, and 

finally, surgery (Elbasiouny et al., 2010). However, the treatment of spasticity remains a 

significant concern both for patients and for doctors (Kita and Goodkin, 2000). 

Galvanic vestibular stimulation (GVS) applied to the mastoid processes activates afferent 

fibers of the vestibular nerve. The activation proceeds to the vestibular nuclei and then to the 

vestibuloocular and vestibulospinal output pathways (Goldberg, 2000). Vestibulospinal 

neurons converge on spinal interneurons subserving inhibitory or excitatory actions. Coats 

and Stoltz (1969) described the changes in natural body sway caused by GVS in healthy 

individuals and the associated medium latency responses in the soleus muscle have been 

identified (Britton et al., 1993; Watson and Colebatch, 1998). GVS may also affect the tone 

of postural muscles, causing hypotonia with the anodal and hypertonia with the cathodal 

stimulation (Iles and Pisini, 1992). Kennedy and Inglis (2001) reported that GVS may 

modulate the soleus H-reflex in healthy prone human participants even when the muscle is not 

being used posturally. We also confirmed the modulation of H-reflex in prone healthy 

participants using 10 successive short GVS pulses (Čobeljić et al., 2016). 

Previous studies in patients with SCI have shown that GVS can elicit medium-latency 

responses in the soleus muscle with prolonged latencies (Iles et al., 2004; Liechti et al., 2008) 

and amplitudes that correlate negatively with the severity of lesion (Iles et al., 2004). We also 

applied a binaural GVS (Ribarič-Jankes et al., 2006) and found a reduction in spasticity in 

five out of nine chronic SCI patients (six complete, three incomplete), ranging from 1 to 2 

points on the Ashworth scale (Ashworth, 1964). 

To expand on our previous observations in a more rigorous way, the aim of this study was to 

determine whether the binaural GVS alters clinical and biomechanical measures of spasticity 

in SCI patients classified as a grade A on the ASIA Impairment Scale (AIS-A) (Maynard et 

al., 1997). We applied real versus sham GVS in a full cross-over design and assessed the 

effects by the Modified Ashworth score (MAS, Bohannon and Smith, 1987), and the 

Pendulum test goniogram, tachogram, and pendulum test (PT) score (Bajd and Vodovnik, 

1984; Popović-Maneski et al., 2018). The inclusion of clinically complete SCI patients was 

prompted by the presence of the erector spinae responses recorded below the level of lesion in 

two out of nine AIS-A patients following binaural GVS (Iles et al., 2004) and also by the 

presence of vestibular-evoked myogenic potentials in the soleus muscle in two out of 16 

patients with motor-complete SCI following a series of high-intensity, short-tone burst 

acoustic stimuli (Squair et al., 2016). In contrast to the acoustic stimulation, which activates 

only a small part of the vestibular apparatus (saccule), the galvanic stimulation excites the 



 

entire vestibular nerve, that is, the afferents originating from the semicircular canals and the 

otoliths. The modification of spasticity (muscle hypertonia) following GVS would suggest a 

possible existence of the residual vestibular (vestibulospinal) influences over the spinal 

network below the level of clinically complete SCI. 

 

Patients and methods 

Patients 

 

The inclusion criteria for this study were (i) AIS-A SCI above the Th12 level; (ii) stable 

neurological and medical status; (iii) no cognitive impairments; (iv) no autonomic dysreflexia, 

and (v) no history of hearing or balance disorders. The sample was drawn from a pool of 22 

inpatients and outpatients screened at the Clinic for Rehabilitation ‘Dr. Miroslav Zotović’ in 

Belgrade, of whom seven fulfilled the inclusion criteria. The Ethics Committee of the Clinic 

for Rehabilitation approved the study and all patients signed the informed consent before 

entering the study. The patients were asked to skip the morning dose of the prescribed 

antispasticity medications and the study was carried out in the early afternoon after they 

completed the daily conventional therapy. 

 

Procedure and instrumentation 

 

Each patient was transferred from a wheelchair to the exam bed by two therapists. A firm 

mattress was placed behind the back to support the patient in a semi-reclined position (trunk–

hip angle of about 135°). The head was supported by a firm pillow (Fig. 1). 

The knee joint was positioned about 5 cm over the edge of the bed, allowing the shank to 

swing freely in the sagittal plane. The thigh and shank were secured by soft cuffs to the 

pendulum test apparatus consisting of two lightweight aluminum rods connected by a hinge 

joint (Fig. 1). The hinge joint was instrumented with a Hall-effect angular encoder. Inertial 

sensors, attached to the aluminum rods, measured acceleration and the angular rate of the 

thigh and shank movements during the pendulum test. All sensors were connected to the 

laptop using a 12-bit analog-digital converter with the sampling rate of 100 Hz (for more 

details, see Popović-Maneski et al., 2018). Before commencing the study, sufficient time was 

allowed to ensure that the patient was comfortable and relaxed. 

For GVS, the anode and the cathode were placed over the right and left mastoid process, 

respectively (3 × 3 cm self-adhesive, disposable BF-2Bio-Flex electrodes; Bio- Medical 



 

Instruments, Warren, Michigan, USA). The electrodes were connected to a custom-built 

stimulator capable of producing monophasic pulses ranging from 1 to 10 mA. In the case of 

real GVS, the examiner increased the intensity until observing the right turn of the head and 

torso (typically 4 mA). A total of 10 pulses (1 s each separated by 0.5 s) were delivered over 

15 s using a manual control (for more details, see Čobeljić et al., 2016). For the sham GVS, 

the intensity was maintained at 0mA. The sham GVS was administered 2 h after the real GVS 

in patients 1–3, whereas in patients 4–7, the sham and real GVS were performed on different 

days. 

 

Outcomes measures 

All assessments were performed on the right leg before (t = 0
−
), after (t = 0

+
), and at 5 and 30 

min after GVS. To assess the muscle tone according to MAS, the examiner ranged the knee 

joint at the angular velocity of about 14 rpm and assigned the score from 0 (normal tone) to 5 

(segment rigid in extension) for the resistance perceived during the knee extensors stretch. For 

the pendulum test, three repetitions were performed after a pause of 15 s. From the averaged 

data, seven parameters were estimated: R2n is the normalized relaxation index, N is the 

number of sways, φmax is the maximum angle from the goniogram after the limb drop, ωmax 

and ωmin are the absolute maximum and minimum lower limb angular speed as defined by 

Bajd and Vodovnik (1984), f is the frequency of oscillations, and |P
+
–P

−
| is the relative 

difference between the positive and the negative area of the goniogram. The PT score was 

calculated from the goniogram and tachogram data (Fig. 2) according to the following 

formula (Popović-Maneski et al., 2017): 

 

where i denotes a patient, H is used for healthy individuals, − represents a mean value of three 



 

trials in the same patient, and ^ represents the mean value for the healthy individuals (R2n= 

1.05, N = 7.39, φmax= 0.69, ωmin = − 4.78, f = 0.96, |P
+
− P

−
|= 0.06). For the normalization of 

PT, each part of the equation was divided by the total number of parameters used for 

calculating PT (for instance seven parameters). Typical values of the PT score for healthy 

individuals are less than less than 1. More details can be found in Popović-Maneski et al. 

(2017, 2018). 

 

Results 

 

Figure 3 shows the MAS results before (t = 0
−
), immediately at the end (t = 0 

+
 ), and at 5 and 

30 min after sham and real GVS for each individual patient along with the group averages. 

The average MAS decreased from about 2.7 to 1.7 after real GVS, whereas the change after 

sham GVS was small. When the changes over time were examined (slope), the overall 

decrease was steeper after real than sham GVS, but the difference was not significant (t-test 

for two independent samples, t = 1.19, P = 0.11). 

Figure 4 shows the pendulum test goniograms before, immediately at the end, and at 5 and 30 

min after sham and real GVS, indicating three different behaviors: flexor spasticity (patient 5, 

Fig. 4, top panel), low spasticity (patient 6, Fig. 4, middle panel), and pronounced extensor 

spasticity (patient 7, Fig. 4, bottom panel). 

A switch from tonic to phasic spasticity was found in patient 5, with the faster change after 

real than sham GVS. Patient 6 showed increasing number and longer duration of oscillations 

after real GVS. Patient 7 showed a gradual change from tonic to phasic extensor tone after 

real GVS, with the minimal change in the goniogram trace after sham GVS. 

Figure 5 shows the individual and group results for the PT score before, immediately at the 

end, and at 5 and 30 min after sham and real GVS. 

The PT score variably decreased in patients 1, 3, 4, 5, 6, and 7 at different time-points after 

real GVS, whereas at the comparative time points after sham GVS, it either decreased to a 

lesser degree (patient 5), remained about the same (patients 2, 3, 6, and 7), or even increased 

(patients 1 and 4). In patient 2, surprisingly, the PT score increased after real GVS. As a result 

of inconsistent changes in terms of the magnitude and timing among all patients, the overall 

difference in the PT score was not statistically significant between real and sham stimulation. 

 

Discussion 

 



 

The overall result of this study is that the spasticity (muscle hypertonia) in the thigh muscles 

did not change significantly between the real and sham GVS when examined across all seven 

patients with clinically com- plete SCI. The reason for this result lies in large inter- individual 

differences in response to GVS on both MAS and the PT score (Figs 3 and 5). A large 

variability of individual results may be because of spontaneous fluctuations of spasticity 

within and between the days, which makes the assessment complex (Biering-Sørensen et al., 

2006). To minimize these confounds, we performed all assessments in the same manner and 

at the same time of the day, used both real and sham GVS in an attempt to isolate the true 

effects, and followed the recommendation by Bajd and Vodovnik (1984) to have an interval 

of 15 s between two pendulum trials. Thus, the apparent inter- individual differences in 

responsiveness to GVS are more likely because of distinct features of spasticity and other 

characteristics of underlying SCI among the patients recruited for this study. Some of the 

differences are discussed below. 

In patient 7, the outcome measures suggest that real GVS reduced spasticity. Namely, MAS 

decreased for one point (from 3 to 2) immediately after GS and remained the same for 30 min 

(Fig. 3), the pendulum goniograms showed a gradual change from tonic to phasic extensor 

tone (Fig. 4), and the PT score was reduced (Fig. 5). In contrast, this was not found after sham 

GVS. Similarly, none to minimal changes after sham GVS were observed in patient 6, 

whereas the MAS score decreased by one point starting at 5 min after real GVS (Fig. 3), 

which was preceded by the decrease in the PT score starting immediately after real GVS (Fig. 

5). The goniograms for patient 6 (Fig. 4, middle panels) also provide supportive results. 

Another subset of patients showed a different pattern of results – reduced spasticity after both 

types of GVS. First, a comparably greater decrease in spasticity was seen in patient 5 after 

real than sham GVS. This patient showed a two-point versus a one-point drop on MAS (Fig. 

3), switch from tonic to phasic spasticity on the goniogram (Fig. 4), and a decrease in the PT 

score (Fig. 5) after sham and real GVS. The decrease in spasticity even after sham GVS may 

be associated with repeated knee joint excursions during the assessment. Indeed, repetitive 

movements may decrease stretch–reflex amplitude because of mechanical alterations in 

muscle structure (Hagbarth et al., 1985) and stretch–reflex habituation (Turpin et al., 2016). 

The remaining patients showed somewhat inconsistent results between different outcomes and 

real versus sham GVS, for example, no change in MAS, but a small yet progressive decrease 

in the PT score after real GVS (patient 3), or change in MAS accompanied by a similarly 

fluctuating pattern of changes in the PT score for both the real and sham GVS (patient 1). 

Our results support and extend the previous observations suggesting some degree of 



 

vestibulospinal preservation in cases of clinically complete (AIS-A) SCI. However, the 

reported changes in spasticity after GVS in two out of seven SCI patients reported here are in 

contrast to the lower prevalence of medium latency responses in the erector spinae muscles 

below the level detected by Iles et al. (2004) in only two of nine patients or the presence of 

vestibular-evoked myogenic potentials reported by Squair et al. (2016) in two of 16 AIS-A 

patients. Thus, the accumulated evidence is consistent with broader neuro-physiological 

observations suggesting traces of somato-sensory (Finnerup et al., 2004; Awad et al., 2015; 

Wrigley et al. 2018) and motor preservation (Sherwood et al., 1992; McKay et al., 2004; 

Dimitrijević et al., 2015; Mayr et al., 2016) is patients classified as having the AIS-A injury, 

which is also supported by the autopsy studies (Kakulas and Kaelan, 2015). 

Our results raise the question as to whether GVS may be used for treating the spasticity. 

Larger studies are necessary for defining the optimal set of parameters of GVS (intensity-

duration), distinguishing the responders from nonresponders, and assessing the duration of 

treatment effect. 

 

Conclusion 

The results of this preliminary sham-controlled cross- over study indicate that GVS may 

modify spasticity (muscle hypertonia) in selected patients with AIS-A SCI. 

This suggests that the vestibulospinal influences may be preserved below the level of 

clinically complete SCI. Future investigations should determine the clinical and 

neurophysiological profiles of responders vs. nonresponders and optimize parameters of GVS. 
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Fig. 1 A sketch of the instrumentation used in the study. The thigh and shank of the right leg 

were placed in a custom-built pendulum test apparatus. 

  



 

 

 

 

 

 

Fig. 2 An example of the goniogram and tachogram with the values used for the calculation of 

the pendulum test score. 

  



 

 

 

 

 

Fig. 3 MAS for sham (black bars) and real (white bars) GVS at different time-points for each 

patient individually and after averaging across the entire group. 

  



 

 

 

 

Fig. 4 Pendulum test goniograms in three patients recorded before (top row of each panel), 

immediately after (second row), and at 5 min (third row) and 30 min (fourth row) after sham 

(left panels) and real galvanic vestibular stimulation (right panels) indicating different patterns 

of spasticity (see text for details). 

  



 

 

 

 

Fig. 5 The pendulum test scores for sham (black bars) and real (white bars) galvanic 

vestibular stimulation at different time-points for each patient individually and after averaging 

across the entire group. 

 


