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Abstract 

  

Sintering of pure cordierite 2MgO:2Al2O3:5SiO2, and cordierite with addition of 5 mass % TeO2 

was studied. Green bodies were prepared from powder mixtures mechanically activated in a high 

energy planetary mill, shaped by uniaxial (20 MPa) and cold isostatic pressing (1000 MPa). The 

pressure-less sintering of these specimens was performed at 1350 °C for 1 h. High relative density 

over 95 % of theoretical value was obtained through solid-state reaction and pressure-less sintering 

of powder activated for 40 minutes, and for the first time reported in the literature. Phase 

composition and microstructures of sintered samples were determined by XRD and SEM, coupled 

with EDS mapping. The real part of the complex relative permittivity of the samples was measured 

at 200 MHz. The loss tangent of all samples was below the resolution of the measurement setup. 

A strong correlation between the relative permittivity and the density agrees with previously 

published data. 

Manuscript Click here to download Manuscript Manuscript.docx 
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Introduction 

 

Cordierite (2MgO·2Al2O3·5SiO2) based ceramics are widely used in various fields, e.g. as 

substrates for micro-electronic packaging industry and cookware, heat exchangers, glazes for floor 

tiles, etc. Owing to relative low dielectric constant (~ 5) and very low CTE (<2·10–6 °C–1), these 

ceramics are also well known by their good thermo-mechanical, chemical, and dielectric properties 

1–3. Due to their excellent resistance to the thermal shock they can be applicable as materials 

that are exposed to sudden temperature changes [4–8] and also as semi-conducting bearers [9, 10].  

Cordierite is difficult to sinter due to its very narrow sintering temperature range (1300–

1400 °C) [11]. Because a low temperature process is desirable, it is beneficiary to found functional 

aids which can allow easier process of sintering at lower temperature. The melting temperature of 

these additives should be lower than that of the precursors. In addition, the cationic radius should 

be larger than the radius of the metals in MAS to avoid the substitution into cordierite sites. 

Different components have been used as sintering aids, such as Cr2O3, ZrO2, K2O, TiO2, Bi2O3, 

MoO3, etc. [12, 13]. Also, TeO2 fulfils the theoretical criteria of large atomic radius (142 pm) and 

low melting temperature 733 °C), therefore the experimental study of its influence on sintering 

and electrical properties of cordierite ceramics is needed and desirable.  

Our previous study [14] shows that the mechanical activation of starting components 

(kaolin, quartz, magnesium oxide) has a significant impact on the decrease of the sintering 

temperature. It has been demonstrated that, compared to non-activated components, mechanically 

activated ones increase their energy due to induced crystal defects. During a mechanochemical 

treatment, several processes occur, such as attrition of the starting material, crystal lattice 

destruction, chemical reactions, the formation of various defects, etc. All of the mentioned 

processes increase the chance for reactions to occur at temperatures lower than usual [15]. 

Furthermore, mechanical activation could affect the final electrical characteristics; hence, it is very 

important to take into account and understand the changes that are introduced into the system 

during milling. 
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According to our best knowledge, there have been no attempts to investigate the effect of 

mechanical activation along with TeO2 addition, followed by pressure-less sintering for cordierite-

based ceramics and investigation of all those parameters on densification, and physical-chemical 

properties. The main objective of this work is to investigate the effects of the mechanical 

activation, TeO2 addition, and pressure-less sintering of cordierite-based material on its phase 

composition, microstructure, and electrical properties.   

 

Materials and methods 

 

Mixtures of MgO, Al2O3, SiO2, and TeO2 starting powders (all 99 % Sigma–Aldrich, p.a.) 

were used in these experiments. The mixtures of MgO+Al2O3+SiO2 in the 2:2:5 molar ratio, with 

and without the addition of 5 mass % TeO2, were mechanically activated by grinding in a high-

energy planetary ball mill (Fritsch Pulverisette 5). ZrO2 vessels and balls were used with the 

powder-to-balls mass ratio of 1:40. The milling process was performed in air for 10 and 40 

minutes. The samples were denoted as MAS–0, MAS–10, MAS–40, MAS–0–Te, MAS–10–Te, 

and MAS–40–Te (according to activation time, and TeO2 addition). 

The green bodies in the shape of cylinders (diameter 14 mm, height 4 mm) were prepared 

by uniaxial pressing at 20 MPa, followed by cold isostatic pressing at 1000 MPa. Sintering was 

performed at 1350 °C, with a heating rate of 10 °C min–1 and dwell time of 1 h. The apparent 

densities and the ratio of open porosity of sintered samples were determined by Archimedes 

method in distilled water (EN 623–2).  

The X-ray powder diffraction patterns were obtained using a Philips PW-1050 

diffractometer with λCu-Kα radiation and a step/time scan mode of 0.05 ° s–1. The measurements 

were performed at the room temperature in air atmosphere. 

The morphology of the sintered samples was characterized by the scanning electron 

microscopy (JEOL JSM-6390 LV). The samples were crushed and covered with gold in order to 

perform these measurements.  

Raman spectra of all powders, recorded in the 200–1100 cm–1 range, were collected with a 

LabRAM HR Evolution system which employed Cobolt Blues™ 473 nm solid state laser with 

power of 1 mW at the sample surface. All the measurements were realized using a spectrometer 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



4 

 

equipped with a grating having 1800 lines mm–1, a 100 x microscope objectives and acquisition of 

20 s/10 cycles. 

The measurements of the relative permittivity of the sintered samples, metallized on the 

top and bottom with silver, were performed using an Agilent E5061A network analyzer. The 

samples were placed in a coaxial chamber [16]. The reflection coefficient of the chamber was 

measured by the analyzer and the relative complex permittivity of the samples was extracted using 

electromagnetic models. 

 

Results and discussion 

 

The phase compositions of the non-activated and activated samples after the sintering 

process without addition of TeO2 are presented in Figure 1. The XRD pattern of the initial non-

activated sintered sample indicates that several phases – Mg2Al4Si5O18, SiO2, Mg2SiO4, α-Al2O3, 

and MgSiO3 – are present within MAS-0 sintered mixture. The formation of cordierite began even 

during the sintering of the starting mixture, although significant amounts of the starting phase SiO2 

and intermediate compound MgSiO3 are present. The phase MgSiO3 is no longer present in the 

sintered samples MAS-10 and MAS-40, which means that the intermediate compound reacted 

further and produced increased amounts of cordierite (from 63.6 % for MAS-10 to 69.8 % for 

MAS-40) and decreased amounts of Mg2SiO4 and Al2O3 phases (from 17.1 % for MAS-10 to 13 % 

for MAS-40, and 5.6 % for MAS-10 to 2.4 % for MAS-40, respectively). The diffraction patterns 

of the activated and sintered samples, besides well crystallized sharp peaks of cordierite, show 

small amount of ZrSiO4 (approx. 2.5 %) due to the high-energy ball milling in ZrO2 jar with balls 

made of the same material. 

 

Figure 1. XRD patterns of sintered MAS-0, MAS-10, and MAS-40 samples. 

 

 

 

The phase compositions of the non-activated and activated samples with addition of TeO2 

after the sintering process are presented in Figure 2. All phases that are present in the sintered 

mixture MAS-0, are detected in the mixture MAS-0-Te as well, with the presence of some TeO2, 
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namely in the sample MAS-40-Te. Also, the presence of ZrSiO4 phase is identified in the activated 

and sintered samples, along with the absence of the intermediate compound MgSiO3, present only 

in the non-activated sintered mixture. The only difference with respect to the sintered mixtures 

without TeO2 is the absence of SiO2 phase in the MAS-40-Te sample. The identification of the 

obtained reflections was carried out using JCPDS cards (075-1439 for cordierite, 082-1403 for 

SiO2, 089-1625 for Mg2SiO4, 081-2267 for α-Al2O3, 011-0273 for MgSiO3, 083-1375 for ZrSiO4, 

and 052-1005 for γ-TeO2). 

 

Figure 2. XRD patterns of sintered MAS-0-Te, MAS-10-Te, and MAS-40-Te samples. 

 

Values of the apparent densities and ratio of open porosity of the sintered samples, 

determined by Archimedes method, are given in Table 1. The lowest density is obtained for the 

non-activated sample with TeO2 addition (2.21 gcm-3), while the highest value is obtained for the 

sample activated for 40 minutes and sintered without TeO2 (2.60 gcm-3), which makes it very 

dense. According to literature data, there are many papers dealing with dense cordierite ceramics. 

A recent paper by D. Redaoui et al. reports samples with apparent density 2.50 gcm-3 obtained 

from naturally occurring clay minerals, milled for 20 hours in wet media, calcined for 24 h, and 

then sintered at 1250 °C 17, and Neto&Moreno reported even the density 2.58 gcm-3 for 

cordierite ceramics obtained for samples produced from mechanically activated 

kaolin/talc/alumina powders and sintered at 1350 °C for 1 h [18]. In this regard the density of the 

ceramics obtained in this work is according to our best knowledge the highest density reported for 

cordierite based ceramics obtained after mechanical activation and pressure-less sintering. 

Moreover, these samples did not contain open pores (see Table 1) so we have reached the relative 

density above 95 % of theoretical density of this composition [19]. The densities of the sintered 

samples with TeO2 are slightly lower with respect to the samples without it, anyway also the doped 

sample activated for 40 minutes reached high apparent density (2.56 gcm-3) together with minimal 

content of open pores. Due to its low melting point (733 °C), TeO2 should serve as a transient 

liquid-phase sintering aid [20] in the initial and intermediate sintering stage and due to its low 

boiling point (1250 °C) evaporate from the sample before reaching the final sintering stage. For a 

better evaluation of the proposed transient liquid-phase sintering mechanism the use of different 

TeO2 concentration would be necessary. 
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Table 1. Apparent density and relative open porosity of sintered samples. 

 

A scanning electron micrograph, along with EDS mapping of the sintered sample MAS-0 

is presented in Figure 3. During the sintering of the non-activated powder, formation of irregularly 

shaped pores is noticed, although there are some parts where spherical pores are visible as well. 

Uneven phase distribution is present, along with sintered particles that were not part of 

agglomerates in the initial powder. 

 

Figure 3. a) SEM, b) EDS mapping of MAS-0 sintered sample. 

 

Prolonged activation for 40 minutes, followed by sintering, led to a completely sintered 

and dense sample, with a homogeneous structure, presented in Figure 4. The mapping image 

indicates an even and homogeneous phase distribution. No spherical (closed) pores are detected, 

indicating very high relative density of the sample. 

 

Figure 4. a) SEM, b) EDS mapping of MAS-40 sintered sample. 

 

Contrary to the MAS-0 sample, sintering of MAS-0-Te sample showed melting and 

formation of a liquid phase during the sintering regime. The micrograph presented in Figure 5 

indicates parts of the microstructure where some sintered powder particles are coated with the 

liquid phase, which enables process of mass transport. The mapping shows that Te is distributed 

along the grains of the sintered material, either as the residual TeO2 or dissolved in the matrix.  

 

Figure 5. a) SEM, b) EDS mapping of MAS-0-Te sintered sample. 

 

Finally, continual parts that are well sintered are visible within the sintered sample 

activated for 40 minutes with addition of TeO2, as seen in Figure 6. Besides, a porous structure is 

still present, with contact necks that are strengthened during sintering. This microstructure 

indicates the final sintering stage due to the presence of the closed porosity (see Table 1). The 

microstructure of the initial powder activated 40 minutes with TeO2, was non-uniform and 
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sintering of that kind of a structure leads to formation of non-uniformly shaped pores. TeO2 phase 

remains on the grain boundaries, while the part of the liquid phase remains within the sintered 

sample.  

 

Figure 6. a) SEM, b) EDS mapping of MAS-40-Te sintered sample. 

 

Figure 7 presents Raman spectra of cordierite-based ceramics in the range of wavenumbers 

of 200–1100 cm–1. Beside cordierite peaks, in the Raman spectra of the non-activated sintered 

samples peaks of SiO2 (cristobalite), Mg2SiO4 (ringwoodite), MgSiO3 (enstatite), and Al2O3 are 

also pronounced [21–24], which is in a good accordance with the results obtained using XRD 

measurements (see Figures 1 and 2). From the Raman spectra, it can be assumed that there is also 

a possible existence of MgAl2O4 in the samples, but the fact that major lines of this spinel overlap 

with lines of some other present phases, especially with the most intensive lines of the SiO2 and 

Al2O3, impedes precise assessment [24]. The presence of MgAl2O4 phase wasn’t explicitly 

detected using XRD measurement, but the overlapping of its diffractions with Mg2SiO4 

diffractions could influence the XRD estimations to some extent, as well. The Raman spectra 

pointed out that the share of mentioned non-cordierite phase’s decreases with the activation time, 

which is followed by the increase in amount of cordierite. The influence of the mechanical 

activation is most visible in decrease of the reflections at 230 cm–1 and 416 cm–1, relative to the 

strongest cordierite peak. The change is prominent even for the sample activated for 10 minutes, 

and is more pronounced with prolonged activation time. The position of the peak assigned to the 

superposition of the strongest lines of SiO2, Al2O3 and MgAl2O4 phases is shifted towards lower 

frequencies, from 416 cm–1 to 407 cm–1, with the increase of the activation time. The strongest 

cordierite peak indicates the existence of the orthorhombic modification of Mg-cordierite phase, 

present in spectra of the non-activated sintered samples. The existence of that modification is 

manifested in clearly visible asymmetry of the strongest peak and its partial splitting, where the 

line at  564 cm–1 occurs along with the shoulder on the side of higher frequencies (575–585 cm–

1) [25]. That trend is more noticeable in the samples with TeO2 addition. The appearance of the 

asymmetry and splitting of the cordierite peak is related to Al–Si ordering within the cordierite 

structure (with bending vibration of T26, T21, and T23 units), as well as with simultaneous 

stretching vibrations of the M and T26 sites in the structure [26]. The asymmetry is markedly 
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reduced for prolonged activation time and cordierite peaks can be assigned predominantly to the 

hexagonal modification in these samples.  

 

 

Figure 7. Raman spectra of sintered samples MAS-0, MAS-10, MAS-40, MAS-0-Te,  

MAS-10-Te, and MAS-40-Te (C – cordierite, E – enstatite MgSiO3, RW – ringwoodite  

Mg2SiO4, A – alpha-Al2O3, SiO2 – cristobalite, S – spinel MgAl2O4, and Z – ZrSiO4). 

 

Although the origin of peaks at  703 cm-1 and  901 cm-1 in non-activated sintered 

samples is not known precisely, it is assumed that the first one could be assigned to the existence 

of (O-Al-O) vibrations, while the other one corresponds to Si-O-Si (Al) vibrations [27]. Two 

most intensive lines of TeO2 phase contribute to the peaks at  226 cm–1 and 660 cm–1, in samples 

with TeO2 addition. With the extended activation time, the presence of ZrSiO4 peak at  354 cm-1 

is noticed, so we concluded that this phase is also present within the peaks at 438 cm-1 and 

1006 cm-1, although those peaks dominantly originate from the cordierite phase. 

The results for the real part of the complex relative permittivity (dielectric constant) of the 

samples, measured at 200 MHz, are shown in Table 2. The loss tangent for all samples was very 

small, below the resolution of the measurement setup (< 0.005). 

 

Table 2. Real part of complex relative permittivity of sintered samples. 

 

There is a strong correlation between the relative permittivity and the density (resp. residual 

porosity), which agrees with our previous results [28, 29], when the relative permittivity follows 

the trend of the density changes (see Table 1). Furthermore, if we compare the changes in densities 

with the activation time, an increase of the density with the prolonged milling time is noticed, 

owing to a lower porosity and a more compact structure which is observed as changes in the 

microstructures (see Figures 3–6). This suggests that the higher density and the homogeneity of 

the morphology are dominantly responsible for the higher permittivity of the samples. The better 

packaging the starting powder, of activated and hence more reactive particles, facilitated sintering. 

Strengthening of grain boundaries occurred, and consequently the relative density increased [29]. 

According to available physical models, porous materials exhibit similar dielectric characteristics 
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as composites, where the porosity (air) is considered to be one of their components [30]. Figure 8 

shows results from three sets of measurements of cordierite-based ceramics. The data are clustered 

around the fitting curve for mixtures (logarithmic linear approximation of the Lichtenecker’s 

model) [31], given by 
maxmaxr

r

ln

ln









, where the relative permittivity of one component (air) is 1, 

and 6maxr   is the relative permittivity of the second component at the highest density (when no 

open porosity is present) max = 2.6 gcm-3. Note that maxr  and max are our estimates, because 

reliable data were not available in the literature. This model was selected because it gives a better 

prediction of permittivity of multi-phase materials than other models (e.g., Maxwell-Garnett) [32]. 

 

Figure 8. Measured relative permittivity as a function of density, along with logarithmic fitting 

curve. The first set of samples is from [28] and the second set is from [29].  

 

 

Conclusions 

 

In the present study, cordierite-based ceramics materials were prepared using mechanical 

activation followed by pressure-less sintering. The phase composition, microstructure, and electric 

properties of the bulk materials were characterized systematically. The most important conclusions 

are: 

(1) Pressure-less sintering of investigated powders leads to cordierite formation. The 

formation of cordierite began even during the sintering of the non-activated starting 

mixture, with SiO2 and MgSiO3 phases. The phase MgSiO3 is no longer present in the 

sintered samples MAS-10 and MAS-40, meaning that the intermediate compound 

reacted further and produced increased amounts of cordierite. MAS-10 and MAS-40 

sintered samples, besides well crystallized sharp peaks of cordierite, show small 

amount of ZrSiO4 due to the contamination during high-energy ball milling. The phase 

composition of sintered samples with TeO2 remains, but the presence of TeO2 is 

noticed. Raman analysis confirmed that the share of non-cordierite phase’s decreases 

with the activation time, which is followed by the increase in cordierite amount, where 
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for prolonged activation time cordierite peaks can be assigned predominantly to the 

hexagonal modification. 

(2) The lowest density of 2.21 gcm-3 is obtained for the non-activated sample with TeO2 

addition, whereas the highest value of 2.60 gcm-3 is obtained for the sample activated 

for 40 minutes and sintered. According to authors’ best knowledge, it is the highest 

reported density of cordierite based ceramics obtained after mechanical activation and 

pressure-less sintering. The absence of open porosity indicates the value of relative 

porosity over 95 %. The densities of the sintered samples with TeO2 were slightly lower 

with respect to the samples without it, anyway also the doped sample activated for 40 

minutes reached high apparent density (2.56 gcm-3) together with minimal content of 

open pores. For a better understanding of transient liquid-phase sintering mechanism 

the systems with different TeO2 concentrations will be studied.  

(3) The microstructures showed homogeneous phase distribution of dense MAS-40 sample 

with no open porosity present, indicating that final sintering stage was reached. The 

density has the dominant influence on the dielectric permittivity (lowest value 4.96 was 

obtained for MAS-0-Te sample, and 5.55 is for MAS-40 sample) with a loss tangent 

below 0.005. 
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Table 1. Apparent density and relative open porosity of sintered samples 

 

Sample Apparent density 

(g/cm3) 

Relative open porosity  

(vol. %) 

MAS-0 2.45 10.8 

MAS-10 2.32 12.0 

MAS-40 2.60 0.0 

MAS-0-Te 2.21 18.5 

MAS-10-Te 2.29 13.5 

MAS-40-Te 2.56 0.5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



15 

 

 

Table 2. The real part of complex relative permittivity of sintered samples 

 

Sample εr' 

MAS-0 5.24 

MAS-10 4.99 

MAS-40 5.55 

MAS-0-Te 4.96 

MAS-10-Te 4.96 

MAS-40-Te 5.54 
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Figure Captions 

 

Figure 1. XRD patterns of sintered MAS-0, MAS-10, and MAS-40 samples. 

Figure 2. XRD patterns of sintered MAS-0-Te, MAS-10-Te, and MAS-40-Te samples. 

Figure 3. a) SEM, b) EDS mapping of MAS-0 sintered sample. 

Figure 4. a) SEM, b) EDS mapping of MAS-40 sintered sample. 

Figure 5. a) SEM, b) EDS mapping of MAS-0-Te sintered sample. 

Figure 6. a) SEM, b) EDS mapping of MAS-40-Te sintered sample. 

Figure 7. Raman spectra of sintered samples MAS-0, MAS-10, MAS-40, MAS-0-Te, MAS-10-

Te, and MAS-40-Te (C – cordierite, E – enstatite MgSiO3, RW – ringwoodite  Mg2SiO4, A – 

alpha-Al2O3, SiO2 – cristobalite, S – spinel MgAl2O4, and Z – ZrSiO4). 

Figure 8. Measured relative permittivity as a function of density, along with logarithmic fitting 

curve. The first set of samples is from [28] and the second set is from [29].  
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