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Miloš Tomić 1, Smilja Marković 1 , Paula Jardim 3 and Bojan A. Marinkovic 2,*

1 Institute of Technical Sciences of SASA, 11000 Belgrade, Serbia; ivana.dinic@itn.sanu.ac.rs (I.D.);
milos.tomic@itn.sanu.ac.rs (M.T.); smilja.markovic@itn.sanu.ac.rs (S.M.)

2 Department of Chemical and Materials Engineering, Pontifical Catholic University of Rio de
Janeiro (PUC-Rio), Rio de Janeiro 22453-900, Brazil

3 Department of Metallurgical and Materials Engineering, Federal University of Rio de Janeiro,
Rio de Janeiro 21941-853, Brazil

* Correspondence: lidija.mancic@itn.sanu.ac.rs (L.M.); bojan@puc-rio.br (B.A.M.)

Abstract: Novel hybrid core-shell structures, in which up-converting (UC) NaYF4:Yb,Tm core con-
verts near-infrared (NIR) to visible (Vis) light via multiphoton up-conversion processes, while anatase
TiO2-acetylacetonate (TiO2-Acac) shell ensures absorption of the Vis light through direct injection
of excited electrons from the highest-occupied-molecular-orbital (HOMO) of Acac into the TiO2

conduction band (CB), were successfully synthesized by a two-step wet chemical route. Synthesized
NaYF4:Yb,Tm@TiO2-Acac powders were characterized by X-ray powder diffraction, thermogravimet-
ric analysis, scanning and transmission electron microscopy, diffuse-reflectance spectroscopy, Fourier
transform infrared spectroscopy, and photoluminescence emission measurement. Tetracycline, as a
model drug, was used to investigate the photocatalytic efficiencies of the core-shell structures under
irradiation of reduced power Vis and NIR spectra. It was shown that the removal of tetracycline is
accompanied by the formation of intermediates, which formed immediately after bringing the drug
into contact with the novel hybrid core-shell structures. As a result, ~80% of tetracycline is removed
from the solution after 6 h.

Keywords: visible light photocatalysis; antibiotic removal; core-shell; up-conversion; ligand-to-metal
charge transfer; FRET

1. Introduction

The application of photocatalysis for pollution treatment is an environmentally friendly
approach based on the power of semiconductors to generate intrinsic reactive oxygen
species (ROS) under sunlight. Among various photocatalysts reported so far, anatase
(TiO2), although significantly active only under ultraviolet (UV) light, is undoubtedly
the most widely used semiconductor for the degradation of pollutants, due to its low
cost, extraordinary chemical stability, and biocompatible features [1]. Much effort has
been devoted to extending TiO2 absorption to visible light through many different ap-
proaches, such as noble metal doping, creation of defects, and heterojunction formation,
to mention some of them, but it was found that the overall photocatalytic capability can
be affected by the recombination of photogenerated charge carriers [2,3]. Recently, a new
approach of creating ligand-to-metal charge transfer (LMCT) complex is recognized to
be a promising path for overcoming this problem [4]. Alternatively, the maximization of
sunlight harvesting is shown to be possible through the creation of composites, hybrid,
or core-shell structures, thanks to the synergy of functional diversities that come from
comprising compounds [5–7]. In the past decade, several up-converting materials were
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explored as core in TiO2-based core-shell structures, due to their unique capability of
converting NIR into UV-Vis light [8–10]. The Yb,Tm doped β-NaYF4 phase is shown to
be the most appropriate choice for that, since Tm3+ ions UV emission matches well with
the absorption band of TiO2 [11]. Mostly, studies have shown that NaYF4Yb,Tm@TiO2
enables efficient degradation of dyes under NIR light [12–15]. There are only a few reports
on sunlight-driven photocatalytic efficiency toward the degradation of other pollutants,
such as microcystin [11] and ciprofloxacin [16]. Beside the radiation-reabsorption process,
Förster resonance energy transfer (FRET) is recognized as an additional energy migration
process which occurs between core and shell [12]. However, although the up-conversion
process in NaYF4:Yb,Tm core provokes the increase of visible light photons in TiO2 shell,
the harvesting of the visible light is not achieved, due to low absorption of neat TiO2 in
this region.

Bearing the above in mind, the current work presents, for the first time as the authors
are aware, catalytic and photocatalytic activity, towards tetracycline, of the novel core-shell
structures, in which TiO2-based shell is sensitive to the Vis light. We already showed that
the formation of LMCT in TiO2-Acac nanoparticles effectively shifts TiO2 absorption to
Vis range, boosting its photocatalytic efficiency toward different pollutants [17–19]. In this
work, an additional light-harvesting feature was achieved by the NIR-to-Vis conversion ca-
pability of β-NaYF4:Yb,Tm phase. As expected, the synergy of a broad spectrum absorption
in calcined NaYF4:Yb,Tm@TiO2-Acac core-shell structure improved tetracycline degrada-
tion under joint irradiation of reduced power Vis and NIR spectra. In addition, it was found
that catalysis precedes to photocatalysis, contributing to the overall tetracycline removal.

It Is relevant to note that tetracycline is one of the most widely used antibiotics in
humans and in domestic animals, so developing effective sunlight-driven photocatalysts
for its removal from wastewater represents a great challenge. To address this issue, besides
TiO2-Acac and TiO2-glutaric acid charge transfer complexes [18–20], Co-TiO2 mesoporous
structures [21], CdS/TiO2, Cu2O/TiO2, and MoS2/TiO2 composites [22–24], magnetic
graphene oxide loaded TiO2:Ce [25], and TiO2/Fe2O3 heterojunction [26] were tested up
to now, but there is no report about photocatalytic performance of the UC@TiO2-based
core-shell structures.

2. Results

Based on the X-ray powder diffraction (XRPD) patterns presented in Figure 1, NaYF4:Yb,Tm
powder obtained through the hydrothermal processing presents a hexagonal β-NaYF4
structure (JCPDS 28-1192) and is monophasic. The absence of diffraction lines due to
secondary phases suggests the effective incorporation of dopants in the hexagonal crystal
lattice. Coating of β-NaYF4:Yb,Tm particles with TiO2-Acac did not cause changes in the
XRPD pattern of NaYF4:Yb,Tm@TiO2-Acac. The absence of additional diffraction lines
for the NaYF4:Yb,Tm@TiO2-Acac sample belonging to TiO2 could be an indication of an
amorphous or nanocrystalline TiO2-Acac shell formation. With the subsequent calcination
at 300 ◦C, the three strongest TiO2 anatase diffraction lines appeared in the pattern of the
NaYF4:Yb,Tm@TiO2-Acac 300 sample. These findings corroborate well with the previous
reports on low-crystalline and/or amorphous TiO2-Acac xerogel formation using a similar
sol-gel processing route [27,28], and are additionally supported by selected area electron
diffraction (SAED) analysis (vide infra).

The morphology of NaYF4:Yb,Tm particles before and after coating was revealed by
scanning and transmission electron microscopy (SEM and TEM), Figures 2 and S1. The
as-prepared particles adopt a shape of well-defined hexagonal prisms with a longer edge
of about 3 µm, along the c-axis, and the shorter ones less than 500 nm (Figure 2a). As it
is reported previously [29,30], observed morphology is the consequence of the inherent
anisotropic growth of hexagonal NaYF4 phase along [0001] direction. After coating and
calcination, a rugged TiO2-Acac layer, with a thickness up to several tens of nanometers,
was formed on the NaYF4:Yb,Tm particles, forming a core-shell structure, as illustrated in
the TEM images of Figures 2b,c and S2b. A SAED inset in Figure 2b confirms nanocrystalline
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anatase in the NaYF4:Yb,Tm@TiO2-Acac sample, while the high resolution transmission
microscopy and fast Fourier transform analysis (HRTEM/FFT), Figure 2d, reveal the
presence of anatase (100) crystallographic planes in the NaYF4:Yb,Tm@TiO2-Acac 300
structure. As it is notable from Figure S2a, TiO2-Acac shell in NaYF4:Yb,Tm@TiO2-Acac
presents a porous structure, and is loosely, and not uniformly, coupled to the NaYF4:Yb,Tm
core. After calcination, a more compact shell of TiO2-Acac nanoclusters was formed
(Figures 2c and S2b), ensuring the existence of a high number of contact points between
core and shell. The high chemical purity and compositional homogeneity of core-shell
structures were confirmed by scanning transmission electron microscopy coupled energy
dispersive X-ray spectroscopy (STEM/EDXS). The distribution of titanium over a single
NaYF4:Yb,Tm particle is presented in Figure 3.

The Fourier transform infrared (FTIR) spectrum of NaYF4:Yb,Tm@TiO2-Acac, pre-
sented in Figure 4a, implicates the preservation of Acac, interacting with anatase onto the
surface of core-shell structures. Strong bends at 1416, 1530, and 1650 cm−1 are attributed
to the methyl asymmetric bending, as well as the covalent and dipole chemical reaction
of acetylacetonate with Ti4+ ion [17]. As shown in our previous study [17], calcination
of TiO2-Acac CT at 300 ◦C leads to decrease of carbon, i.e., Acac content, so these bands
present only faint intensities in the spectrum of the NaYF4:Yb,Tm@TiO2-Acac 300 structure.
The presence of the adsorbed water in NaYF4:Yb,Tm@TiO2-Acac is identified through the
band of OH stretching vibration, situated at 3400 cm−1.

The results obtained through thermogravimetric analysis (TGA), Figure 4b, corrob-
orate well with these findings. A total mass loss of 16 wt%, recorded during heating of
NaYF4:Yb,Tm@TiO2-Acac, is owing to the TiO2-Acac shell and occurs in three stages, in
accordance to [17,18]: (a) moisture loss (up to 150 ◦C), (b) volatilization of acetyl ions, ace-
tone, and CO2 (up to 300 ◦C), and (c) release of CO2 at higher temperatures. On the other
hand, negligible mass loss was detected during heating of neat NaYF4:Yb,Tm, while, for the
NaYF4:Yb,Tm@TiO2-Acac 300 sample, a low mass loss (<3%) was recorded, corresponding
to the Acac, remaining after the calcination stage at 300 ◦C.
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The optical properties of studied samples were investigated by diffuse reflectance spec-
troscopy (DRS). As shown in Figure 5a, NaYF4:Yb,Tm@TiO2-Acac and NaYF4:Yb,Tm@TiO2-
Acac 300 absorbed significantly more UV and Vis light than the neat NaYF4:Yb,Tm. A large
absorption tail within the visible spectral range with the apparent band-gaps of 2.3 and



Int. J. Mol. Sci. 2023, 24, 9441 4 of 13

1.6 eV for NaYF4:Yb,Tm@TiO2-Acac and NaYF4:Yb,Tm@TiO2-Acac 300, respectively, were
evaluated from the Kubelka-Munk plots (Figure 5b). The visible spectrum tail recorded for
NaYF4:Yb,Tm@TiO2-Acac (Figure 5) may be fully ascribed to the ligand-to-metal charge
transfer phenomenon between TiO2-Acac, where the electrons from the highest occupied
molecular orbital (HOMO) of acetylacetone are directly injected into the conduction band
(CB) of TiO2 [17]. However, even more intense absorption within the visible spectrum of
NaYF4:Yb,Tm@TiO2-Acac 300 can be additionally attributed to the extrinsic oxygen vacan-
cies generated in the anatase shell layer through oxidation decomposition of Acac [18,19].
The same feature was recently reported for another charge transfer complex, namely, TiO2-
glutaric acid, after calcination at 270 ◦C [20]. The characteristic absorption feature of the
neat NaYF4:Yb,Tm is preserved in core-shell structures, since a small peak at ∼690 nm,
attributed to 3H6→3F2,3 Tm3+ transitions, is still visible.
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Figure 6a shows the UC emission spectra of β-NaYF4:Yb,Tm, before and after coating,
under 976 nm excitation. The visible emissions from 1D2→3F4, 1G4→3H6, and 1G4→3F4,
and 3F2,3→3H6 transitions of Tm3+ ions were detected at 450, 475, 645, and 695 nm, re-
spectively. As shown in Figure 6b, the population of the excited states in Tm3+ ions is
due to energy transfer from the Yb3+ sensitizer. Initially, Yb3+ ions were excited through
absorption of the incident photons from the 2F7/2 ground state to the 2F5/2 excited state.
Then, Tm3+ ions in the 3H6 ground state are excited to 3H5 by the neighboring excited Yb3+

ions through the process: 3H6(Tm3+)+2F5/2(Yb3+)→3H5(Tm3+)+2F7/2(Yb3+). Subsequently,
Tm3+ ions transit to the 3F4 state by nonradiative relaxation, and with the supplementary
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energy transfer from Yb3+ populate 3F2,3 states. With 3F3 relaxation to the ground level,
red emission centered at 695 nm occurs. Moreover, Tm3+ ions in 3F2, which relax to 3H4
state by nonradiative relaxation, are further excited to 1G4 state by following the energy
transfer process: 3H4(Tm3+)+2F5/2(Yb3+)→1G4(Tm3+)+2F7/2(Yb3+). With the consequent
1G4→3H6 and 1G4→3F4 relaxation, blue emission at 475 nm and red emission at 645 nm
appeared, respectively. Ultimately, for the population of the 1D2 state, one extra energy
transfer is needed to enable blue emission at 475 nm. Therefore, as it is shown in previous
studies [31,32], appearance of the UC emission in the visible part of spectra is a result
of two- and three-photon processes, both ensured by the energy transfer from Yb3+ to
Tm3+. As it is notable from Figure 6a, the blue and red emission decrease unequally with
the coating and subsequent calcination. While the intensity ratio of blue emission de-
creased twice after coating of NaYF4:Yb,Tm particles, and three times with the subsequent
calcination, red emission reduces for about 1.8 times after each of these processes. As a
result, the blue-to-red intensity ratio decreased from 0.66 in NaYF4:Yb,Tm to 0.58, and
0.36 in NaYF4:Yb,Tm@TiO2-Acac and NaYF4:Yb,Tm@TiO2-Acac 300 core-shell structures,
respectively. This confirms that the TiO2-Acac shell is capable of absorbing a part of visible
light produced through excitation of the NaYF4:Yb,Tm core by 976 nm, since absorption
bands of core-shell structures, Figure 5, overlap particularly well with the UC blue emission.
As expected, absorption is more powerful in the NaYF4:Yb,Tm@TiO2-Acac 300 core-shell
structure than in NaYF4:Yb,Tm@TiO2-Acac, because of the better shell connection to the
UC core (Figures 2c and S2b).
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The photocatalytic efficiency of core-shell structures was evaluated based on tetracy-
cline degradation during the irradiation period of 6 h. Figure 7 shows the UV-Vis absorption
spectra of aliquots collected during tetracycline degradation in the presence of different
photocatalysts. The pure tetracycline (previous to the addition of the photocatalyst) exhibits,
inherently, two strong absorption bands, centered at around 276 nm and 358 nm (identified
as −100 curve in Figure 7). The absorption band centered at 276 nm is attributed to the ring
A and dimethylamino group, while the second band (around 358 nm) corresponds to the
aromatic rings B, C, and D, and the developing chromophores, as represented in [33,34].
As can be noted from Figure 7, the addition of neat NaYF4:Yb,Tm and core-shell struc-
tures into tetracycline solution under darkness induced a red shift of the band centered
at 358 nm. Neat NaYF4:Yb,Tm exhibited a red shift from 358 nm to 382 nm (Figure 7a),
while NaYF4:Yb,Tm@TiO2-Acac showed a shift toward 376 nm (Figure 7b). Moreover,
NaYF4:Yb,Tm@TiO2-Acac 300 displayed an initial shift from 358 nm to 365 nm after 10 min
of contact between the pollutant and photocatalyst under darkness, and another one after
40 min, from 365 nm to 382 nm (Figure 7d). As it will be discussed later, these shifts may
indicate some catalytic activity of the NaYF4:Yb,Tm and, consequently, the formation of
intermediate products. Contrary to that, such a catalytic activity is not noted for TiO2-Acac
300, Figure 7c. The adsorption-desorption equilibrium in darkness (1 h) was followed by
the photocatalytic degradation of tetracycline (for the case of TiO2-Acac 300, Figure 7c), and
the degradation of intermediate products (for neat NaYF4:Yb,Tm and core-shell structures,
Figure 7a,b,d) during the mentioned irradiation period.
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Figure 8 shows the change in the tetracycline and intermediate product concentrations
during the testing period. As demonstrated by Figure 8, photolysis showed negligible tetra-
cycline degradation, and neat NaYF4:Yb,Tm remained photocatalytically inactive under
Vis+IR irradiation, as well. On the other hand, the TiO2-Acac 300 and NaYF4:Yb,Tm@TiO2-
Acac core-shell structures showed different photocatalytic degradation of tetracycline
and of intermediates, respectively. With irradiation, the photocatalytic degradation of
intermediates reached about 27.3 and 79.8% after 6 h in the presence of 200 mg L−1 of
NaYF4:Yb,Tm@TiO2-Acac and NaYF4:Yb,Tm@TiO2-Acac 300 core-shell structures, respec-
tively (Figures 7 and 8). On the other hand, in the presence of 25 mg L−1 of TiO2-Acac 300
nanoparticles (equal to the amount of shell nanomaterial present in the core-shell structure),
the degradation of 45.1% of tetracycline was achieved during the same period.
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As expected, the visible light emission produced by the NaYF4:Yb,Tm core, in addition
to visible lamp irradiation, increased the photocatalytic activity of NaYF4:Yb,Tm@TiO2-
Acac 300 in comparison to TiO2-Acac 300 (Figure 8). The existence of a higher number of
contact points between core and shell, and the presence of much stronger bonds between
Acac and TiO2 in the NaYF4:Yb,Tm@TiO2-Acac 300, compared to the NaYF4:Yb,Tm@TiO2-
Acac core-shell structure (Figure 2 and Figure S2), improved the photocatalytic performance
in the degradation of tetracycline intermediates. Additionally, the enhanced tetracycline
photocatalytic degradation by NaYF4:Yb,Tm@TiO2-Acac 300, compared to TiO2-Acac 300,
can be an indicator of the synergy of catalytic and photocatalytic processes in the novel
hybrid NaYF4:Yb,Tm@TiO2-Acac 300 core-shell structure.

3. Discussion

Novel hybrid core-shell NaYF4:Yb,Tm@TiO2-Acac structures were employed as a
catalyst and photocatalyst for tetracycline removal. The proposed mechanism of the photo-
catalysis is illustrated in Figure 9. Under irradiation, the core absorbed NIR light, while
the shell absorbed Vis light. Due to the successful NIR-to-Vis multiphoton up-conversion,
radiation-reabsorption and FRET processes are enabled in core-shell structures. To confirm
the energy transfer from core to shell, time-resolved fluorescence of Tm3+ was measured
for NaYF4:Yb,Tm hexagonal prisms and core-shell structures. In accordance with Figure
S3, the best fits of decays were obtained by employing the bi-exponential functions. Values
of τ1:111 µs τ2:388 µs (NaYF4:Yb,Tm), τ1:103 µs τ2:329 µs (NaYF4:Yb,Tm@TiO2-Acac), and
τ1:104 µs τ2:333 µs (NaYF4:Yb,Tm@TiO2-Acac 300) confirmed a shortening of the decay
time after coating, due to formation of new energy transfer channels from the excited states
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of Tm3+ to TiO2-Acac. As a result, an increased number of reactive oxygen species are gen-
erated on the TiO2-Acac shell. As shown in some previous studies through the correlation
between EPR-spin trapping and tetracycline photodegradation using scavengers [18,19],
tetracycline degradation over TiO2-Acac occurs via interactions with electronic holes and,
principally, superoxide radicals. On the other hand, catalytic activity of the NaYF4:Yb,Tm-
based structures was corroborated through shifting of the tetracycline absorption band,
originally situated at 358 nm. Although there is no literature data, as the authors are aware,
related to the catalytic property of neat NaYF4:Yb,Tm or NaYF4:Yb,Tm@TiO2 core-shell
structures toward liquid or gas pollutants, the formation of tetracycline intermediates in
darkness, followed by the band shifting, has been already reported for ZnO Nanorods/K-
Doped Exfoliated g-C3N4 nanosheets [35], modified bismuth tungstate nanoparticles [36],
and polyoxometalates/polymer composites [37]. A red shifting of the absorption band
centered at 358 nm is also referred to the feature of tetracycline to chelate with metal
ions [33,34]. The tendency of tetracycline to complex with divalent and trivalent metal ions
is due to the presence of electron-rich ketone, carboxyl, amino, and hydroxyl groups in its
structure [38,39]. Yu et al. [34] reported that the photodegradation of tetracycline under
simulated sunlight, in the presence of La2-xSrxNiMnO6, is enhanced by its chelation with
Sr2+ in darkness. Therefore, the red shifting of the absorption band from 358 nm to 390 nm
may be assigned to the conformational transformation in tetracycline to form a complex [34].
Further research should be undertaken to deduce the exact mechanism which induces band
shifting in tetracycline absorption spectra in the presence of NaYF4:Yb,Tm-based structures.
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structure, and possible ways for increased generation of reactive species.

4. Materials and Methods
4.1. Materials

All reagents were purchased from Sigma-Aldrich (St. Louis, MO, USA) and used as ob-
tained. Rare earth (RE) nitrates [Y(NO3)3•6H2O, Yb(NO3)3•5H2O and Tm(NO3)3•5H2O],
NaF (≥99%), ethanol (≥99%), and Ethylenediaminetetraacetic acid (EDTA, 99.4–100.6%)
were used for NaYF4:Yb,Tm particle synthesis. Titanium isopropoxide (TTIP, 97%), acety-
lacetone (Acac, ≥99%), ethanol (≥99.8%), and nitric acid (65%) were used in the process of
NaYF4:Yb,Tm particle coating. Tetracycline (TC, ≥98%) was used as an aqueous solution
with concentration of 10 mg L−1 for photocatalysis test.

4.2. Synthesis of β-NaYF4:Yb,Tm Particles (Core)

Up-converting particles with a nominal composition NaY0.78Yb0.2Tm0.02F4 were hy-
drothermally synthesized in the presence of EDTA using common rare earth (RE) nitrate
precursor (0.01 M) and NaF (RE:EDTA ratio of 1 and RE:F ratio of 14), in accordance with
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the previously established route [29]. The ethanol-water mixture (2:1) was used as a solvent.
The synthesis was performed in PTFE linen Berghof autoclave, BR-300 (Berghof Products +
Instruments GmbH, Eningen, Germany) at 200 ◦C (2 h), under stirring. The as-obtained
particles were separated through centrifugation (7000 rpm), rinsed with deionized water,
and dried at 100 ◦C (2 h).

4.3. Formation of TiO2-Acac Shell onto β-NaYF4:Yb,Tm Particles

The previously used procedure for the synthesis of TiO2-Acac nanoparticles [27]
was adopted here for the deposition of a 50 nm-thick TiO2-Acac shell over NaYF4:Yb,Tm
particles. For this purpose, 120 mg of as-obtained NaYF4:Yb,Tm particles were dispersed
in 1270 mL of ethanol, with the aid of stirring and ultrasonication. Then, 127 mL of
Acac:Ethanol solution (1:5) was added dropwise under continual stirring. After that,
183 mL of TTIP was added under vigorous stirring for 40 min. To initiate the hydrolysis
reaction of TTIP, 1098 mL of 0.015 M HNO3 was added under magnetic stirring, and
the obtained mixture was kept under heating at 60 ◦C until condensation and reddish
NaYF4:Yb,Tm@TiO2-Acac xerogel formation was finished. Xerogel, previously grounded
in an agate mortar, was dried at 100 ◦C, and the core-shell particles obtained after drying
were denoted as NaYF4:Yb,Tm@TiO2-Acac. A part of these was ultimately calcined at
300 ◦C for 2 h (NaYF4:Yb,Tm @TiO2-Acac 300).

4.4. Characterization

The materials phase composition was examined by X-ray powder diffraction (XRPD)
at room temperature, using a Bruker diffractometer D8 Advance (Bruker, Billerica, MA,
USA) with CuKα radiation (λ = 1.5418 Å) and 2θ scanning rate of 0.02 ◦/s. The morpholog-
ical and crystallographic particles characteristics were investigated using scanning electron
microscopy (SEM, Hitachi TM3000 operating at 15 kV, Hitachi High-Technologies Corpo-
ration, Tokio, Japan) and transmission electron microscopy (TEM, Jeol JEM-2100F, Tokio,
Japan). The images were acquired in conventional TEM and scanning TEM mode, coupled
with energy-dispersive X-ray spectroscopy (EDXS). Thermogravimetric analysis (TGA) was
performed on a Perkin-Elmer Simultaneous Thermal Analyzer STA-6000 (Perkin-Elmer,
Waltham, MA, USA) under airflow (20 mL min−1) within the temperature range from 30 to
800 ◦C. The heating rate was 10 ◦C min−1. Fourier transform infrared spectroscopy (FTIR)
was done on a Nicolet iS10 FT-IR Spectrometer (Thermo Scientific, Waltham, MA, USA)
in the spectral range from 400 to 4000 cm−1. UV-Vis absorption spectra were obtained in
a diffuse reflection mode using a Perkin-Elmer Lambda 650 UV/Vis spectrophotometer
(Perkin-Elmer, Waltham, MA, USA). Absorption data were used as input for Kubelka-Mulk
function to determine band-gap energies. The photoluminescence emission spectroscopy
(PL) at room temperature was performed using a TE Cooled CCD Fluorescence spectrome-
ter (Glacier X, BWTEK, Plainsboro, NJ, USA) and a laser diode of 976 nm. For measuring of
time resolved fluorescence, a RTB2004 Rohde & Schwarz digital oscilloscope was used.

The photocatalytic degradation of tetracycline solution (10 mg L−1) was performed
using the procedure previously described in [18]. Irradiation source comprised DULUX
D/E 26 W residential fluorescent lamp with an irradiance of 0.23 W cm−2 (400–700 nm)
and NIR LED diode SMB1N-980D of 400 mW (RoithnerLaserTechnik, Wien, Austria). The
tetracycline degradation tests were performed under vigorous magnetic stirring, using
200 mg L−1 of the core-shell material. Comparative photocatalytic tests were completed
using 25 mg L−1 of TiO2-Acac nanoparticles, since this amount corresponds to the theoret-
ical mass of the 50 nm-thick TiO2-Acac shell. After ensuring the adsorption–desorption
equilibrium in darkness (1 h) the lamps were turned on, and 5 mL aliquots of supernatant
were acquired at designed time intervals. The supernatant was double-filtered, using a
Merck Millipore filter (0.45 µm), and analyzed by a UV-Vis spectrophotometer (Agilent
8453, Santa Clara, CA, USA). The absorption band situated at 358 nm was used to deter-
mine the percentage of tetracycline photodegradation over a period of time (up to 6h) by
comparing the absorption of the filtered supernatant with that of the initial tetracycline
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solution. For tetracycline intermediates, photodegradation was determined from their
corresponding absorption bands, centered at 376 nm and at 382 nm.

The analyses of all the measurement data were performed using MS Excel (Office
LTSC Standard 2021 Education).

5. Conclusions

In this work, novel hybrid core-shell structures with broad-spectrum absorption
were successfully synthesized by a two-step wet chemical route. The core, composed
of up-converting NaYF4:Yb,Tm microcrystals, was prepared through the EDTA-assisted
hydrothermal process, while the shell of anatase TiO2-Acac was formed via the sol-gel
method. Owing to the fact that 1D2→3F4 and 1G4→3H6 emission of Tm3+ matches well
with the absorption edge of TiO2-Acac, radiation-reabsorption and FRET processes occur
in core-shell structures, improving the overall generation of reactive oxygen species and
improved degradation of tetracycline. In addition, formation of tetracycline intermediates
immediately after the addition of NaYF4:Yb,Tm@TiO2-Acac core-shell structures, making
them a promising material for water purification through the synergy of catalytic and
photocatalytic processes.
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