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Abstract 

Since the wind speed fluctuation could cause large instability in wind energy systems it is crucial 

to develop a method for precise estimation of the wind speed fluctuation. Fractal interpolation of 

the wind speed could be used to improve the accuracy of the estimation of the wind speed 

fluctuation. Based on the self-similarity feature, the fractal interpolation could be established 

from internal to external interval. In this article fractal interpolation was used to improve the 

wind speed fluctuation estimation by soft computing methods. Artificial neural network (ANN) 

with different training algorithms were used in order to estimate the wind speed fluctuation based 

on the fractal interpolation.  

 

Keywords: wind speed; fractal interpolation; soft computing; prediction. 

 

1. Introduction 

  

 Since the conventional energy sources are limited and the main reason of the world 

environmental pollution, there is need to increase the usage of renewable energy sources. One of 

the cleanest renewable energy is wind energy which becomes very popular energy sources 

recently. However, wind speed fluctuation is the main problem for the wind power generation 

since it is very randomness and uncontrollable [1].  

 Complex terrain could cause large fluctuation in wind speed. In other words the terrain 

topography could produce strongly variable wind speed [2]. There are some data-driven 

standardization schemes for wind speed estimation for different terrains [3]. There is large 

influence of the terrain on the wind speed fluctuation [4, 5]. Artificial neural networks (ANN) 

were applied to determine annual wind speed for some complex terrain [6]. Computational fluid 

dynamics (CFD) was also used for investigate the effect of the terrain features on the wind speed 

fluctuation [7, 8]. There is stochastic nature of the wind direction data over complex terrains [9, 
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10, 11]. Two-parameter Weibull probability density function was applied to model wind speed 

distribution but thus function cannot analyze the irregularity of the wind speed fluctuation [12].  

 Since wind speed fluctuation has very stochastic and unpredictably in nature, it is good to 

apply chaos theory based on fractal dimensions [13]. By this methodology the wind speed was 

modelled by the Weierstrass function with a fractal graph [14]. The wind speed series can show 

increment characteristic, decrement characteristic, periodical characteristic, or chaotic 

characteristic under different circumstance. 

 In this paper fractal characteristics of the wind speed fluctuation was analyzed. Detailed 

numerical procedure of the fractal characteristics was performed. Since the fractal characteristics 

were very nonlinear in nature, soft computing approach namely ANN, was applied in order to 

estimate the wind speed fluctuation based on the fractal characteristics. ANN model was trained 

with three training algorithms to investigate which algorithm could produce the best results.  

   

2. Materials and methods 

 

2.1.  Fractals 

 

Fractal geometry was introduced by Benoit Mandelbrot [15, 16].  Five years after, 

Barnsley was came with more comprehensible version of the fractal geometry [17]. Both agreed 

that fractals are an efficient toll for describing complex, non-Euclidean shapes. If  D denotes 

fractal dimension, the simple inequality D > DT , where DT is topological dimension, was 

suggested by Mandelbrot as an acceptable definition of fractal objects.  

The fractal geometry investigations were especially applied in the field of ceramics 

materials [18, 19]. After showing that ceramics grains surface is a fractal, the contact surface 

between two grains is to be understood as having much more complex geometry structure than it 

was thought before. The degree of knowledge concerning fractal object depends on the stride or 

length of the “yardstick” for measuring, i.e.  2/ 2( ) DA D Const    . Figure 1 shows the relationship 

between the surface area A, its fractal dimension D and the stride . 
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Figure 1: Size of the contact area A(, D) vs. fractal dimension D [20] 

 

Such considerations helped us to estimate the capacity of one micro-contact that occurs 

between two neighbor ceramics grains: 0
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From the last two formulas is clear that the surface area increases when  gets smaller; 

theoretically, for 1 ,fDH А   when 0  . [20] 

The diagram represents a graphical interpretation of dependance of the surface ( , )A D of 

the fractal object on fractal dimension D and the measure unit length, which is expressed by the 

formula 

 

2/ 2( , ) DA D Const      

 

This formula does not depend on measuring units. It becomes clear when it multiplies by 
2 
 

which makes both sides to become dimensionless quantities, and nevertheless the diagram 

retains the same qualitative form. 

 

2.2.  Fractal characteristic of wind speed fluctuation 

 

 The average wind velocity in majority of cases gradually increases with height. 

Theoretically, on the ground level (grass, the roughness of the soil, snow layer) wind velocity it 

is supposed to be zero. With increasing distance from the ground, friction effect decreases and 

wind velocity rapidly increases and then, increment becomes slower. It does not make big 

difference if the atmosphere is non-stationary or stationary. 

 General equations of atmosphere dynamics: 
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where  
  

  
 
  

  
 
  

  
 are components of air acceleration. With addition of molecular or turbulent 

viscosity,   (1) becomes   
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Since the air is a continuous media, the continuity equality is to be added 
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To complete this mathematical foundation, the equality of state 
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and the adiabatic equality have to be added 
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to get six equations with six unknown , , , , ,u v w p T . In the case of the heat flux /dQ dt  , the (5) 

is replaced by  
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 are given by 
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If the wind blows horizontally in average, upon the supposition of air incompressibility (

/ 0d dt  ), but pressure bias 'p p p   , the  eq. (2) gets the form 
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Now, the continuity equality (3) becomes  
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which, after multiplication with u and added to (8) and by v and added to (9) yields 
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and analogously for 
dv

dt
. By averaging all terms of (10) over the fixed time interval T, we get 
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Taking into account that ,xx yx
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u
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

 are tangential stresses, directed 

along the x-axis, depending on molecular viscosity   and different velocities along all three 

coordinates x, y and z, it is possible to rewrite the expression in curled brackets of (11) in the 

form 
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where 

 

' ' ', ' ' ', and ' ' 'xx yx zxu u u v u w                                                                                      [12] 

are known as Reynolds stresses. 

Now, the equation for the component u  of average movement can be written in the following 

form 
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According to Hinze [21] who first came forward with the hypothesis that the turbulent stress act 

like a viscous stress, i. e. they are directly proportional to the average velocity gradient. This 

means that 

 

' 'zx

u
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, 

 

where '  is called the coefficient of turbulent viscosity. Now, combining the last equality with 

(12), it holds 
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This transforms the term in square brackets from (13) into   
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where γ represents the turbulent viscosity. It introduces the possibility of approximation of 

individual derivatives mdu

dt
 and mdv

dt
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where the molecular viscosity is neglected as a result of the inequality '   that holds in 

nature. Quantities  

 
1 1

' ' ' ',xz yz

u v
k u w k v w

z z

 
    

      
    

           [15] 

 

are coefficients of turbulence (or turbulent diffusion) having dimension cm
2
/sec. In the case of 

anisotropic turbulence, 
xz yzk k . If the linearization of turbulence coefficients 0k k c z   is 

adopted, the last terms in (14) get the form 
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In the lower atmospheric layers, tangential stresses ' and 'yx zx   become dominant. In 

addition, the ground layer is characterized by constant values of ' and 'yx zx  which means that 

wind direction does not change by height. The thickness H of this ground layer may range 

between 20 m and 100 m. It is anyway widespread accepted H = 50 m. 

 

Turbulence may be characterized by L – ratio of turbulence. Propose that the stress   depends 

only on vertical velocity gradient
u

z




, on density  and turbulence ratio L i.e. 
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On  the other hand, it is reasonable to take  L z  where   is dimensionless (Von) Karman’s 

constant, describing the logarithmic  velocity profile of a turbulent fluid flow near a boundary 

with a no-slip condition
1
. Estimations for  vary from 0.38 to 0.41. 

 By analogy with (16), for turbulent atmosphere   can be replaced by k , so that 

 

u
k

z
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
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
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Comparison with (16) gives turbulence coefficient 

 

0 0k u L u z  .                                  [17] 

 

where the friction velocity 0 /u    represents shear stress term   for the fluid of density 

 , and  is Karman’s constant. Now, from (16) and (17) one deduces the wind profile 

differential equation combines the mean horizontal wind velocity u  blowing on the height z 

above the surface, under near-neutral conditions and with a homogeneous distribution of 

obstacles,  
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Integration gives 
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where 0z is known as roughness length (or roughness height), which is the height (above the 

surface) where the wind has zero speed. So, 

0

0

( ) ln
u z

u z
z

  .                   [18] 

 The formula (18) is known as wind profile logarithmic law, and the roughness length 

for some characteristic terrains is given in the Table 1. It is empirically set that 
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1 1

10 30
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where h is the height of the obstacle to the wind.  So, using (18), the wind speed vr, on the 

referent height zr, and v some other height z, one gets 
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wherefrom follows 
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The logarithmic law (18) can be derived from the Monin-Obukhov [22] similarity theory that is 

strictly applicable to steady-state horizontally homogeneous conditions in the surface layer. This 

theory says that statistical characteristics in flow dynamics are invariant with respect to similarity 

transformation [ ] [ ] ( 0)T Tx y ax ay a   and it is valid for 0z z  . In praxis the limits (19) for 

z0 are used, with the constants 1 21/10 to 1/ 30   . But, in more accurate setting, both 

1 2and   may vary depending on the environmental parameters, so it will be reasonable to use 

linear interpolation 

 

0 1 2(1 ) , 0 1z h h          .       [21] 

 

 On the other way, if we take into account fractality of the obstacles, the different 

formulas can be approached. Indeed, if an obstacle is some forest then, an intuitive image of 

some contains “thickness” as a first parameter. Some forests, like these in polar areas are very 
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sparse. On the other hand, some tropical forests are impossible to pass through. Some canopies 

are made of tinny leafs some has large heavy leaves, so that they absorb larger amount of energy 

from the wind blowing through such forest. The same is with crops, habitats, rocks, mountains 

etc. 

 In terms of, the “thickness” of the obstacle can be measured with fractal (Hausdorff) 

dimension Hd . The object of the average height h, can have fractal dimension between 2 and 3. 

In fact 2dH  , for an ideally flat ground surface. The other extreme, 3dH   is reserved for a 

solid wall or hill cliff with enough horizontal dimension in direction orthogonal to the wind 

vector, to prevent the wind passing. In this case, we may set 
2  , which implies nonlinear 

formula that will replace (21), and it is  
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 .       [22] 

 

Obviously, for ideally flat ground, 2dH  , so that (22) yields 
0 1z h . For dense, 

impenetrable obstacle, 3dH  , which gives  
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which is equivalent as 2  . 

Now, the formula (18) becomes 
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Table 1: Terrain classification from Davenport [23] adapted by Wieringa [24] in terms of aerodynamic roughness 

length z0 

Terrain description  z0 (m) 

1. Open sea, Fetch at least 5 km 0.0002 

2. Mud flats, snow; no vegetation, no obstacles 0.005 

3. Grass (stricken), H=3cm 0.007* 

4. Open flat terrain; grass, few isolated obstacles 0.03 

5. Low crops; occasional large obstacles, z/H > 20 0.10 

6. High crops; scattered obstacles, 15 < z/H  < 20 0.25 

7. Parkland, bushes; numerous obstacles, z/H  ≈ 10 0.5 

8. Regular large obstacle coverage (suburb, forest) 0.5-1.0 

9. City centre with high- and low-rise buildings ≥ 2 

*[25] 

 

  Four input parameters were selected for analysis: roughness length (roughness height): 

  , height-1:   , height-2:  , and wind speed at height-1:   . These parameters are considered 

influential on the wind speed at height-2.  

 

2.3.  Artificial neural network 

 

An artificial neural network (ANN) has three main layers: input layer, output layer and 

hidden layer. The main core of the ANN is transfer function which maps the inputs to the output. 

The transfer function operates according to the learning rule. In this study two learning rules 

were used: back-propagation and extreme learning machine. Figure 2 shows the main structure 

of ANN. Table 3 shows optimal parameters for the ANN model in this study.  

 

 
Figure 2: Structure of ANN 

  

Input 1 

Input 2 

Input 3 

Input 4 
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Table 2: Optimal parameters for the ANN modelling 

ANN parameters 

Number of layers 3 

Neurons 

Input: 4 

Hidden: 6 

Output: 1 

Number of iteration 10000 

Activation function Sigmoid 

Learning rule 1 Back-propagation (BP) 

Learning rule 2 Extreme learning machine (ELM) 

 

Data were divided in random training and testing groups and average results were 

presented for all different training and testing groups in order to generalize the models’ 

application. The average computation time for the ELM model was 380 seconds using a PC with 

Intel Core Duo CPU E7600 @3GHz and 4-GB RAM. The average computation time for the 

ANN with back propagation training algorithm using the same PC was 440 seconds. The 

following statistical indicators were used for the performance evaluation of models: root-mean-

square error (RMSE), Pearson correlation coefficient (r) and coefficient of determination (R
2
). 

 

2. Results and discussion 

 

 Figure 3(a) presents the prediction of developed ANN model with ELM learning rule. 

Figure 3(b) presents the prediction of developed ANN models with BP learning rule. It can be 

seen that the results of the ELM learning rule is slightly better than BP learning rule according to 

the coefficient of determination. The number of overestimated or underestimated values 

produced is limited. It is obvious that the predicted values have high level of precision for the 

both learning rules. Table 3 summarizes the prediction accuracy results for the two models based 

on the three statistical indicators RMSE, r and R
2
.      
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(b) 

  
(g) 

Figure 3: Wind speed fluctuation estimation by (a) ANN with ELM and (b) ANN with BP 

 

Table 3: Performance statistics of the ELM and BP models  

 

Learning rule 

Statistical indicator 

RMSE R
2
 r 

ELM  1.1965 0.9641 0.9818 

BP  1.33 0.9553 0.9774 
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3. Conclusion 

 

It is crucial to develop a method for precise estimation of the wind speed fluctuation since 

the wind speed fluctuation could cause large instability in wind energy system. Fractal 

interpolation of the wind speed was used in this study to improve the accuracy of the estimation 

of the wind speed fluctuation. In this article fractal interpolation was used to improve the wind 

speed fluctuation estimation by soft computing methods. Artificial neural network (ANN) with 

different training algorithms were used in order to estimate the wind speed fluctuation based on 

the fractal interpolation. Back-propagation (BP) and extreme learning machine (ELM) were used 

as the learning rules of the ANN model. ELM model shown the slightly better prediction 

accuracy than BP model for the wind speed fluctuation estimation.  
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Highlights 

 The fluctuation of wind speed affects energy conversion of wind energy systems.  

 Fractal characteristics of the wind speed series were analyzed.  

 An improved fractal interpolation to predict the wind speed series.  

 Prediction of the wind speed fractal representation was established.  

 

 




