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Abstract: 

Radiolabeled nanoparticles (NPs) are finding an increasing interest in a broad range of 

biomedical applications. They may be used to detect and characterize diseases, to deliver 

relevant therapeutics and to study the pharmacokinetic/pharmacodynamic parameters of 

nanomaterials. The use of radiotracer techniques in the research of novel nanoparticles offer 

many advantages but there are still some limitations. The binding of radionuclides to 

nanoparticles has to be irreversible in order to prevent their escape to other tissues or organs. 

Due to the half-life of radionuclides, the manufacturing process is time-limited and difficult, 

and there is also a risk of contamination. This chapter present the main selection criteria for 

radionuclides and applicable radiolabeling procedures used for the radiolabeling of various 

nanoparticles. Also, an overview of different types of NPs that have so far been labeled with 

radionuclides is presented. 
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6.1 Introduction 

Nuclear medicine is a branch of medicine that uses radiation to provide information about the 

functioning of a person's specific tissue/organs or to treat a disease. Radiolabeled 

nanoparticles (NPs) represent a new class of agents with a great potential for nuclear 

medicine applications. The key advantage of using radiolabeled NPs is that a very small 

amount can allow to obtain information of great importance [1]. They may be used to detect 

and characterize disease, to deliver relevant therapeutics and to monitor the therapeutic effect 

as well. Furthermore radiotracer-based imaging either using single-photon emission 

computed tomography (SPECT) or positron emission tomography (PET) is particularly suited 

in the study of pharmacokinetic/pharmacodynamic parameters of nanomaterials and 

determination of their optimal nanodimensional architecture for tissue/organ regeneration. 

Measuring radiation from radioactive tracers attached to nanoparticles has been demonstrated 

to be a highly sensitive and specific method that allows accurate quantification, without limits 

to tissue penetration in any organ. Nuclear imaging approaches are very suitable for detection 

since they offer a high detection sensitivity at high temporal and spatial resolutions requiring 

a radionuclide concentration of around 10
-10 

M at the site of interest. 

Nanoparticulate agents typically demonstrate pharmacokinetic behavior different 

from that of small molecules [2] and provide flexible platforms for integration of multiple 

functional entities, including targeting ligands, multiple types of contrast materials and/or 

therapeutics. In contrast to traditional compounds used for radiopharmaceutical preparation, 

nanomaterials have an immense available surface area per unit of volume and tunable optical, 

electronic, magnetic, and biological properties. Generally, they can be tailored to meet the 

needs of specific applications and engineered to have different physicochemical properties 

that affect in vivo biodistribution: sizes, shapes, chemical compositions, surface chemical 

characteristics, and hollow or solid structures [3]. Efficient diagnosis/radiotherapy is provided 

http://www.world-nuclear.org/information-library/safety-and-security/radiation-and-health/radiation-and-life.aspx


  

through passive targeting based on the enhanced permeability and retention (EPR) effect 

(Fig. 1) and/or active targeting through incorporating a targeting moiety on a nanoparticle. 

Non-targeted NPs can accumulate in tumors since the tumor vasculature is usually leaky and 

without lymphatic drainage. Active targeting is achieved by functionalizing the NPs surface 

with suitable vectors including peptides, antibodies and other biomolecules, which recognize 

characteristic epitopes at the surface of the diseased cells. 

 

Figure 1. Passive targeting: reconstructed PET/CT imaging in Balb/c mice with 
68

Ga-

DOTA–polyamido-amine dendrimer acquired 1 h post administration; (a) the kidneys and 

urinary bladder in normal mice; (b) tumor uptake localized in the tumor-bearing mouse. 

(Reproduced with the permission of the Elsevier) [4] 

 

Radiolabeled antibodies may effectively target even single cancer cells in circulation 

[5] or small cancer cell clusters [6], thereby enabling a more specific radiation dose delivery, 

preventing damage to healthy tissues.  

 

6.2 Radiolabeling of nanoparticles: selection of radionuclides and optimization of the 

radiolabeling procedure  

Several key issues need to be addressed for the selection and application of radionuclides for 

the radiolabeling of NPs. In contrast to NPs production, the radiolabeling process is time-

limited and difficult because of the contamination risk. The handling of radionuclides has to 

be carried out in specially designed radiochemical laboratories with controlled ventilation and 

air conditioning, shielded remote handling facilities, and special equipment intended for the 

measuring of the radioactivity of the selected radionuclide.  There are two main methods for 

the fabrication of radionuclides: using a nuclear reactor or using a particle accelerator. These 



  

methods are complementary in providing a wide variety of radionuclides for the application 

in medicine and research (Fig. 2.).  

 

Figure 2. Radionuclides for the radiolabeling of nanoparticles. 

 

The ability to access radionuclides without the use of onsite accelerators or reactors 

depends on the availability of generator-produced radionuclides in which the parent 

radionuclide is produced from a reactor or cyclotron. A generator is a device that is used to 

extract one radionuclide from another. Molybdenum-99 (
99

Mo)/technetium -99m (
99m

Tc) 

generator is especially popular and very convenient. The differences in the half-lives and 

chemical properties of 
99

Mo (half-life 66 h) and 
99m

Tc (half-life 6 h) are exploited to separate 

them in the generator. This procedure can be repeated many times providing a nearly 

continuous supply of radionuclides at a low cost. Germanium-68/gallium-68, strontium-

82/rubidium-82 and tungsten-188/rhenium-188 are newly developed generators. 

 The selection criteria for radionuclides must be based on the physical data about the 

radionuclide and biological variables governing their use. The considerations for physical 

characteristics include the physical half-life, type of emissions, energy of the radiation(s), 

daughter product (s), method of production, and radionuclide purity. The biochemical aspects 

include tissue targeting, the retention of radioactivity in the organ/tissue, in vivo stability, and 

toxicity.  

 Diagnostic radionuclides are generally short-lived radionuclides capable to provide 

the necessary information on biodistribution, dosimetry, and the limiting or the critical organ 

or the tissue. Radionuclides for SPECT imaging decay by the emission of high-energy 

photons (), while PET radionuclides decay by emission of positrons (+). The selection of 

appropriate therapeutic radionuclides that emit α- or β- particles depends upon the nature, the 



  

extent, and stage of disease. These types of particulate radiations allow very high ionisation 

per length of travel. Therefore, they are fully deposited within a small range of tissue (usually 

in mm). The longer range of beta particles can still permit uniform tumor irradiation despite a 

possible heterogeneity of distribution of radioactivity within the tumor. Therapeutic 

radionuclides which also decay with γ-radiation can be advantageous if the energy and 

intensity are within the diagnostic range, as it provides the ability to visualize distribution of 

the radiolabeled NPs [7]. 

 The physical half-life of radionuclide plays a crucial role for measurements in the 

desired time frame, and it has to be considered which radionuclide or half-life, respectively, 

are suitable for the investigated question and pharmacokinetic profile. For measurements 

within a short (initial) time frame after intravenous administration, short-lived PET 

radionuclides have been applied, e.g., fluorine-18 (half-life 109.7 min), gallium-68 (half-life 

67.7 min) or even nitrogen-13 (half-life 9.97 min) [8]. Oppositely, if the half-life is too short, 

most decay will occur before the radiolabeled NPs targeting has reached the maximum tissue 

accumulation.  

 The major requirements of the radiolabeling procedure are that the labeling process 

does not significantly alter the structure or properties of the NPs and that the stability of 

radiolabeled product is sufficient to allow further in vivo tracking. Once the radiolabeling 

method for the selected radionuclide and NPs type is optimized, the radioactive part may be 

used not only to track nanoparticles but also for radiodiagnosis or radiotherapy.

 

Figure 3. Radiolabeling of nanoparticles. 

 

Depending on the radionuclide and the composition and structure of NPs, two 

approaches may be applied for efficient radiolabeling (Fig. 3): direct radiolabeling, mostly 



  

via nucleophilic/electrophilic labeling and coordination chemistry, or indirect radiolabeling, 

via a chelator or a complexing agent, which requires additional synthetic steps. Furthermore, 

radionuclides are possible to attach to whole particles synthesized in advance (post-synthesis 

approach), or they can be entrapped in nanoparticles during the synthesis (pre-synthesis 

approach). 

 The convenience, efficiency, and gentleness of radiolabeling procedures are some of 

the requirements that have to be met by radiolabeling methods. The binding of radionuclides 

to a nanoparticle has to be irreversible in order to prevent them to escape to other tissues or 

organs. Careful in vitro experiments for measuring the stability of radiolabeled NPs (mostly 

in serum) are generally required prior to in vivo studies. The biodistribution patterns of 

radiolabeled nanoparticles do not seem to be crucially affected by the radiolabeling approach. 

In general, radiolabeled NPs are excreted into the urinary tract via the kidneys and they 

mostly accumulate in the reticuloendothelial tissues, liver and spleen, due to the substantial 

uptake by the macrophages that are present in these organs. If they agglomerate and the size 

is relatively large, in range of micrometers, the highest uptake after intravenous 

administration occurs in the lungs [9]. 

6.2.1 Radiolabeling with gamma-emitting radionuclides  

Technetium-99m (
99m

Tc), indium-111 (
111

In), gallium-67 (
67

Ga) and iodine-125 (
125

I), are the 

most commonly used gamma-emitting radionuclides for NPs radiolabeling. These 

radionuclides emit single photons detected by a gamma camera that can view organs from 

many different angles.  

6.2.1.1. Radiolabeling with 
99m

Tc 

Radiolabeling with
 99m

Tc (half-life 6 h) accounts for about 80% of all nuclear medicine 

procedures worldwide.
 
This can be attributed to its ideal physical properties, such as its half-

life that allow for prolonged in vivo imaging and γ-photon single-energy emission at 140 keV, 



  

which are beneficial for effective imaging. The chemical form of 
99m

Tc occurs as 
99m

Tc-

pertechnetate
 
(

99m
TcO4

−
). In a chemical reaction, it is necessary to reduce its oxidation state to 

a lower value. Stannous chloride (SnCl2) is the most often used reducing agent. The direct 

method of 
99m

Tc-labeling of NPs is based on the fact that the reduced 
99m

TcO4 reacts with 

random groups such as hydroxyl, carboxylic, amino groups, etc. present on the surface of the 

NPs. A direct labeling method was used to label hydroxyapatite nanoparticles  (HApNP) 

[10], as well as astaxanthin-loaded solid lipid nanoparticles. The direct nose-to-brain delivery 

of the 
99m

Tc-labeled lipid NPs was evident by gamma scintigraphy imaging, suggesting their 

potential use for various neurological diseases [11]. Tassano et al. developed another direct 

labeling procedure via a tricarbonyl precursor [
99m

Tc(H2O)3(CO)3]
+
 for radiolabeling 

dendrimers [12]. This method has been proven to be effective for labeling various ligands, 

such as ethylendiamine-N,N′-diacetate, which have significant tumor uptake exclusively by 

passive targeting [13]. NPs loaded with these compounds have higher probability for tumor 

uptake. 

 Radiometals, both diagnostic (
64

Cu, 
68

Ga, 
89

Zr) and therapeutic (
90

Y and 
177

Lu) are 

best attached to NPs via chelation. The indirect chelator-mediated 
99m

Tc-labeling of NPs has 

been applied to a variety of NPs structures [14]. Helbok et al. performed efficient 

radiolabeling of PEGylated cholesterol liposomes and micelles via an acyclic 

diethylenetriaminepentaacetic acid (DTPA) chelator [15]. Also, PEG-liposomes can be 

labeled relatively easily and stably with 
99m

Tc after liposome synthesis, using a procedure 

which includes the conjugation of 
99m

Tc to hexamethyl propyleneamine (HMPAO) [16] or 

hydrazino nicotinamide (HYNIC) [17] followed by their encapsulation into liposomes. The 

HYNIC-based method provides 
99m

Tc-labeled liposomes with a high labeling yield (>95%) 

and improved in vitro and in vivo characteristics compared to the liposomes labeled via 

99m
Tc-HMPAO.

 
Chitosan hydrogel NPs loaded with a vascular endothelial growth factor (a 



  

potent angiogenic factor) were efficiently labeled with 
99m

Tc via a DTPA chelator. The 

quantitative imaging with 
99m

Tc-chitosan nanoparticles has been demonstrated to be a 

valuable strategy that can be combined with an angiogenic therapy to customize the treatment 

of myocardial ischemia [18]. Mercapto-acetyl-triglycine (MAG3) has been applied to 

facilitate radiolabeling of morpholinos [19]. Meso-2,3-dimercaptosuccinic acid (DMSA) is 

also a suitable ligand that forms complex compounds with 
99m

Tc, 
186

/
188

Re,, 
166

Ho, 
177

Lu and 

90
Y. DMSA enables bidentate bindinding via two sulfur atoms on silver nanoclasters (Fig. 4.) 

and additional radiolabeling is possible via the binding of radiometals to DMSA [20].  

 

Figure 4. Bidentate-binding of meso-2,3-dimercaptosuccinic acid on silver nanoclusters. 

(Reproduced with the permission of the Elsevier) [20] 

 

In some chelating systems it is possible to apply a theranostic approach by 

substituting the diagnostic radionuclide with a therapeutic one, whereas the chelator and the 

nanodimensional structure remain. Due to the similar chemical properties of 
99m

Tc for 
188

Re, 

the labeling procedure is based on the similar complexation chemistries of two radionuclides 

with the same vector. 

Further studies on indirect NPs 
99m

Tc-labeling may include the investigation of novel 

ligands, such as diamino dioxime ligands that form a neutral and lipophilic complex with 

99m
Tc. The specified ligand and those that are chemically similar to it pass easily through the 

intact blood brain barrier. Accordingly, they have a high potential in cerebral perfusion 

imaging [21]. Iron oxide nanoparticles (IO-NPs) may be labeled with a variety of diagnostic 

and therapeutic radionuclides via direct and indirect, chelator-based radiolabeling techniques. 

The 
99m

Tc-labeled aminosilane-coated IO-NPs may be promising candidates for guided 

cancer diagnosis and magnetic hyperthermia therapy. Targeting is enabled via the 



  

conjugation with a new peptide-based Arg-Gly-Asp (RGD) derivate, which has a high 

affinity and selectivity for the ανβ3 integrin receptor presented in several tumors. The 

specific character of 
99m

Tc-NPs-RGD was confirmed in a receptor blocking study, in which 

the co-administration of an excess amount of the native peptide blocked an experimentally 

induced U87MG tumor (with an over-expression of the ανβ3 receptors). This resulted in a 

significantly reduced uptake of 
99m

Tc-NPs-RGD, indicating the specific character of the 

targeted IO-NPs (Fig.5.) [22].  

 

Figure 5. Active targeting: representative planar γ images of 
99m

Tc-NPs-RGD (non-blocked 

(A) and blocked (B)) of a U87MG tumor bearing mouse at 1h p.i. (Reproduced with the 

permission of the Elsevier) [22] 

 

6.2.1.2. Radiolabeling with 
111

In 

Indium-111 (
111

In), is a readily available gamma-emitting radiometal, which is widely used in 

clinical practice for diagnosis [23]. Several methods for the radiolabeling of NPs are 

described in the literature, involve their conjugation with a chelate. The coupling of 
111

In to 

NPs can be achieved by chelating molecules like DTPA or DOTA, which are conjugated to 

the polymers as in the case of 
111

In-DTPA-PEG-b-PCL micelles. Polyethylene glycol (PEG) 

is an artificial but biocompatible hydrophilic polymer that has been widely applied for NPs 

coating. The radiotracer method has been used to prove that it is possible to use PEG 

derivatives as tumor imaging carriers. After 
111

In-labeling via DTPA, in vivo biodistribution 

studies demonstrated an increased tumor uptake and a prolonged circulation half-life with the 

increase of the molecular weight of PEG [24]. NPs that degrade and radionuclides that detach 

or are released from the NPs can cause artifacts. Dual radiolabeling using gamma emitters 

with different energy spectra incorporated into the core and coating may be used as a general 



  

methodology for a wide range of engineered NPs for the visualization of the degradation 

process of NPs in vivo. In order to label the core, 
111

In-doped iron oxide NPs were 

encapsulated inside poly(lactide-co-glycolide) nanoparticles (PLGA-NPs) during the 

preparation. The bovine serum albumin coating was labeled by electrophilic substitution 

using 
125

I. Imaging revealed different fates for the core and coating, with a fraction of the two 

radionuclides co-localizing in the liver and lungs for long periods of time after 

administration, suggesting that NPs are stable in these organs [25]. The conjugation of 

chelating agents to nanoparticles could affect their biodistribution. The attachment of such a 

chelate could alter the corona of the micelles and, consequently, their biodistribution and 

pharmacokinetics. Similarly to other radionuclides, 
111

In may also be entrapped in the 

micellar core during the formation of micelles without the need for any chemical 

modification [26].  

 Polymeric micelles (Lactosome) were labeled via 1,4,7,10-tetraazacyclododecane-

1,4,7,10-tetraacetic acid (DOTA) with 
111

In and 
90

Y for SPECT imaging and radiotherapy, 

respectively. Biodistribution studies revealed that 
111

In-DOTA-Lactosome was selectively 

accumulated in the tumor site of mice due to the EPR effect. The anti-tumor therapeutic 

effect of 
90

Y-DOTA-Lactosome was observed depending on the dose frequency and amount 

[27]. 

6.2.1.3. Radiolabeling with 
67

Ga 

Gallium-67 (
67

Ga) is a cyclotron-produced radiometal used for the imaging and localization 

of inflammatory lesions (infections). To get a better insight into the transport mechanism of 

peptide-conjugated NPs to tumors, bombesin (BBN) peptide-functionalized gold 

nanoparticles (AuNPs) were indirectly labeled with 
67

Ga and in vivo biological studies of 

67
Ga-labeled AuNPs in human prostate tumor-bearing mice were performed. In the case of 

67
Ga, the DTPA derivatives are unable to provide a stable coordination of 

67
Ga with AuNPs. 



  

Therefore, 
67

Ga-labeling was pursued via DOTA-containing AuNPs. For intravenous 

administration, the receptor-mediated pathway appears to be outweighed by the EPR effect 

while for the intraperitoneal administration, it has been concluded that the gastrin-releasing 

peptide receptor-mediated mechanism plays a role in pancreas uptake [28]. 

6.2.1.4. Radiolabeling with radioisotopes of iodine  

Isotopes of iodine have been extensively used in clinical nuclear medicine imaging and 

radiation therapy. Out of 37 known isotopes of iodine, four - 
123

I, 
124

I, 
125

I, and 
131

I - are 

suitable for SPECT or PET imaging. With a 60-day half-life, -emitter 
125

I is useful for the 

long-term tracking and imaging of radiolabeled NPs. 
131

I (half-life 8 d) is a strong gamma 

emitter, but due to its mode of beta decay, it is used for beta therapy, commonly in treating 

thyroid cancer. Dual-purpose theranostic radionuclides, e.g. 
131

I, or the pair 
124

I/
131

I can be 

used for imaging followed by therapy using the same radiolabeling procedure. 

 The traditional radiolabeling method with iodine radioisotopes is nucleophilic halogen 

exchange based on chloramine-T-oxidation (referred to as the Iodogen method) by direct 

radioiodination or by using prosthetic groups, such as tyrosine residues of proteins [29]. Tang 

et al. synthesized a SPECT/MRI/optical trimodality probe by labeling fluorescent silica-

coated IO-NPs with 
125

I using the Iodogen oxidation method. A radioactive probe was used to 

label mesenchymal stem cells (MSCs) and quantitatively track their migration and 

biodistribution in ischemic rats [30].  

 The radio-tracer technique has been demonstrated to be a relevant approach to the 

study the biodistribution of fullerenes (C60). Although watersoluble C60 derivatives 

(polyhydroxylated fullerene C60(OH)n) were successfully radiolabeled with different 

radiotracers, including 
67

Ga, 
99m

Tc, 
125

I or 
14

C, similar studies have not been performed with 

nano C60. The study of Nikolic et al. [31]
 
described for the first time the efficient 

125
I-labeling 

of the solvent exchange-produced C60 nanoparticles based on the intercalation of 
125

I into 

https://en.wikipedia.org/wiki/Beta_decay


  

fullerene crystals during the colloid preparation. Fullerene molecular crystals are filled with 

THF molecules, but Na
125

I ion pairs are also entrapped, much more in the case when Na 
125

I 

was added during than after the C60 dissolution (Fig. 6).  

 

Figure 6. The proposed structure of radiolabeled C60 containing Na
125

I ion pair intercalated 

in its crystalline lattice. (Reproduced with the permission of the IOP Science) [31] 

 

The labeling of particles after the preparation usually requires some chemical 

modification. HApNPs were modified with aminopropyltriethoxysilane to introduce amino 

groups on the surface of hydroxyapatite for effective radioiodination [32]. Labeling without 

any modification achieved by adding the oxidizing agent chloramine T in situ during the 

formation of HAp resulted in the reproducible high labeling yield of 
125

I-labeled HAp [33]. 

6.2.2 Radiolabeling with PET radionuclides  

Fluorine-18 (
18

F, half-life 109.8 min), copper-64 (
64

Cu half-life 12.7h), iodine-124 (
124

I), 

gallium-68 (
68

Ga, half-life 68 min) and zirconium-89 (
89

Zr, half-life 78.4 h) are positron 

emitting radionuclides mostly used for PET functional imaging. Compared to SPECT 

imaging, PET imaging may offer increased accuracy, higher sensitivity, and better resolution 

[34]. PET is a more recent development in medicine and it uses radionuclides produced in a 

cyclotron. A cyclotron is a type of particle accelerator in which charged particles accelerate 

outwards from the centre along a spiral path. Limitations to the widespread use of PET arise 

from the high costs of cyclotrons needed to produce the short-lived radionuclides for PET 

scanning; the need for a specially adapted on-site chemical synthesis apparatus for 

radiolabeling; and a PET imaging facility in close proximity to the cyclotron due to the short 

half-life of most positron-emitting radionuclides. Furthermore, liposomes and some other 

NPs are the products of multiple steps which require a much longer process related to the 

half-lives of commonly used positron emitter nuclei. Thus, labeling methods in which 

https://en.wikipedia.org/wiki/Cyclotrons
https://en.wikipedia.org/wiki/Radionuclides


  

components of liposome or preformulated drugs are substituted with short lived positron-

emitting radionuclides is impractical. 

 Urakami et al. [35] developed a rapid and efficient labeling method for lipid NPs via 

1-[
18

F] fluoro-3,6-dioxatetracosane without changing their physiological properties. Dynamic 

PET scanning showed that liposome-encapsulated hemoglobin (LEH) delivers oxygen even 

into the ischemic region from the periphery toward the core of ischemia. In recent years, the 

use of PET isotopes with a relatively long half-life (
64

Cu, 
89

Zr and 
68

Ga) has been increased. 

These metals can be coupled in a straightforward fashion using chelators, such as DTPA, 

DOTA, 1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA), 1,4,8,11-

tetraazacyclotetradecane-N,N',N'',N'''-tetraacetic acid (TETA), and derivatives of these 

macrocyclic chelating agents. Originally, DOTA was designed for lanthanides (e.g. Gd
3+

), 

but it can be used for a wide range of radiometals as well. Since DOTA has four carboxylic 

functions on the side-chains of the macrocycle bearing four nitrogens, the binding of 
64

Cu 

leads to deformed octahedral complexation of the Cu
2+

 ion, thereby leaving two of the acidic 

functions free. Accordingly, one is available for the coupling to NPs or polymers and the 

other allows further derivatization, or acts as an additional hydrophilic group. The review of 

Stockhofe at al. [36] presents a comprehensive study on various approaches and methods for 

the labeling of potential drug delivery systems using positron emitters. 

 
64

Cu has favourable decay characteristics, (
+
: 0.653 MeV, 17.4%; 

-
: 0.578 MeV, 

39%) for both PET and radiotherapy and due to the half-life of 12.7 h it has been shown to be 

very effective for assessing the behaviour of nanomaterials in vivo for prolonged times. The 

functionalization of PMMA-core/PEG-shell nanoparticles with a DOTA ligand allowed for 

the chelation of 
64

Cu and enabled the investigation of the biodistribution of these materials in 

correlation to the molecular weight of the backbone and the PEG grafts [37]. The method for 

64
Cu-labeling via NOTA as the chelator was developed in the case of cRGD-functionalized 



  

and doxorubicin (DOX)-conjugated IONPs for potential application in drug delivery and 

PET/MRI dual-modality imaging [38]. Also, the application of an improved 
64

Cu labeling 

procedure via novel amine-activated chelator (amine-Bz-DOTA) conjugated to the surface of 

dextran sulfate coated IONPs, enabled to avoid cross-linking of IONPs (which caused NPs 

aggregation) and obtain a higher labeling yield [39]. Additional binding of tumor-specific 

antibodies to 
64

Cu-labeled doxorubicin loaded silica-based NPs provided an increased 

accumulation at the tumor site via an enhanced permeability, the retention effect and 

antibody-mediated binding to tumor [8].  

 The use of 
68

Ga (positron emission intensity 87%) is on the rise due to several 

identifiable properties of this radionuclide. These include a superior image quality to that 

provided by SPECT radionuclides and the potential for on-demand production via a generator 

(
68

Ge/
68

Ga-generator) [40]. Successful 
68

Ga-labeling requires a chelating agent and so far, 

DOTA and NOTA chelators have been used to radiolabel organic and inorganic nanodimensional 

systems with 
68

Ga cation. Polyamido-amine dendrimer (PAMAM) was conjugated 

successfully with bi-functional chelate N-hydroxysuccinimide ester of DOTA and the 

subsequent radiolabeling with 
68

Ga was achieved with a high radiolabeling yield and 

stability. However, DOTA-like macrocycles are not the best ligands for Ga
3+

 as the 

incorporation of ions inside the macrocyclic cavity leads to severe distortion of the 

coordination octahedra around the Ga
3+

 ions. NOTA-like ligands with a bis(phosphonate)-

containing side arm (as the bone targeting group) connected to a metal-binding cage through 

acetamide or methylphosphinate pendant arms, (NOTAM
BP

 and NO2AP
BP

) have been shown 

as highly potent chelators for small 
68

Ga
3+

 ions [41]. Synthetic apatite nanocrystals have 

demonstrated an excellent ability to bind two PET radionuclides, 
18

F and 
68

Ga, with a good in 

vitro stability. Na
18

F was used for the direct incorporation of the radionuclide into the crystal 



  

lattice, while the labeling by surface functionalization was accomplished by using 
68

Ga-

NO2AP
BP

.  

6.2.3 Radiolabeling with therapeutic β-emitting radionuclides  

Currently, radionuclide therapy remains an important treatment option. The ionizing radiation 

from radionuclides can kill cells or inhibit the growth in the periphery and the inaccessible 

centers of cancerous lesions. The sites of damage comprise all cellular levels, especially 

DNA in the nucleus of cells [42]. Internal radiotherapy relies on the implantation of 

radioactive seeds, such as radiolabeled micro- and nanoparticles delivering highly localized 

doses to a diseased area. Due to the inhomogeneous distribution of radiolabeled particles, 

especially within large tumors with a necrotic center, long-range -emitters with lower LETs 

and greater annihilation distances of several cells (typically 0.2-12 mm) provide a larger and 

tortuous radioactive dose volume. Yttrium-90 (
90

Y), lutetium-177 (
177

Lu) and rhenium-188 

(
188

Re) are proposed as suitable candidates for the internal radionuclide therapy, especially of 

primary and metastatic malignancies, while alpha- and Auger-emitters, due to their short 

range in tissues, would be more appropriate for the effective killing of circulating cells with a 

minimal irradiation of the blood [43]. No more than a few studies were conducted with α-

emitting radionuclides, such as 
225

Ac (half-life 10 d), which were mostly attached through 

chelation [44].  

6.2.3.1 Radiolabeling with 
90

Y  

90
Y is a high-energy -emitter with optimal nuclear physical characteristics (half-life 64.1 h, 

Emax=2.27 MeV) for radionuclide therapy. It can affect tumor cells up to a maximum depth of 

11 mm in the soft tissue. This is described by the cross-fire effect occurring due to the long 

path of -particles that crosses multiple individual cells decreasing the need for targeting 

each cancer cell with the radiopharmaceutical. Radiolabeled NPs, such as 
90

Y-silicate/citrate 

colloid and 
186

Re-sulfur colloid, have been used for radiosinevactomy with very encouraging 



  

results, especially in Europe [45]. The method is based on the local intra-articular injection of 

nanoparticulates/colloids labeled with suitable therapeutic radionuclides into a diseased joint, 

where they are phagocytized by the macrophages of the inflamed synovial membrane 

delivering a selective radiation dose to the synovium. 
90

Y-labeled colloid NPs, such as 

antimony trisulfide colloid (Sb2S3) [46] and tin fluoride colloid (SnF-c) [47] have a potential 

application in radiosinevactomy [48]. SnF-c particles were 
90

Y-labeled by the addition of 

90
YCl3 before the formation of primary particles (nucleation) and particle growth. These 

particles first aggregate and finally agglomerate due to the increased temperature, agitation, 

and aging (schematically represented in Fig. 7).The particle size of 
90

Y-SnF-c for different 

therapeutic applications is controllable by manipulating the conditions under which the 

colloids form. 

 

Figure 7. Formation of 
90

Y–SnF-c agglomerates from template particles and scintigraphic 

images recorded at 96h after intra-articular injection in Wistar rats. (Reproduced with the 

permission of the Wiley) [47] 

 

Among the different varieties of NPs proposed for use in radiosinevactomy, HAp hold 

considerable promise mainly due to its excellent properties [49]. Favorable properties of HAp 

(biocompatibility, the ease of synthesizing them within the desired particle size range, very 

high affinity for metal ions) have led to extensive studies on radiolabeled HApNPs with a 

wide variety of therapeutic radionuclides including 
90

Y [50] 
153

Sm [51], 
177

Lu [52], 
169

Er [53], 

166
Ho [54]. The direct labeling of HApNPs has been demonstrated to be a convenient and 

reproducible method for the facile preparation of 
90

Y-labeled HApNPs with a high 

radiolabeling yield (>98%) and radiochemical purity [55].  



  

 The direct labeling approach was also used for 
90

Y-labeling of both Fe3O4-naked and 

Fe3O4-PEG600diacid NPs [56]. The carboxylate-rich surface of Fe3O4-PEG600diacid NPs is 

suitable for labeling with positively charged 
90

Y
3+

. Therefore, the labeling resulted in a very 

high labeling yield (99%) and good in vitro and in vivo stability. Due to the significant uptake 

of 
90

Y-Fe3O4-PEG600 NPs in liver and their low uptake by other tissues, magnetite NPs 

labeled with beta-emitters could be suitable for use in the combined radiotherapy-

hyperthermia cancer treatment. Magnetic NPs coated with proteins, such as human serum 

albumin, were also effectively
 90

Y-labeled by the direct approach without any further surface 

chemical modification [57]. The indirect 
90

Y-labeling of NPs is possible via different ligands 

(2,3-dicarboxypropane-1,1-diphosphonic acid (DPD) (Fig. 8) [58], meso-dimercaptosuccinic 

acid (DMSA)) which are capable to form stable complexes with 
90

Y. 

 

Figure 8.  Indirect 
90

Y-labeling of NPs via DPD: the energy minimized structure of proposed 

complex 
90

Y-DPD. (Reproduced with the permission of the Elsevier) [58] 

 

6.2.3.2 Radiolabeling with 
177

Lu  

177
Lu (half-life 6.7 d ) is the ideal β

−
 radionuclide for theranosis since it has a particulate 

emission (
-
 or Auger electron) for effecting therapy and emits several accompanying gamma 

photons of 208 keV (11%) and 113 keV (6.4%), which are used for diagnostic evaluation and 

dosimetry [59]. The advantage of the long half-life of 
177

Lu has been utilized in mapping the 

pharmacokinetics of potential agents, in radiosinevactomy of knee joints and the therapy of 

hepatocellular carcinoma. Several studies were conducted with 
177

Lu-labeled gold NPs 

(AuNP) for imaging and therapy in tumor-bearing mice. AuNPs modified with PEG chains 

linked to DOTA made complex compounds with 
177

Lu. Gold nanoseeds injected 

intratumorally were highly effective for inhibiting the growth of breast cancer tumors in CD-



  

1 athymic mice and caused no normal organ toxicity [60]. Targeting with 
177

Lu-AuNPs 

conjugated to RGD (-Arg-Gly-Asp-) peptide showed a higher delivery into the tumor site 

than non-RGD and 
177

Lu-RGD controls, highlighting the potential therapeutic capacity of 

radiolabeled NPs for endoradiotherapy [61]. Based on the previous work, where 
68

Ga-labeled 

DOTA-conjugated bisphosphonates as PET imaging agents were investigated, a few DOTA -

based bisphosphonates were synthesized and labeled with 
177

Lu for potential application in 

treating metastatic bone tumors [62].
 
 

 

6.3 Radiolabeled NPs in nuclear medicine imaging and biodistribution studies 

Different types of NPs have so far been labeled with radionuclides - from inorganic, organic 

to the metal and hybrid ones. Due to their good mechanical properties, chemical resistance, 

biocompatibility and optical and electrical properties, diamond nanoparticles (ND) represent 

a special research challenge in radiolabeling technologies [63, 64]. Radiolabeled diamond 

nanoparticles may be suitable not only for bioimaging applications, due to their stability, but 

they may also have wider application. Their surface enables new possibilities for 

functionalization, as well as the uploading of suitable proteins and drugs. 
3
H-labeling of 

detonation nanodiamonds was performed by using tritium microwave (MW) plasma (Fig. 9) 

[65]. The analysis shows that 93% of the tritium atoms are strongly bound to the surface, 

while 7% are built into the ND core. 

 

Figure 9. Tritium labeled diamond nanoparticles (ND). (Reproduced with the permission of 

the Royal Society of Chemistry)[65] 

 

Exosomes are extracellular nano-sized vesicles that most cells produce. Macrophage-

derived exosome-mimetic nanovesicles (ENVs) were labeled with 
99m

Tc and their 



  

distribution was analyzed using the SPECT/CT technique in vivo. The results enabled to 

determine the highest accumulation of 
99m

Tc- ENVs in the liver [66].  

The biodistribution of PLGA nanoparticles with and without encapsulated ascorbic 

acid in healthy rats was examined after their direct labeling with 
99m

Tc, which binds outside, 

on the surface of nanoparticles [67]. The investigated nanospheres exhibit a prolonged blood 

circulation time accompanied with time-dependent reduction in the lungs, liver and spleen. 

This is a quick and convenient method to investigate the pharmacological behavior of a new 

nanoparticulate system for controlled and systemic drug delivery with a double effect [68, 

69]. In such a system, it is of utmost importance to study the release of drugs from 

bioresorbable polymers and, in the second stage, after the resorption of the polymer, to 

investigate the potential of non-bioresorbable calcium phosphate as a filler in a bone defect. 

The surface properties of PLGA/HAp core-shell nanoparticles loaded with clindamycin and 

their changes under the simulated physiological conditions during the degradation process 

could be also investigated using radiotracer method [70].  

 Radiolabeled nanomaterials based on graphene, including graphene, graphene oxide 

(GO), reduced graphene oxide (rGO), graphene quantumdots (GQDs), and their derivatives 

indicate their high potential as imaging agents in a variety of bioimaging applications, 

especially in the PET/SPECT [71]. 
111

In-MSN (mesoporous silica nanoparticle, MSN) proved 

to be suitable for the tracking of neural stem cells (NSCs) in glioblastoma therapies. 

Multimodal dynamic in vivo imaging of NSCs behavior in the brain is an important parameter 

in the design of a controlled, targeted and successful therapy. MSNs were labeled with 
111

In 

using DOTA-NHS-ester through amide formation. SPECT confirmed the ability of 
111

In-

MSN-NSCs to penetrate through the blood brain barrier (BBB) and their localization in 

tumor cells [72].  



  

Multimodality imaging by taking advantage of two or more imaging modalities can 

provide many structural, functional and molecular information of importance for the 

diagnosis and treatment [73]. It is possible to couple, e.g. MR-active NPs to a chelating 

system, thereby enabling in vivo tracking by multimodal imaging techniques (e.g. 

SPECT/MRI, PET/MRI). The synthesized core/shell nanoparticles of 

Co0.16Fe2.84O4@NaYF4(Yb, Er) and Fe3O4@NaYF4(Yb, Tm) were stabilized with 

bisphosphonate polyethylene glycol conjugates (BP-PEG) and radiolabeled with 
18

F or 
64

Cu 

and 
99m

Tc. The fabricated particles have shown the advanced features and the possibility of 

application in the trimodal imagining (MRI, PET/SPECT and fluorescent imaging). A high 

colloidal stability and a narrow size distribution (10 nm) allow for the potential use of these 

particles as visual guides during surgery [74]. 
64

Cu
2+ 

labeled natural biopolymer based 

multifunctional NPs were successfully used in cancer multimodal (PET/MRI/PAI) imaging 

techniques [75]. “Dragon fruit-like biocage” based on apoferritin (APF) was employed (Fig. 

10) to construct an efficient and excellent bio-stability nanoplatform (AMF) suitable for 

multimodal clinical application. 

 

Figure 10. Schematic illustration of AMF nanocage synthesis. (Reproduced with the 

permission of the Elsevier) [75] 

 

Radiolabeled ultrasmall (USNPs) nanoparticles with core sizes in the 1-3 nm range 

have shown specific features in biomedical applications. Due to the potential of USNPs for 

interactions with individual cells and the covalent attachment of small molecules, active 

molecular targeting can be effectively achieved [76]. 
68

Ga-labeled iron oxide has been 

successfully studied using PET/MR dual-modal imaging modality during specific 

accumulation in tumor cells [77]. 
65

Zn-labeled CdSe/CdS/ZnS-quantum dots (
65

Zn-Qdots) 



  

was used in order to achieve a full quantification of biodistribution and degradation during 

the in vivo test [78]. Depending on the attached or incorporated radioisotopes, USNPs 

systems have so far been mostly exploited in the SPECT and PET imaging modalities. 

The particles of poorly crystalline HAp (d50=72 nm) coated with chitosan (Ch), and 

the chitosan-poly-D,L-lactide-co-glycolide polymer blend (Ch-PLGA) have shown multi-

functional characteristics in bone tissue engineering [79]. 
125

I was used for the in situ 

radiolabeling of HAp, HAp/Ch and HAp/Ch-PLGA synthesized particles. Biodistribution 

studies have shown that after the intravenous administration to normal male Wistar rats, HAp 

particles have the highest liver accumulation 10 min after injection and rapid excretion from 

the body without residual radioactivity 24 hours after injection [33]. HAp/Ch particles have 

the highest accumulation in the liver 10 min after injection with considerable amount (almost 

50 %) retained 24 hours later. HAp/Ch-PLGA has the highest uptake in the lungs 10 minutes 

after injection and moderate retention in the same organ 24 hours later (Fig. 11). The results 

of the biodistribution of 
125

I-labeled particles based on HAp NPs indicate that they could be 

applied as organ-targeting carriers of various drugs in therapy. 

 

Figure 11. Biodistribution of a) 
125

I-HAp , b) 
125

I-HAp/Ch and c) 
125

I-HAp/Ch-PLGA. 

(Reproduced with the permission of the Elsevier) [33] 

 

Different approaches to the radiolabeling of super paramagnetic iron oxide 

nanoparticles (SPIONs) with 
14

C were tested in order to obtain a suitable system that could be 

used in the analysis of biodistribution. The concept of surface functionalization and formation 

of a multiple core system made it possible to obtain particles with a hydrodynamic radius 

smaller than 100 nm. NPs are functionalized with polycarboxylate or polyamine surface 

functional groups and 
14

C is incorporated directly into the carbon backbone of the organic 



  

molecules. This concept make is possible to obtain identical surface chemical functionality of 

labeled and non-labeled particles, enabling an accurate analysis prior to potential clinical 

application [80]. Nanoparticle carrier crown-ether-conjugated silica (SiNPs) is radiolabeled 

with 
22

Na with a loading efficacy of 98.1%±1.4%. Due to the relatively long half-life of 2.6 

years, this radionuclide has not had a wider application in biomedicine. However, for these 

reasons, 
22

Na may represent a practical choice in research. The one-month in vivo study on 

Female Balb/c mice (six weeks old) showed that 
22

Na-SiNPs were removed from the 

organism after two weeks, and completely after a month. The highest accumulation of 

particles was recorded in the liver 5 min. after intravenous administration [81]. Heat-induced 

metal ion binding reaction, which enables radiolabeling without modifying the surface 

structure, was used for the labeling of paramagnetic iron oxide nanoparticles. Feraheme (FH, 

solution composed of a non-stoichiometric Fe3O4 magnetite core approximately 5–10 nm in 

diameter stabilized with a carboxymethyl dextran coating; total size: 17-31 nm in diameter) 

NPs were labeled with 
89

Zr in a thermal reaction at 120°C in less than 60 minutes. The 

biodistribution of 
89

Zr-FHNPs 96h after the intravenous injection to mice indicated the uptake 

of 
89

Zr–FH in the lymphatic system [82]. 

In order to analyze and interpret the biodistribution of various components of multi-

component and more complex nano systems the concept of dual-radiolabeling of NPs was 

applied. Citrate-coated gold nanoparticles (monodisperse, 14 nm in diameter) were labeled 

with 
14

C and 
198

Au. By using liquid scintillation to determine 
14

C and gamma spectroscopy 

for 
198

Au different biodistribution profiles were determined for the Au core and the citrate 

surface coating over time. The obtained results of biodistribution show that over time the 

delamination and degradation of the citrate coating of NPs occur [83]. PLGA-coated iron 

oxide NPs were labeled with two gamma emitters 
111

In and 
125

I (Fig. 12) in the way that 

during the synthesis Au was labeled with 
111

In and PLGA with 
125

I. The energy-discriminant 



  

SPECT modality was used to analyze each radioisotope independently during the in vivo test 

with mice (BALB/cJRJ). The results showed that over time, the PLGA surface coating 

separated from the core since 
125

I was detected in the thyroid glands and urine, and 
111

In in 

the liver [25]. 

 

Figure 12. Schematic representation of dual-labeled [
125

I/
111

In] of PLGA-coated iron oxide 

NPs. (Source: J. Llop, et al., (2015)) [25] 

 

6.6 Radiolabeled NPs in therapy 

New research strategies in designing radiolabeled NPs are aimed at obtaining 

radiolabeled multifunctional nano objects that would accomplish specific and targeted 

therapy [84, 85]. Functional nanoparticles with active targeting (targeted nanoparticles, 

TNPs) could serve as carriers of radionuclides in the radio therapy of cancer with a high 

mortality of cancer cells while simultaneously sparing normal cells with minimal side effects 

[86]. HAp NPs radiolabeled with 
99m

Tc have shown a high stability during in vivo studies in 

mice. The results showed a higher affinity to bone tissues in contrast to the surrounding 

muscle tissue [87].  

In order to achieve a more specific targeting, TNPs are functionalized with various 

molecules. Anti-cancer therapeutic properties of the 
125

I labeled hybrid nano-sized cyclic 

Arg-Gly-Asp-conjugated GoldNPs (cRGD-GNPs) system were tested (including acute 

apoptosis two days post treatment and long-term influence up to 21 days). The results 

confirmed the effective targeting of tumor with 
125

I-cRGD-GNP and the suppression of its 

growth [88]. It has been demonstrated that the systems based on gold nanoparticles (GNPs) 

functionalized with an epidermal growth factor (EGF) as carriers of 
111

In are successful in the 

targeting and therapy of EGF receptor-positive cancers [89]. Targeted radiotherapy was also 



  

successfully achieved with conjugated surfaces of nano-systems on the basis of BSA (Bovine 

serum albumin) nanocapsules, silica, monoclonal antibodies (mAbs), etc [90-92]. 

Multifunctional nanoplatforms for the simultaneous use of radiotherapy and 

chemotherapy could enable significant progress in the field of nano-oncology. The designed 

lipid-polymer hybrid nanoplatform ChemoRad (Fig. 13), which contains PLGA and lecithin, 

was used as a suitable carrier for docetaxel, 
111

In and 
90

Y [93]. The results obtained with the 

prostate cancer model confirmed the realization of highly specific targeted delivery of the 

drug with highly effective radiotherapy at the same time.  

 

Figure 13. Schematic representation of the ChemoRad NPs. (Reproduced with the 

permission of the Elsevier) [94] 

 

6.7 Radiolabeled NPs in theranostics 

Multifunctional nanoparticulate systems with hybrid and improved properties are a result of 

creative research. Clear boundaries between objects for diagnostic imaging, therapy or 

biodistribution have almost disappeared. The term "theranostics" has unified the diagnostic 

and therapeutic potentials of the system into a single agent in order to achieve efficient, 

specific and individual therapy in various diseases [95]. 

Gadolinium-doped hydroxyapatite (HAp-Gd) nanorods could be used as theranostic 

nanoparticles to detect the early stages of osteosarcoma, or as carriers of radioisotopes in 

therapy. Gadolinium endows HAp with paramagnetic properties, while phosphorous and 

gadolinium in the HAp-Gd sample can be activated by neutron capture, in a nuclear reactor, 

producing 
32

P and 
159

Gd radioisotopes [96]. The multifunctional platform based on single-

walled carbon nanotubes (SWNTs) coated with a shell of polydopamine (PDA) was modified 

with polyethylene glycol (PEG). SWNT@PDA-PEG was labeled with 
131

I nucleotide, which 



  

potentially allows nuclear imaging and cancer therapy. An in vivo study in mice confirmed 

the accumulation of intravenously administered 
131

I-SWNT@PDA-PEG in the tumor tissues. 

The PDA coating allowed an easy labeling with 
131

I but also its delivery, due to which the 

system was able to perform radionuclide therapy as well [97]. 

A particular research challenge is focused on the preparation of radiolabeled 

nanoparticles with significant in vivo stability. A detailed analysis of the chelator-free radio-

labeling technique indicates the vital importance of deprotonated silanol groups during the 

labeling of mesoporous (MSN) (Fig. 14a) and nonporous (dSiO2) silica nanoparticles (Fig. 

14b) with 
89

Zr in order to obtain long stable systems. The in vivo study of the stability of 

these systems indicates that the detachment rate of 
89

Zr-MSN is about 20 times slower than 

that of 
89

Zr-dSiO2. The results obtained with PET modality indicated that the existence of 

mesochannels within MSN particles is responsible for the high stability of 
89

Zr-MSN system 

over a period of three weeks [98]. After the injection of 
89

Zr-MSN, their accumulation in the 

liver and spleen can be perceived, while the bone uptake is not present, which is not the case 

with 
89

Zr-dSiO2. 

 

Figure 14. 
89

Zr-labeled silica nanoparticles: a) mesoporous (MSN) and b) nonporous 

(dSiO2). (Adapted and reprinted with the permission of the American Chemical Society 

Publications) [98] 

 

A long circulation half-life of in vivo radiolabeled NPs leaves enough time for the 

EPR effect and the successful implementation of this type of particles in theragnostics. The 

64
Cu-labeled PEGylated reduced graphene oxide-iron oxide nanoparticles (

64
Cu-PEGylated 

RGO-IONPs) reaching about 68 nm in size were intravenously administered to mice which 

had an ischemic hind limb. On the basis of positron emission tomography (PET) and Doppler 



  

imaging it was determined that the accumulation of particles in the ischemic hind limb was 

the highest after three days and the lowest after 17 days [99]. 
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