Sort By
Publication Year
Deposit Date
Title
Type
Access
Publication Year
2020 (5)
2019 (3)
2018 (7)
2017 (3)
2016 (1)
2015 (9)
2014 (12)
2013 (10)
2012 (11)

Micro- Nanosystems and Sensors for Electric Power and Process Industry and Environmental Protection

Link to this page

info:eu-repo/grantAgreement/MESTD/Technological Development (TD or TR)/32008/RS//

Micro- Nanosystems and Sensors for Electric Power and Process Industry and Environmental Protection (en)
Микро, нано-системи и сензори за примену у електропривреди, процесној индустрији и заштити животне средине (sr)
Mikro, nano-sistemi i senzori za primenu u elektroprivredi, procesnoj industriji i zaštiti životne sredine (sr_RS)
Authors

Publications

Composite poly(DL-lactide-co-glycolide)/poly(acrylic acid) hydrogels synthesized using UV and gamma irradiation: comparison of material properties

Janićijević, Željko; Vujčić, Ivica; Veljović, Đorđe; Vujisić, Miloš; Radovanović, Filip

(Elsevier, 2020)

TY  - JOUR
AU  - Janićijević, Željko
AU  - Vujčić, Ivica
AU  - Veljović, Đorđe
AU  - Vujisić, Miloš
AU  - Radovanović, Filip
PY  - 2020
UR  - http://www.sciencedirect.com/science/article/pii/S0969806X19301380
UR  - http://dais.sanu.ac.rs/123456789/6943
AB  - Composite hydrogels capable of controlled drug delivery via ion exchange are an interesting group of materials for the construction of implantable drug reservoirs for electrically charged drugs. In this study, we synthesized composite poly(DL-lactide-co-glycolide)/poly(acrylic acid) (PLGA-PAA) hydrogels by sequential application of UV or gamma irradiation and traditional phase inversion. Physicochemical properties of the composite PLGA-PAA hydrogels were investigated using Fourier transform infrared spectroscopy with attenuated total reflectance (FTIR-ATR), scanning electron microscopy (SEM), and differential scanning calorimetry (DSC). We examined the ion exchange capacity (IEC) and swelling behavior of these materials to determine their potential as drug reservoirs. Composite PLGA-PAA hydrogel synthesized using UV irradiation (UV-PLGA-PAA) exhibited a porous microstructure with submicron-sized hydrogel-rich aggregates and homogeneous chemical composition. Swelling behavior and IEC of this material were highly reproducible. Composite PLGA-PAA hydrogels synthesized using gamma irradiation (G-PLGA-PAAs) had a less uniform microstructure with larger pores and micron-sized hydrogel-rich aggregates while exhibiting rather inhomogeneous chemical composition. These materials showed superior swelling properties, but a more variable IEC, compared to the material fabricated using UV irradiation. Results of DSC analysis showed a dose-dependent decrease in glass transition temperature for G-PLGA-PAAs indicating the effects of PLGA chain scission. Our findings indicate that gamma irradiation is a possible alternative to UV irradiation in the synthesis of composite PLGA-PAA hydrogels which can modify or control important material properties. However, the synthesis protocol using gamma irradiation should be further optimized to improve the IEC reproducibility. In our future research, we will investigate the in vitro release of charged drugs from synthesized composite PLGA-PAA hydrogels under physiological conditions.
PB  - Elsevier
T2  - Radiation Physics and Chemistry
T1  - Composite poly(DL-lactide-co-glycolide)/poly(acrylic acid) hydrogels synthesized using UV and gamma irradiation: comparison of material properties
SP  - 108466
VL  - 166
DO  - 10.1016/j.radphyschem.2019.108466
ER  - 
@article{
author = "Janićijević, Željko and Vujčić, Ivica and Veljović, Đorđe and Vujisić, Miloš and Radovanović, Filip",
year = "2020",
url = "http://www.sciencedirect.com/science/article/pii/S0969806X19301380, http://dais.sanu.ac.rs/123456789/6943",
abstract = "Composite hydrogels capable of controlled drug delivery via ion exchange are an interesting group of materials for the construction of implantable drug reservoirs for electrically charged drugs. In this study, we synthesized composite poly(DL-lactide-co-glycolide)/poly(acrylic acid) (PLGA-PAA) hydrogels by sequential application of UV or gamma irradiation and traditional phase inversion. Physicochemical properties of the composite PLGA-PAA hydrogels were investigated using Fourier transform infrared spectroscopy with attenuated total reflectance (FTIR-ATR), scanning electron microscopy (SEM), and differential scanning calorimetry (DSC). We examined the ion exchange capacity (IEC) and swelling behavior of these materials to determine their potential as drug reservoirs. Composite PLGA-PAA hydrogel synthesized using UV irradiation (UV-PLGA-PAA) exhibited a porous microstructure with submicron-sized hydrogel-rich aggregates and homogeneous chemical composition. Swelling behavior and IEC of this material were highly reproducible. Composite PLGA-PAA hydrogels synthesized using gamma irradiation (G-PLGA-PAAs) had a less uniform microstructure with larger pores and micron-sized hydrogel-rich aggregates while exhibiting rather inhomogeneous chemical composition. These materials showed superior swelling properties, but a more variable IEC, compared to the material fabricated using UV irradiation. Results of DSC analysis showed a dose-dependent decrease in glass transition temperature for G-PLGA-PAAs indicating the effects of PLGA chain scission. Our findings indicate that gamma irradiation is a possible alternative to UV irradiation in the synthesis of composite PLGA-PAA hydrogels which can modify or control important material properties. However, the synthesis protocol using gamma irradiation should be further optimized to improve the IEC reproducibility. In our future research, we will investigate the in vitro release of charged drugs from synthesized composite PLGA-PAA hydrogels under physiological conditions.",
publisher = "Elsevier",
journal = "Radiation Physics and Chemistry",
title = "Composite poly(DL-lactide-co-glycolide)/poly(acrylic acid) hydrogels synthesized using UV and gamma irradiation: comparison of material properties",
pages = "108466",
volume = "166",
doi = "10.1016/j.radphyschem.2019.108466"
}
Janićijević, Ž., Vujčić, I., Veljović, Đ., Vujisić, M.,& Radovanović, F. (2020). Composite poly(DL-lactide-co-glycolide)/poly(acrylic acid) hydrogels synthesized using UV and gamma irradiation: comparison of material properties.
Radiation Physics and ChemistryElsevier., 166, 108466. 
https://doi.org/10.1016/j.radphyschem.2019.108466
Janićijević Ž, Vujčić I, Veljović Đ, Vujisić M, Radovanović F. Composite poly(DL-lactide-co-glycolide)/poly(acrylic acid) hydrogels synthesized using UV and gamma irradiation: comparison of material properties. Radiation Physics and Chemistry. 2020;166:108466

Supplementary data for the article: Janićijević, Ž., Vujčić, I., Veljović, Đ., Vujisić, M., Radovanović, F., 2020. Composite poly(DL-lactide-co-glycolide)/poly(acrylic acid) hydrogels synthesized using UV and gamma irradiation: comparison of material properties. Radiation Physics and Chemistry 166, 108466. https://doi.org/10.1016/j.radphyschem.2019.108466

Janićijević, Željko; Vujčić, Ivica; Veljović, Đorđe; Vujisić, Miloš; Radovanović, Filip

(2020)

TY  - BOOK
AU  - Janićijević, Željko
AU  - Vujčić, Ivica
AU  - Veljović, Đorđe
AU  - Vujisić, Miloš
AU  - Radovanović, Filip
PY  - 2020
UR  - http://dais.sanu.ac.rs/123456789/6944
AB  - Composite hydrogels capable of controlled drug delivery via ion exchange are an interesting group of materials for the construction of implantable drug reservoirs for electrically charged drugs. In this study, we synthesized composite poly(DL-lactide-co-glycolide)/poly(acrylic acid) (PLGA-PAA) hydrogels by sequential application of UV or gamma irradiation and traditional phase inversion. Physicochemical properties of the composite PLGA-PAA hydrogels were investigated using Fourier transform infrared spectroscopy with attenuated total reflectance (FTIR-ATR), scanning electron microscopy (SEM), and differential scanning calorimetry (DSC). We examined the ion exchange capacity (IEC) and swelling behavior of these materials to determine their potential as drug reservoirs. Composite PLGA-PAA hydrogel synthesized using UV irradiation (UV-PLGA-PAA) exhibited a porous microstructure with submicron-sized hydrogel-rich aggregates and homogeneous chemical composition. Swelling behavior and IEC of this material were highly reproducible. Composite PLGA-PAA hydrogels synthesized using gamma irradiation (G-PLGA-PAAs) had a less uniform microstructure with larger pores and micron-sized hydrogel-rich aggregates while exhibiting rather inhomogeneous chemical composition. These materials showed superior swelling properties, but a more variable IEC, compared to the material fabricated using UV irradiation. Results of DSC analysis showed a dose-dependent decrease in glass transition temperature for G-PLGA-PAAs indicating the effects of PLGA chain scission. Our findings indicate that gamma irradiation is a possible alternative to UV irradiation in the synthesis of composite PLGA-PAA hydrogels which can modify or control important material properties. However, the synthesis protocol using gamma irradiation should be further optimized to improve the IEC reproducibility. In our future research, we will investigate the in vitro release of charged drugs from synthesized composite PLGA-PAA hydrogels under physiological conditions.
T2  - Radiation Physics and Chemistry
T1  - Supplementary data for the article: Janićijević, Ž., Vujčić, I., Veljović, Đ., Vujisić, M., Radovanović, F., 2020. Composite poly(DL-lactide-co-glycolide)/poly(acrylic acid) hydrogels synthesized using UV and gamma irradiation: comparison of material properties. Radiation Physics and Chemistry 166, 108466. https://doi.org/10.1016/j.radphyschem.2019.108466
VL  - 166
ER  - 
@misc{
author = "Janićijević, Željko and Vujčić, Ivica and Veljović, Đorđe and Vujisić, Miloš and Radovanović, Filip",
year = "2020",
url = "http://dais.sanu.ac.rs/123456789/6944",
abstract = "Composite hydrogels capable of controlled drug delivery via ion exchange are an interesting group of materials for the construction of implantable drug reservoirs for electrically charged drugs. In this study, we synthesized composite poly(DL-lactide-co-glycolide)/poly(acrylic acid) (PLGA-PAA) hydrogels by sequential application of UV or gamma irradiation and traditional phase inversion. Physicochemical properties of the composite PLGA-PAA hydrogels were investigated using Fourier transform infrared spectroscopy with attenuated total reflectance (FTIR-ATR), scanning electron microscopy (SEM), and differential scanning calorimetry (DSC). We examined the ion exchange capacity (IEC) and swelling behavior of these materials to determine their potential as drug reservoirs. Composite PLGA-PAA hydrogel synthesized using UV irradiation (UV-PLGA-PAA) exhibited a porous microstructure with submicron-sized hydrogel-rich aggregates and homogeneous chemical composition. Swelling behavior and IEC of this material were highly reproducible. Composite PLGA-PAA hydrogels synthesized using gamma irradiation (G-PLGA-PAAs) had a less uniform microstructure with larger pores and micron-sized hydrogel-rich aggregates while exhibiting rather inhomogeneous chemical composition. These materials showed superior swelling properties, but a more variable IEC, compared to the material fabricated using UV irradiation. Results of DSC analysis showed a dose-dependent decrease in glass transition temperature for G-PLGA-PAAs indicating the effects of PLGA chain scission. Our findings indicate that gamma irradiation is a possible alternative to UV irradiation in the synthesis of composite PLGA-PAA hydrogels which can modify or control important material properties. However, the synthesis protocol using gamma irradiation should be further optimized to improve the IEC reproducibility. In our future research, we will investigate the in vitro release of charged drugs from synthesized composite PLGA-PAA hydrogels under physiological conditions.",
journal = "Radiation Physics and Chemistry",
title = "Supplementary data for the article: Janićijević, Ž., Vujčić, I., Veljović, Đ., Vujisić, M., Radovanović, F., 2020. Composite poly(DL-lactide-co-glycolide)/poly(acrylic acid) hydrogels synthesized using UV and gamma irradiation: comparison of material properties. Radiation Physics and Chemistry 166, 108466. https://doi.org/10.1016/j.radphyschem.2019.108466",
volume = "166"
}
Janićijević, Ž., Vujčić, I., Veljović, Đ., Vujisić, M.,& Radovanović, F. (2020). Supplementary data for the article: Janićijević, Ž., Vujčić, I., Veljović, Đ., Vujisić, M., Radovanović, F., 2020. Composite poly(DL-lactide-co-glycolide)/poly(acrylic acid) hydrogels synthesized using UV and gamma irradiation: comparison of material properties. Radiation Physics and Chemistry 166, 108466. https://doi.org/10.1016/j.radphyschem.2019.108466.
Radiation Physics and Chemistry, 166. 
Janićijević Ž, Vujčić I, Veljović Đ, Vujisić M, Radovanović F. Supplementary data for the article: Janićijević, Ž., Vujčić, I., Veljović, Đ., Vujisić, M., Radovanović, F., 2020. Composite poly(DL-lactide-co-glycolide)/poly(acrylic acid) hydrogels synthesized using UV and gamma irradiation: comparison of material properties. Radiation Physics and Chemistry 166, 108466. https://doi.org/10.1016/j.radphyschem.2019.108466. Radiation Physics and Chemistry. 2020;166

Ideal efficiency of resonant cavity-enhanced perovskite solar cells

Đurić, Zoran; Jokić, Ivana

(Springer Science and Business Media LLC, 2020)

TY  - JOUR
AU  - Đurić, Zoran
AU  - Jokić, Ivana
PY  - 2020
UR  - http://dais.sanu.ac.rs/123456789/8975
AB  - Perovskite solar cells (PSCs) have attracted significant attention in recent years due to the rapid increase in device efficiency (reaching over 25% in 2019), ease of fabrication, and the potential to produce low-cost photovoltaic modules. In this paper we have determined the ideal power conversion efficiency and quantum efficiency of PSCs with the p–i–n device structure, where p is the hole transport layer, i is the perovskite absorber layer, and n is the electron transport layer. The absorption of incident light occurs in a thin perovskite layer, the thickness of which is comparable to the wavelength of absorbed light. We take into account interference effects when the PSC structure is represented by a Fabry–Perot resonator. The optical flux within the absorbing layer is calculated as a function of the spatial coordinate (in the direction of the layer thickness), for a certain wavelength, at the normal incident light. The power quantum efficiency is calculated assuming that the incident light source is a blackbody at the temperature of the Sun, as well as for the AM1.5g standard solar spectrum. The results obtained by using the derived expressions that take into account the interference effects are compared with those obtained by neglecting these effects.
PB  - Springer Science and Business Media LLC
T2  - Optical and Quantum Electronics
T1  - Ideal efficiency of resonant cavity-enhanced perovskite solar cells
VL  - 52
IS  - 5
DO  - 10.1007/s11082-020-02342-4
ER  - 
@article{
author = "Đurić, Zoran and Jokić, Ivana",
year = "2020",
url = "http://dais.sanu.ac.rs/123456789/8975",
abstract = "Perovskite solar cells (PSCs) have attracted significant attention in recent years due to the rapid increase in device efficiency (reaching over 25% in 2019), ease of fabrication, and the potential to produce low-cost photovoltaic modules. In this paper we have determined the ideal power conversion efficiency and quantum efficiency of PSCs with the p–i–n device structure, where p is the hole transport layer, i is the perovskite absorber layer, and n is the electron transport layer. The absorption of incident light occurs in a thin perovskite layer, the thickness of which is comparable to the wavelength of absorbed light. We take into account interference effects when the PSC structure is represented by a Fabry–Perot resonator. The optical flux within the absorbing layer is calculated as a function of the spatial coordinate (in the direction of the layer thickness), for a certain wavelength, at the normal incident light. The power quantum efficiency is calculated assuming that the incident light source is a blackbody at the temperature of the Sun, as well as for the AM1.5g standard solar spectrum. The results obtained by using the derived expressions that take into account the interference effects are compared with those obtained by neglecting these effects.",
publisher = "Springer Science and Business Media LLC",
journal = "Optical and Quantum Electronics",
title = "Ideal efficiency of resonant cavity-enhanced perovskite solar cells",
volume = "52",
number = "5",
doi = "10.1007/s11082-020-02342-4"
}
Đurić, Z.,& Jokić, I. (2020). Ideal efficiency of resonant cavity-enhanced perovskite solar cells.
Optical and Quantum ElectronicsSpringer Science and Business Media LLC., 52(5). 
https://doi.org/10.1007/s11082-020-02342-4
Đurić Z, Jokić I. Ideal efficiency of resonant cavity-enhanced perovskite solar cells. Optical and Quantum Electronics. 2020;52(5)

The Nano-Scale Modified BaTiO3 Morphology Influence on Electronic Properties and Ceramics Fractal Nature Frontiers

Mitić, Vojislav V.; Lazović, Goran; Lu, Chun-An; Paunović, Vesna; Radović, Ivana; Stajčić, Aleksandar; Vlahović, Branislav

(Basel : MDPI, 2020)

TY  - JOUR
AU  - Mitić, Vojislav V.
AU  - Lazović, Goran
AU  - Lu, Chun-An
AU  - Paunović, Vesna
AU  - Radović, Ivana
AU  - Stajčić, Aleksandar
AU  - Vlahović, Branislav
PY  - 2020
UR  - http://dais.sanu.ac.rs/123456789/8957
AB  - The BaTiO3 ceramics applications based on electronic properties have very high gradient scientific and industrial-technological interests. Our scientific research has been based on nano BaTiO3 modified with Yttrium based organometallic salt (MOD-Y). The samples have been consolidated at a sintering temperature of 1350 °C. Within the study, the new frontiers for different electronic properties between the layers of BaTiO3 grains have been introduced. The research target was grain boundary investigations and the influence on dielectric properties. After scanning electron microscopy and dielectric measurements, it has been established that modified BaTiO3 samples with larger grains showed a better compact state that led to a higher dielectric constant value. DC bias stability was also investigated and showed a connection between the grain size and capacitance stability. Analyses of functions that could approximate experimental curves were successfully employed. Practical application of fractal corrections was performed, based on surface (αs) and pore size (αp) corrections, which resulted in obtainment of the relation between the capacitance and Curie temperature. Successful introduction of fractal corrections for capacitance-Curie temperature dependence for a set of experimental data is an important step towards further miniaturization of intergranular capacitors. © 2020 by the authors.
PB  - Basel : MDPI
T2  - Applied Sciences (Switzerland)
T1  - The Nano-Scale Modified BaTiO3 Morphology Influence on Electronic Properties and Ceramics Fractal Nature Frontiers
SP  - 3485
VL  - 10
IS  - 10
DO  - 10.3390/app10103485
ER  - 
@article{
author = "Mitić, Vojislav V. and Lazović, Goran and Lu, Chun-An and Paunović, Vesna and Radović, Ivana and Stajčić, Aleksandar and Vlahović, Branislav",
year = "2020",
url = "http://dais.sanu.ac.rs/123456789/8957",
abstract = "The BaTiO3 ceramics applications based on electronic properties have very high gradient scientific and industrial-technological interests. Our scientific research has been based on nano BaTiO3 modified with Yttrium based organometallic salt (MOD-Y). The samples have been consolidated at a sintering temperature of 1350 °C. Within the study, the new frontiers for different electronic properties between the layers of BaTiO3 grains have been introduced. The research target was grain boundary investigations and the influence on dielectric properties. After scanning electron microscopy and dielectric measurements, it has been established that modified BaTiO3 samples with larger grains showed a better compact state that led to a higher dielectric constant value. DC bias stability was also investigated and showed a connection between the grain size and capacitance stability. Analyses of functions that could approximate experimental curves were successfully employed. Practical application of fractal corrections was performed, based on surface (αs) and pore size (αp) corrections, which resulted in obtainment of the relation between the capacitance and Curie temperature. Successful introduction of fractal corrections for capacitance-Curie temperature dependence for a set of experimental data is an important step towards further miniaturization of intergranular capacitors. © 2020 by the authors.",
publisher = "Basel : MDPI",
journal = "Applied Sciences (Switzerland)",
title = "The Nano-Scale Modified BaTiO3 Morphology Influence on Electronic Properties and Ceramics Fractal Nature Frontiers",
pages = "3485",
volume = "10",
number = "10",
doi = "10.3390/app10103485"
}
Mitić, V. V., Lazović, G., Lu, C., Paunović, V., Radović, I., Stajčić, A.,& Vlahović, B. (2020). The Nano-Scale Modified BaTiO3 Morphology Influence on Electronic Properties and Ceramics Fractal Nature Frontiers.
Applied Sciences (Switzerland)Basel : MDPI., 10(10), 3485. 
https://doi.org/10.3390/app10103485
Mitić VV, Lazović G, Lu C, Paunović V, Radović I, Stajčić A, Vlahović B. The Nano-Scale Modified BaTiO3 Morphology Influence on Electronic Properties and Ceramics Fractal Nature Frontiers. Applied Sciences (Switzerland). 2020;10(10):3485
1

Ideal efficiency of resonant cavity-enhanced perovskite solar cells

Đurić, Zoran; Jokić, Ivana

(Springer Science and Business Media LLC, 2020)

TY  - JOUR
AU  - Đurić, Zoran
AU  - Jokić, Ivana
PY  - 2020
UR  - http://dais.sanu.ac.rs/123456789/8727
AB  - Perovskite solar cells (PSCs) have attracted significant attention in recent years due to the rapid increase in device efficiency (reaching over 25% in 2019), ease of fabrication, and the potential to produce low-cost photovoltaic modules. In this paper we have determined the ideal power conversion efficiency and quantum efficiency of PSCs with the p–i–n device structure, where p is the hole transport layer, i is the perovskite absorber layer, and n is the electron transport layer. The absorption of incident light occurs in a thin perovskite layer, the thickness of which is comparable to the wavelength of absorbed light. We take into account interference effects when the PSC structure is represented by a Fabry–Perot resonator. The optical flux within the absorbing layer is calculated as a function of the spatial coordinate (in the direction of the layer thickness), for a certain wavelength, at the normal incident light. The power quantum efficiency is calculated assuming that the incident light source is a blackbody at the temperature of the Sun, as well as for the AM1.5g standard solar spectrum. The results obtained by using the derived expressions that take into account the interference effects are compared with those obtained by neglecting these effects.
PB  - Springer Science and Business Media LLC
T2  - Optical and Quantum Electronics
T1  - Ideal efficiency of resonant cavity-enhanced perovskite solar cells
VL  - 52
IS  - 5
DO  - 10.1007/s11082-020-02342-4
ER  - 
@article{
author = "Đurić, Zoran and Jokić, Ivana",
year = "2020",
url = "http://dais.sanu.ac.rs/123456789/8727",
abstract = "Perovskite solar cells (PSCs) have attracted significant attention in recent years due to the rapid increase in device efficiency (reaching over 25% in 2019), ease of fabrication, and the potential to produce low-cost photovoltaic modules. In this paper we have determined the ideal power conversion efficiency and quantum efficiency of PSCs with the p–i–n device structure, where p is the hole transport layer, i is the perovskite absorber layer, and n is the electron transport layer. The absorption of incident light occurs in a thin perovskite layer, the thickness of which is comparable to the wavelength of absorbed light. We take into account interference effects when the PSC structure is represented by a Fabry–Perot resonator. The optical flux within the absorbing layer is calculated as a function of the spatial coordinate (in the direction of the layer thickness), for a certain wavelength, at the normal incident light. The power quantum efficiency is calculated assuming that the incident light source is a blackbody at the temperature of the Sun, as well as for the AM1.5g standard solar spectrum. The results obtained by using the derived expressions that take into account the interference effects are compared with those obtained by neglecting these effects.",
publisher = "Springer Science and Business Media LLC",
journal = "Optical and Quantum Electronics",
title = "Ideal efficiency of resonant cavity-enhanced perovskite solar cells",
volume = "52",
number = "5",
doi = "10.1007/s11082-020-02342-4"
}
Đurić, Z.,& Jokić, I. (2020). Ideal efficiency of resonant cavity-enhanced perovskite solar cells.
Optical and Quantum ElectronicsSpringer Science and Business Media LLC., 52(5). 
https://doi.org/10.1007/s11082-020-02342-4
Đurić Z, Jokić I. Ideal efficiency of resonant cavity-enhanced perovskite solar cells. Optical and Quantum Electronics. 2020;52(5)

Analysis of Intrinsic Stochastic Fluctuations of the Time Response of Adsorption-Based Microfluidic Bio/Chemical Sensors: the Case of Bianalyte Mixtures

Jokić, Ivana; Đurić, Zoran G.; Radulović, Katarina; Frantlović, Miloš; Krstajić, Predrag

(Institute of Electrical and Electronics Engineers (IEEE), 2019)

TY  - CONF
AU  - Jokić, Ivana
AU  - Đurić, Zoran G.
AU  - Radulović, Katarina
AU  - Frantlović, Miloš
AU  - Krstajić, Predrag
PY  - 2019
UR  - http://dais.sanu.ac.rs/123456789/6918
AB  - Real-time in situ operation of bio/chemical sensors assumes detection of chemical substances or biological specimens in samples of complex composition. Since sensor selectivity cannot be ideal, adsorption of particles other than target particles inevitably occur on the sensing surface. That affects the sensor response and its intrinsic fluctuations which are caused by stochastic fluctuations of the numbers of adsorbed particles of all the adsorbing substances. In microfluidic sensors, such response fluctuations are a result of coupled adsorption, desorption and mass transfer (convection and diffusion) processes of analyte particles. Analysis of these fluctuations is important because they constitute the adsorption-desorption noise, which limits the sensing performance. In this work we perform the analysis of fluctuations by using a stochastic model of sensor response after the steady state is reached, in the case of two-analyte adsorption, considering mass transfer processes. The results enable estimation of the ultimate sensing performance of adsorption-based microfluidic bio/chemical sensors of different sensing areas, operating in bianalyte mixture environments.
PB  - Institute of Electrical and Electronics Engineers (IEEE)
C3  - 2019 IEEE 31st International Conference on Microelectronics, MIEL 2019 - Proceedings
T1  - Analysis of Intrinsic Stochastic Fluctuations of the Time Response of Adsorption-Based Microfluidic Bio/Chemical Sensors: the Case of Bianalyte Mixtures
SP  - 161
EP  - 164
DO  - 10.1109/MIEL.2019.8889579
ER  - 
@conference{
author = "Jokić, Ivana and Đurić, Zoran G. and Radulović, Katarina and Frantlović, Miloš and Krstajić, Predrag",
year = "2019",
url = "http://dais.sanu.ac.rs/123456789/6918",
abstract = "Real-time in situ operation of bio/chemical sensors assumes detection of chemical substances or biological specimens in samples of complex composition. Since sensor selectivity cannot be ideal, adsorption of particles other than target particles inevitably occur on the sensing surface. That affects the sensor response and its intrinsic fluctuations which are caused by stochastic fluctuations of the numbers of adsorbed particles of all the adsorbing substances. In microfluidic sensors, such response fluctuations are a result of coupled adsorption, desorption and mass transfer (convection and diffusion) processes of analyte particles. Analysis of these fluctuations is important because they constitute the adsorption-desorption noise, which limits the sensing performance. In this work we perform the analysis of fluctuations by using a stochastic model of sensor response after the steady state is reached, in the case of two-analyte adsorption, considering mass transfer processes. The results enable estimation of the ultimate sensing performance of adsorption-based microfluidic bio/chemical sensors of different sensing areas, operating in bianalyte mixture environments.",
publisher = "Institute of Electrical and Electronics Engineers (IEEE)",
journal = "2019 IEEE 31st International Conference on Microelectronics, MIEL 2019 - Proceedings",
title = "Analysis of Intrinsic Stochastic Fluctuations of the Time Response of Adsorption-Based Microfluidic Bio/Chemical Sensors: the Case of Bianalyte Mixtures",
pages = "161-164",
doi = "10.1109/MIEL.2019.8889579"
}
Jokić, I., Đurić, Z. G., Radulović, K., Frantlović, M.,& Krstajić, P. (2019). Analysis of Intrinsic Stochastic Fluctuations of the Time Response of Adsorption-Based Microfluidic Bio/Chemical Sensors: the Case of Bianalyte Mixtures.
2019 IEEE 31st International Conference on Microelectronics, MIEL 2019 - ProceedingsInstitute of Electrical and Electronics Engineers (IEEE)., null, 161-164. 
https://doi.org/10.1109/MIEL.2019.8889579
Jokić I, Đurić ZG, Radulović K, Frantlović M, Krstajić P. Analysis of Intrinsic Stochastic Fluctuations of the Time Response of Adsorption-Based Microfluidic Bio/Chemical Sensors: the Case of Bianalyte Mixtures. 2019 IEEE 31st International Conference on Microelectronics, MIEL 2019 - Proceedings. 2019;:161-164

Analysis of Intrinsic Stochastic Fluctuations of the Time Response of Adsorption-Based Microfluidic Bio/Chemical Sensors: the Case of Bianalyte Mixtures

Jokić, Ivana; Đurić, Zoran G.; Radulović, Katarina; Frantlović, Miloš; Krstajić, Predrag

(Institute of Electrical and Electronics Engineers (IEEE), 2019)

TY  - CONF
AU  - Jokić, Ivana
AU  - Đurić, Zoran G.
AU  - Radulović, Katarina
AU  - Frantlović, Miloš
AU  - Krstajić, Predrag
PY  - 2019
UR  - http://dais.sanu.ac.rs/123456789/6909
AB  - Real-time in situ operation of bio/chemical sensors assumes detection of chemical substances or biological specimens in samples of complex composition. Since sensor selectivity cannot be ideal, adsorption of particles other than target particles inevitably occur on the sensing surface. That affects the sensor response and its intrinsic fluctuations which are caused by stochastic fluctuations of the numbers of adsorbed particles of all the adsorbing substances. In microfluidic sensors, such response fluctuations are a result of coupled adsorption, desorption and mass transfer (convection and diffusion) processes of analyte particles. Analysis of these fluctuations is important because they constitute the adsorption-desorption noise, which limits the sensing performance. In this work we perform the analysis of fluctuations by using a stochastic model of sensor response after the steady state is reached, in the case of two-analyte adsorption, considering mass transfer processes. The results enable estimation of the ultimate sensing performance of adsorption-based microfluidic bio/chemical sensors of different sensing areas, operating in bianalyte mixture environments.
PB  - Institute of Electrical and Electronics Engineers (IEEE)
C3  - 2019 IEEE 31st International Conference on Microelectronics, MIEL 2019 - Proceedings
T1  - Analysis of Intrinsic Stochastic Fluctuations of the Time Response of Adsorption-Based Microfluidic Bio/Chemical Sensors: the Case of Bianalyte Mixtures
SP  - 161
EP  - 164
DO  - 10.1109/MIEL.2019.8889579
ER  - 
@conference{
author = "Jokić, Ivana and Đurić, Zoran G. and Radulović, Katarina and Frantlović, Miloš and Krstajić, Predrag",
year = "2019",
url = "http://dais.sanu.ac.rs/123456789/6909",
abstract = "Real-time in situ operation of bio/chemical sensors assumes detection of chemical substances or biological specimens in samples of complex composition. Since sensor selectivity cannot be ideal, adsorption of particles other than target particles inevitably occur on the sensing surface. That affects the sensor response and its intrinsic fluctuations which are caused by stochastic fluctuations of the numbers of adsorbed particles of all the adsorbing substances. In microfluidic sensors, such response fluctuations are a result of coupled adsorption, desorption and mass transfer (convection and diffusion) processes of analyte particles. Analysis of these fluctuations is important because they constitute the adsorption-desorption noise, which limits the sensing performance. In this work we perform the analysis of fluctuations by using a stochastic model of sensor response after the steady state is reached, in the case of two-analyte adsorption, considering mass transfer processes. The results enable estimation of the ultimate sensing performance of adsorption-based microfluidic bio/chemical sensors of different sensing areas, operating in bianalyte mixture environments.",
publisher = "Institute of Electrical and Electronics Engineers (IEEE)",
journal = "2019 IEEE 31st International Conference on Microelectronics, MIEL 2019 - Proceedings",
title = "Analysis of Intrinsic Stochastic Fluctuations of the Time Response of Adsorption-Based Microfluidic Bio/Chemical Sensors: the Case of Bianalyte Mixtures",
pages = "161-164",
doi = "10.1109/MIEL.2019.8889579"
}
Jokić, I., Đurić, Z. G., Radulović, K., Frantlović, M.,& Krstajić, P. (2019). Analysis of Intrinsic Stochastic Fluctuations of the Time Response of Adsorption-Based Microfluidic Bio/Chemical Sensors: the Case of Bianalyte Mixtures.
2019 IEEE 31st International Conference on Microelectronics, MIEL 2019 - ProceedingsInstitute of Electrical and Electronics Engineers (IEEE)., null, 161-164. 
https://doi.org/10.1109/MIEL.2019.8889579
Jokić I, Đurić ZG, Radulović K, Frantlović M, Krstajić P. Analysis of Intrinsic Stochastic Fluctuations of the Time Response of Adsorption-Based Microfluidic Bio/Chemical Sensors: the Case of Bianalyte Mixtures. 2019 IEEE 31st International Conference on Microelectronics, MIEL 2019 - Proceedings. 2019;:161-164

Analysis of the Fundamental Detection Limit in Microfluidic Chemical and Biological Sensors

Jokić, Ivana; Radulović, Katarina; Frantlović, Miloš; Đurić, Zoran G.; Cvetanović Zobenica, Katarina; Krstajić, Predrag

(Belgrade : ETRAN, 2019)

TY  - CONF
AU  - Jokić, Ivana
AU  - Radulović, Katarina
AU  - Frantlović, Miloš
AU  - Đurić, Zoran G.
AU  - Cvetanović Zobenica, Katarina
AU  - Krstajić, Predrag
PY  - 2019
UR  - http://dais.sanu.ac.rs/123456789/6961
AB  - Detection limits in microfluidic chemical and biological sensors, which determine the range of analyte concentrations reliably detectable by the sensor, are important sensor parameters. The lower limit of detection, defined as the lowest concentration that can be distinguished from noise, has its minimum determined by the fundamental adsorption-desorption (AD) noise, inevitable in adsorption-based devices. In this work, we analyze this fundamental detection limit, particularly considering the influence of mass transfer processes in microfluidic devices. For that purpose, we derive the expression for the sensor’s signal-to-noise ratio (SNR), which takes into account the AD noise, and then the equation for the minimal analyte concentration at which the SNR has a sufficiently high value for reliable analyte detection. Subsequently, we analyze the mass transfer influence on the sensor’s maximal achievable signal-to-noise ratio and on the fundamental detection limit. The results of the analysis show a significant mass transfer influence on these important sensor performance metrics. They also provide guidelines for achieving the sensor’s best possible detection performance through the optimization of the sensor design and operating conditions.
PB  - Belgrade : ETRAN
PB  - Belgrade :Academic Mind
C3  - Proceedings of Papers – 6th International Conference on Electrical, Electronic and Computing Engineering, IcETRAN 2019, Silver Lake, Serbia, June 03 – 06, 2019 / Zbornik radova - 63. Konferencija za elektroniku, telekomunikacije, računarstvo, automatiku i nuklearnu tehniku, Srebrno jezero, 03 – 06. juna, 2019. godine
T1  - Analysis of the Fundamental Detection Limit in Microfluidic Chemical and Biological Sensors
SP  - 571
EP  - 574
ER  - 
@conference{
author = "Jokić, Ivana and Radulović, Katarina and Frantlović, Miloš and Đurić, Zoran G. and Cvetanović Zobenica, Katarina and Krstajić, Predrag",
year = "2019",
url = "http://dais.sanu.ac.rs/123456789/6961",
abstract = "Detection limits in microfluidic chemical and biological sensors, which determine the range of analyte concentrations reliably detectable by the sensor, are important sensor parameters. The lower limit of detection, defined as the lowest concentration that can be distinguished from noise, has its minimum determined by the fundamental adsorption-desorption (AD) noise, inevitable in adsorption-based devices. In this work, we analyze this fundamental detection limit, particularly considering the influence of mass transfer processes in microfluidic devices. For that purpose, we derive the expression for the sensor’s signal-to-noise ratio (SNR), which takes into account the AD noise, and then the equation for the minimal analyte concentration at which the SNR has a sufficiently high value for reliable analyte detection. Subsequently, we analyze the mass transfer influence on the sensor’s maximal achievable signal-to-noise ratio and on the fundamental detection limit. The results of the analysis show a significant mass transfer influence on these important sensor performance metrics. They also provide guidelines for achieving the sensor’s best possible detection performance through the optimization of the sensor design and operating conditions.",
publisher = "Belgrade : ETRAN, Belgrade :Academic Mind",
journal = "Proceedings of Papers – 6th International Conference on Electrical, Electronic and Computing Engineering, IcETRAN 2019, Silver Lake, Serbia, June 03 – 06, 2019 / Zbornik radova - 63. Konferencija za elektroniku, telekomunikacije, računarstvo, automatiku i nuklearnu tehniku, Srebrno jezero, 03 – 06. juna, 2019. godine",
title = "Analysis of the Fundamental Detection Limit in Microfluidic Chemical and Biological Sensors",
pages = "571-574"
}
Jokić, I., Radulović, K., Frantlović, M., Đurić, Z. G., Cvetanović Zobenica, K.,& Krstajić, P. (2019). Analysis of the Fundamental Detection Limit in Microfluidic Chemical and Biological Sensors.
Proceedings of Papers – 6th International Conference on Electrical, Electronic and Computing Engineering, IcETRAN 2019, Silver Lake, Serbia, June 03 – 06, 2019 / Zbornik radova - 63. Konferencija za elektroniku, telekomunikacije, računarstvo, automatiku i nuklearnu tehniku, Srebrno jezero, 03 – 06. juna, 2019. godineBelgrade : ETRAN., null, 571-574. 
Jokić I, Radulović K, Frantlović M, Đurić ZG, Cvetanović Zobenica K, Krstajić P. Analysis of the Fundamental Detection Limit in Microfluidic Chemical and Biological Sensors. Proceedings of Papers – 6th International Conference on Electrical, Electronic and Computing Engineering, IcETRAN 2019, Silver Lake, Serbia, June 03 – 06, 2019 / Zbornik radova - 63. Konferencija za elektroniku, telekomunikacije, računarstvo, automatiku i nuklearnu tehniku, Srebrno jezero, 03 – 06. juna, 2019. godine. 2019;:571-574

Polyethersulfone/poly(acrylic acid) composite hydrogel membrane reservoirs for controlled delivery of cationic drug formulations

Janićijević, Željko; Radovanović, Filip

(Elsevier, 2018)

TY  - JOUR
AU  - Janićijević, Željko
AU  - Radovanović, Filip
PY  - 2018
UR  - http://dais.sanu.ac.rs/123456789/3391
AB  - We present the innovative synthesis of polyethersulfone/poly(acrylic acid) composite hydrogel membranes
performed by combining photoirradiation with a traditional liquid phase inversion process.
Fabricated membranes exhibited ion exchange capacity and water content as high as 5.2 mmol/g and
75%, respectively. The chemical composition of the membranes was determined using FTIR-ATR and their
microstructure was examined with SEM. Our findings suggest that the use of hydrophilic crosslinker was
crucial for the synthesis of symmetric and mechanically stable composite hydrogel membranes. Passive
and iontophoretic release kinetics from membrane reservoirs synthesized with the hydrophilic crosslinker
were investigated in vitro using methylene blue as a model drug. Passive release kinetics was
diffusion-controlled with pH-sensitive and loading-dependent behavior. Linear release kinetics was
demonstrated during the iontophoretic release. Synthesized composite hydrogel membranes hold a lot of
promise as compact stand-alone reservoirs for passive and iontophoretic delivery of cationic drugs.
PB  - Elsevier
T2  - Polymer
T1  - Polyethersulfone/poly(acrylic acid) composite hydrogel membrane reservoirs for controlled delivery of cationic drug formulations
SP  - 56
EP  - 66
VL  - 147
DO  - 10.1016/j.polymer.2018.05.065
ER  - 
@article{
author = "Janićijević, Željko and Radovanović, Filip",
year = "2018",
url = "http://dais.sanu.ac.rs/123456789/3391",
abstract = "We present the innovative synthesis of polyethersulfone/poly(acrylic acid) composite hydrogel membranes
performed by combining photoirradiation with a traditional liquid phase inversion process.
Fabricated membranes exhibited ion exchange capacity and water content as high as 5.2 mmol/g and
75%, respectively. The chemical composition of the membranes was determined using FTIR-ATR and their
microstructure was examined with SEM. Our findings suggest that the use of hydrophilic crosslinker was
crucial for the synthesis of symmetric and mechanically stable composite hydrogel membranes. Passive
and iontophoretic release kinetics from membrane reservoirs synthesized with the hydrophilic crosslinker
were investigated in vitro using methylene blue as a model drug. Passive release kinetics was
diffusion-controlled with pH-sensitive and loading-dependent behavior. Linear release kinetics was
demonstrated during the iontophoretic release. Synthesized composite hydrogel membranes hold a lot of
promise as compact stand-alone reservoirs for passive and iontophoretic delivery of cationic drugs.",
publisher = "Elsevier",
journal = "Polymer",
title = "Polyethersulfone/poly(acrylic acid) composite hydrogel membrane reservoirs for controlled delivery of cationic drug formulations",
pages = "56-66",
volume = "147",
doi = "10.1016/j.polymer.2018.05.065"
}
Janićijević, Ž.,& Radovanović, F. (2018). Polyethersulfone/poly(acrylic acid) composite hydrogel membrane reservoirs for controlled delivery of cationic drug formulations.
PolymerElsevier., 147, 56-66. 
https://doi.org/10.1016/j.polymer.2018.05.065
Janićijević Ž, Radovanović F. Polyethersulfone/poly(acrylic acid) composite hydrogel membrane reservoirs for controlled delivery of cationic drug formulations. Polymer. 2018;147:56-66
5
4
5

Analysis of Stochastic Time Response of Microfluidic Biosensors in the Case of Competitive Adsorption of Two Analytes

Jokić, Ivana; Đurić, Zoran G.; Radulović, Katarina; Frantlović, Miloš

(Basel : MDPI, 2018)

TY  - CONF
AU  - Jokić, Ivana
AU  - Đurić, Zoran G.
AU  - Radulović, Katarina
AU  - Frantlović, Miloš
PY  - 2018
UR  - https://www.mdpi.com/2504-3900/2/13/991
UR  - http://dais.sanu.ac.rs/123456789/4715
AB  - A model of stochastic time response of adsorption-based microfluidic biosensors is presented, that considers the competitive adsorption-desorption process coupled with mass transfer of two analytes. By using the model we analyze the expected value of the adsorbed particles number of each analyte, which determine the sensor response kinetics. The comparison with the case when only one analyte exists is used for investigation of the influence of competitive adsorption on the sensor response. The response kinetics analyzed by using the stochastic model is compared with the kinetics predicted by the deterministic response model. The results are useful for optimization of micro/nanosensors intended for detection of substances in ultra-low concentrations in complex samples.
PB  - Basel : MDPI
C3  - Proceedings, Volume 2, Eurosensors 2018
T1  - Analysis of Stochastic Time Response of Microfluidic Biosensors in the Case of Competitive Adsorption of Two Analytes
SP  - 991
VL  - 2
IS  - 13
DO  - 10.3390/proceedings2130991
ER  - 
@conference{
author = "Jokić, Ivana and Đurić, Zoran G. and Radulović, Katarina and Frantlović, Miloš",
year = "2018",
url = "https://www.mdpi.com/2504-3900/2/13/991, http://dais.sanu.ac.rs/123456789/4715",
abstract = "A model of stochastic time response of adsorption-based microfluidic biosensors is presented, that considers the competitive adsorption-desorption process coupled with mass transfer of two analytes. By using the model we analyze the expected value of the adsorbed particles number of each analyte, which determine the sensor response kinetics. The comparison with the case when only one analyte exists is used for investigation of the influence of competitive adsorption on the sensor response. The response kinetics analyzed by using the stochastic model is compared with the kinetics predicted by the deterministic response model. The results are useful for optimization of micro/nanosensors intended for detection of substances in ultra-low concentrations in complex samples.",
publisher = "Basel : MDPI",
journal = "Proceedings, Volume 2, Eurosensors 2018",
title = "Analysis of Stochastic Time Response of Microfluidic Biosensors in the Case of Competitive Adsorption of Two Analytes",
pages = "991",
volume = "2",
number = "13",
doi = "10.3390/proceedings2130991"
}
Jokić, I., Đurić, Z. G., Radulović, K.,& Frantlović, M. (2018). Analysis of Stochastic Time Response of Microfluidic Biosensors in the Case of Competitive Adsorption of Two Analytes.
Proceedings, Volume 2, Eurosensors 2018Basel : MDPI., 2(13), 991. 
https://doi.org/10.3390/proceedings2130991
Jokić I, Đurić ZG, Radulović K, Frantlović M. Analysis of Stochastic Time Response of Microfluidic Biosensors in the Case of Competitive Adsorption of Two Analytes. Proceedings, Volume 2, Eurosensors 2018. 2018;2(13):991
1

Steady-state analysis of stochastic time response of chemical and biological microfluidic sensors

Jokić, Ivana; Đurić, Zoran G.; Radulović, Katarina; Frantlović, Miloš; Krstajić, Predrag; Cvetanović Zobenica, Katarina

(ETRAN, 2018)

TY  - CONF
AU  - Jokić, Ivana
AU  - Đurić, Zoran G.
AU  - Radulović, Katarina
AU  - Frantlović, Miloš
AU  - Krstajić, Predrag
AU  - Cvetanović Zobenica, Katarina
PY  - 2018
UR  - https://www.etran.rs/2018/IcETRAN/News/IcETRAN%20sumarni%20program%20sekcija_Ver.%204.3%20(1).pdf
UR  - http://dais.sanu.ac.rs/123456789/4630
AB  - In this paper we first give a short review of two stochastic models describing both the expected value and variance of the random number of adsorbed particles in microfluidic adsorption-based chemical and biological sensors. One model takes into account the influence of coupling of stochastic adsorptiondesorption processes and mass transfer on the change of the number of adsorbed particles, while the other neglects the influence of mass transfer. Subsequently, by using the two models, we perform the analysis of the expected value and variance, as well as the sensor's signal-to-noise ratio, after reaching the steady state of all transient processes. We compare the results obtained by using the different models, and determine conditions for their application. We estimate the influences of the sensing surface area and the concentration of target particles on statistical parameters of sensor response and signal-to-noise ratio, considering the cases where mass transfer is significant, and those where it is not. We particularly analyze the mass transfer influence on the expected value, variance and signal-to-noise ratio. Such analysis does not exist in the available literature. The presented analysis yields new knowledge about the stochastic response of adsorption-based sensors, and it is significant for their optimization in order to achieve reliable analyte detection and improved sensing performance.
PB  - ETRAN
C3  - IcETRAN & ETRAN 2018, Palić 11-14. 06. 2018: Program
T1  - Steady-state analysis of stochastic time response of chemical and biological microfluidic sensors
ER  - 
@conference{
author = "Jokić, Ivana and Đurić, Zoran G. and Radulović, Katarina and Frantlović, Miloš and Krstajić, Predrag and Cvetanović Zobenica, Katarina",
year = "2018",
url = "https://www.etran.rs/2018/IcETRAN/News/IcETRAN%20sumarni%20program%20sekcija_Ver.%204.3%20(1).pdf, http://dais.sanu.ac.rs/123456789/4630",
abstract = "In this paper we first give a short review of two stochastic models describing both the expected value and variance of the random number of adsorbed particles in microfluidic adsorption-based chemical and biological sensors. One model takes into account the influence of coupling of stochastic adsorptiondesorption processes and mass transfer on the change of the number of adsorbed particles, while the other neglects the influence of mass transfer. Subsequently, by using the two models, we perform the analysis of the expected value and variance, as well as the sensor's signal-to-noise ratio, after reaching the steady state of all transient processes. We compare the results obtained by using the different models, and determine conditions for their application. We estimate the influences of the sensing surface area and the concentration of target particles on statistical parameters of sensor response and signal-to-noise ratio, considering the cases where mass transfer is significant, and those where it is not. We particularly analyze the mass transfer influence on the expected value, variance and signal-to-noise ratio. Such analysis does not exist in the available literature. The presented analysis yields new knowledge about the stochastic response of adsorption-based sensors, and it is significant for their optimization in order to achieve reliable analyte detection and improved sensing performance.",
publisher = "ETRAN",
journal = "IcETRAN & ETRAN 2018, Palić 11-14. 06. 2018: Program",
title = "Steady-state analysis of stochastic time response of chemical and biological microfluidic sensors"
}
Jokić, I., Đurić, Z. G., Radulović, K., Frantlović, M., Krstajić, P.,& Cvetanović Zobenica, K. (2018). Steady-state analysis of stochastic time response of chemical and biological microfluidic sensors.
IcETRAN & ETRAN 2018, Palić 11-14. 06. 2018: ProgramETRAN., null. 
Jokić I, Đurić ZG, Radulović K, Frantlović M, Krstajić P, Cvetanović Zobenica K. Steady-state analysis of stochastic time response of chemical and biological microfluidic sensors. IcETRAN & ETRAN 2018, Palić 11-14. 06. 2018: Program. 2018;

Comparative properties of composite poly(lactic-co-glycolic acid)/poly(acrylic acid) implants synthesized using ultraviolet and gamma irradiation

Janićijević, Željko; Vujčić, Ivica T.; Vujisić, Miloš Lj.; Radovanović, Filip

(Belgrade : Institute of Technical Sciences of SASA, 2018)

TY  - CONF
AU  - Janićijević, Željko
AU  - Vujčić, Ivica T.
AU  - Vujisić, Miloš Lj.
AU  - Radovanović, Filip
PY  - 2018
UR  - http://dais.sanu.ac.rs/123456789/4720
AB  - Composite implants comprising a biodegradable hydrophobic polymer matrix and crosslinked hydrogel with fixed ion exchange groups are promising materials for the construction of controlled drug delivery systems. Poly(lactic-co-glycolic acid)/poly(acrylic acid) (PLGA/PAA) composite implants in our study were synthesized using the sequential application of irradiation and immersion precipitation. Precursor solutions with all functional components were dispensed into a disc-shaped non-stick mold and cured either by ultraviolet (UV) or gamma irradiation. Cured disks were subsequently immersed in the phosphate buffer saline bath to finalize phase separation and solidification of the implants. The synthesized implants were characterized by FTIR-ATR and DSC, and their basic properties such as ion exchange capacity, swelling degree, and swelling kinetics were examined. Synthesis using gamma irradiation resulted in implants with similar ion exchange capacity, but the greater swelling degree and faster swelling kinetics compared to the implants prepared with UV irradiation. Gamma irradiation also resulted in altered and less homogeneous chemical composition compared to the implants synthesized with UV irradiation. Further investigations are required to determine the differences in drug release kinetics and degradation behavior of the synthesized implants.
PB  - Belgrade : Institute of Technical Sciences of SASA
C3  - Program and the Book of Abstracts / Seventeenth Young Researchers' Conference Materials Sciences and Engineering, December 5-7, 2018, Belgrade, Serbia
T1  - Comparative properties of composite poly(lactic-co-glycolic acid)/poly(acrylic acid) implants synthesized using ultraviolet and gamma irradiation
SP  - 28
EP  - 28
ER  - 
@conference{
author = "Janićijević, Željko and Vujčić, Ivica T. and Vujisić, Miloš Lj. and Radovanović, Filip",
year = "2018",
url = "http://dais.sanu.ac.rs/123456789/4720",
abstract = "Composite implants comprising a biodegradable hydrophobic polymer matrix and crosslinked hydrogel with fixed ion exchange groups are promising materials for the construction of controlled drug delivery systems. Poly(lactic-co-glycolic acid)/poly(acrylic acid) (PLGA/PAA) composite implants in our study were synthesized using the sequential application of irradiation and immersion precipitation. Precursor solutions with all functional components were dispensed into a disc-shaped non-stick mold and cured either by ultraviolet (UV) or gamma irradiation. Cured disks were subsequently immersed in the phosphate buffer saline bath to finalize phase separation and solidification of the implants. The synthesized implants were characterized by FTIR-ATR and DSC, and their basic properties such as ion exchange capacity, swelling degree, and swelling kinetics were examined. Synthesis using gamma irradiation resulted in implants with similar ion exchange capacity, but the greater swelling degree and faster swelling kinetics compared to the implants prepared with UV irradiation. Gamma irradiation also resulted in altered and less homogeneous chemical composition compared to the implants synthesized with UV irradiation. Further investigations are required to determine the differences in drug release kinetics and degradation behavior of the synthesized implants.",
publisher = "Belgrade : Institute of Technical Sciences of SASA",
journal = "Program and the Book of Abstracts / Seventeenth Young Researchers' Conference Materials Sciences and Engineering, December 5-7, 2018, Belgrade, Serbia",
title = "Comparative properties of composite poly(lactic-co-glycolic acid)/poly(acrylic acid) implants synthesized using ultraviolet and gamma irradiation",
pages = "28-28"
}
Janićijević, Ž., Vujčić, I. T., Vujisić, M. Lj.,& Radovanović, F. (2018). Comparative properties of composite poly(lactic-co-glycolic acid)/poly(acrylic acid) implants synthesized using ultraviolet and gamma irradiation.
Program and the Book of Abstracts / Seventeenth Young Researchers' Conference Materials Sciences and Engineering, December 5-7, 2018, Belgrade, SerbiaBelgrade : Institute of Technical Sciences of SASA., null, 28-28. 
Janićijević Ž, Vujčić IT, Vujisić ML, Radovanović F. Comparative properties of composite poly(lactic-co-glycolic acid)/poly(acrylic acid) implants synthesized using ultraviolet and gamma irradiation. Program and the Book of Abstracts / Seventeenth Young Researchers' Conference Materials Sciences and Engineering, December 5-7, 2018, Belgrade, Serbia. 2018;:28-28

Supplementary information: Polyethersulfone/poly(acrylic acid) composite hydrogel membrane reservoirs for controlled delivery of cationic drug formulations

Janićijević, Željko; Radovanović, Filip

(Elsevier, 2018)

TY  - BOOK
AU  - Janićijević, Željko
AU  - Radovanović, Filip
PY  - 2018
UR  - http://dais.sanu.ac.rs/123456789/3392
AB  - Supplementary information. The graphical representations of release kinetics fitting by the Korsmeyer-Peppas and Weber-Morris equations are provided. Masses of released methylene blue under different experimental conditions are given in a separate table. Estimation of membrane pore size at pH = 8 was performed using the gel correlation length model. (PDF).
PB  - Elsevier
T2  - Polymer
T1  - Supplementary information: Polyethersulfone/poly(acrylic acid) composite hydrogel membrane reservoirs for controlled delivery of cationic drug formulations
VL  - 147
ER  - 
@misc{
author = "Janićijević, Željko and Radovanović, Filip",
year = "2018",
url = "http://dais.sanu.ac.rs/123456789/3392",
abstract = "Supplementary information. The graphical representations of release kinetics fitting by the Korsmeyer-Peppas and Weber-Morris equations are provided. Masses of released methylene blue under different experimental conditions are given in a separate table. Estimation of membrane pore size at pH = 8 was performed using the gel correlation length model. (PDF).",
publisher = "Elsevier",
journal = "Polymer",
title = "Supplementary information: Polyethersulfone/poly(acrylic acid) composite hydrogel membrane reservoirs for controlled delivery of cationic drug formulations",
volume = "147"
}
Janićijević, Ž.,& Radovanović, F. (2018). Supplementary information: Polyethersulfone/poly(acrylic acid) composite hydrogel membrane reservoirs for controlled delivery of cationic drug formulations.
PolymerElsevier., 147. 
Janićijević Ž, Radovanović F. Supplementary information: Polyethersulfone/poly(acrylic acid) composite hydrogel membrane reservoirs for controlled delivery of cationic drug formulations. Polymer. 2018;147

Deterministic versus Stochastic Analysis of Competitive Adsorption in Equilibrium in Microfluidic Biosensors

Jokić, Ivana; Đurić, Zoran G.; Radulović, Katarina; Frantlović, Miloš

(Elsevier, 2018)

TY  - JOUR
AU  - Jokić, Ivana
AU  - Đurić, Zoran G.
AU  - Radulović, Katarina
AU  - Frantlović, Miloš
PY  - 2018
UR  - http://www.sciencedirect.com/science/article/pii/S2214785318309167
UR  - http://dais.sanu.ac.rs/123456789/4550
AB  - We investigate the stochastic sensor response in equilibrium, taking into account competitive adsorption and mass transfer of analyte particles in a microfluidic biosensor chamber. After presentation of the stochastic model, we perform the analysis of the equilibrium response expected value as a function of the sensing area and the competitor molecules concentrations. By comparison with the deterministic value of the sensor response, the limits of applicability of the deterministic approach are investigated. The results of the presented analysis enable better interpretation of measurement results obtained by using sensors with micro/nanoscale sensing surface, as well as optimization of their design and operating conditions.
PB  - Elsevier
T2  - Materials Today: Proceedings
T1  - Deterministic versus Stochastic Analysis of Competitive Adsorption in Equilibrium in Microfluidic Biosensors
SP  - 16006
EP  - 16011
VL  - 5
IS  - 8, Part 2
DO  - 10.1016/j.matpr.2018.05.045
ER  - 
@article{
author = "Jokić, Ivana and Đurić, Zoran G. and Radulović, Katarina and Frantlović, Miloš",
year = "2018",
url = "http://www.sciencedirect.com/science/article/pii/S2214785318309167, http://dais.sanu.ac.rs/123456789/4550",
abstract = "We investigate the stochastic sensor response in equilibrium, taking into account competitive adsorption and mass transfer of analyte particles in a microfluidic biosensor chamber. After presentation of the stochastic model, we perform the analysis of the equilibrium response expected value as a function of the sensing area and the competitor molecules concentrations. By comparison with the deterministic value of the sensor response, the limits of applicability of the deterministic approach are investigated. The results of the presented analysis enable better interpretation of measurement results obtained by using sensors with micro/nanoscale sensing surface, as well as optimization of their design and operating conditions.",
publisher = "Elsevier",
journal = "Materials Today: Proceedings",
title = "Deterministic versus Stochastic Analysis of Competitive Adsorption in Equilibrium in Microfluidic Biosensors",
pages = "16006-16011",
volume = "5",
number = "8, Part 2",
doi = "10.1016/j.matpr.2018.05.045"
}
Jokić, I., Đurić, Z. G., Radulović, K.,& Frantlović, M. (2018). Deterministic versus Stochastic Analysis of Competitive Adsorption in Equilibrium in Microfluidic Biosensors.
Materials Today: ProceedingsElsevier., 5(8, Part 2), 16006-16011. 
https://doi.org/10.1016/j.matpr.2018.05.045
Jokić I, Đurić ZG, Radulović K, Frantlović M. Deterministic versus Stochastic Analysis of Competitive Adsorption in Equilibrium in Microfluidic Biosensors. Materials Today: Proceedings. 2018;5(8, Part 2):16006-16011

Polyethersulfone/poly(acrylic acid) composite hydrogel membrane reservoirs for controlled delivery of cationic drug formulations

Janićijević, Željko; Radovanović, Filip

(Elsevier, 2018)

TY  - JOUR
AU  - Janićijević, Željko
AU  - Radovanović, Filip
PY  - 2018
UR  - http://dais.sanu.ac.rs/123456789/4526
AB  - We present the innovative synthesis of polyethersulfone/poly(acrylic acid) composite hydrogel membranesperformed by combining photoirradiation with a traditional liquid phase inversion process.Fabricated membranes exhibited ion exchange capacity and water content as high as 5.2 mmol/g and75%, respectively. The chemical composition of the membranes was determined using FTIR-ATR and theirmicrostructure was examined with SEM. Our findings suggest that the use of hydrophilic crosslinker wascrucial for the synthesis of symmetric and mechanically stable composite hydrogel membranes. Passiveand iontophoretic release kinetics from membrane reservoirs synthesized with the hydrophilic crosslinkerwere investigated in vitro using methylene blue as a model drug. Passive release kinetics wasdiffusion-controlled with pH-sensitive and loading-dependent behavior. Linear release kinetics wasdemonstrated during the iontophoretic release. Synthesized composite hydrogel membranes hold a lot ofpromise as compact stand-alone reservoirs for passive and iontophoretic delivery of cationic drugs.
PB  - Elsevier
T2  - Polymer
T1  - Polyethersulfone/poly(acrylic acid) composite hydrogel membrane reservoirs for controlled delivery of cationic drug formulations
SP  - 56
EP  - 66
VL  - 147
DO  - 10.1016/j.polymer.2018.05.065
ER  - 
@article{
author = "Janićijević, Željko and Radovanović, Filip",
year = "2018",
url = "http://dais.sanu.ac.rs/123456789/4526",
abstract = "We present the innovative synthesis of polyethersulfone/poly(acrylic acid) composite hydrogel membranesperformed by combining photoirradiation with a traditional liquid phase inversion process.Fabricated membranes exhibited ion exchange capacity and water content as high as 5.2 mmol/g and75%, respectively. The chemical composition of the membranes was determined using FTIR-ATR and theirmicrostructure was examined with SEM. Our findings suggest that the use of hydrophilic crosslinker wascrucial for the synthesis of symmetric and mechanically stable composite hydrogel membranes. Passiveand iontophoretic release kinetics from membrane reservoirs synthesized with the hydrophilic crosslinkerwere investigated in vitro using methylene blue as a model drug. Passive release kinetics wasdiffusion-controlled with pH-sensitive and loading-dependent behavior. Linear release kinetics wasdemonstrated during the iontophoretic release. Synthesized composite hydrogel membranes hold a lot ofpromise as compact stand-alone reservoirs for passive and iontophoretic delivery of cationic drugs.",
publisher = "Elsevier",
journal = "Polymer",
title = "Polyethersulfone/poly(acrylic acid) composite hydrogel membrane reservoirs for controlled delivery of cationic drug formulations",
pages = "56-66",
volume = "147",
doi = "10.1016/j.polymer.2018.05.065"
}
Janićijević, Ž.,& Radovanović, F. (2018). Polyethersulfone/poly(acrylic acid) composite hydrogel membrane reservoirs for controlled delivery of cationic drug formulations.
PolymerElsevier., 147, 56-66. 
https://doi.org/10.1016/j.polymer.2018.05.065
Janićijević Ž, Radovanović F. Polyethersulfone/poly(acrylic acid) composite hydrogel membrane reservoirs for controlled delivery of cationic drug formulations. Polymer. 2018;147:56-66
5
4
5

Stochastic time response of adsorption-based micro/nanobiosensors with a fluidic reaction chamber: The influence of mass transfer

Jokić, Ivana; Đurić, Zoran G.; Radulović, Katarina; Frantlović, Miloš

(IEEE, 2017)

TY  - CONF
AU  - Jokić, Ivana
AU  - Đurić, Zoran G.
AU  - Radulović, Katarina
AU  - Frantlović, Miloš
PY  - 2017
UR  - http://dais.sanu.ac.rs/123456789/3684
AB  - An approximate model for efficient analysis of stochastic time response of microfluidic biosensors is presented, that considers a random AD process coupled with mass transfer (convection and diffusion) of target substance particles. The deterministic model of sensor response is also reviewed. We perform the analysis of the mass transfer influence on the kinetics and the steady-state value of the response calculated according to the two models (deterministic and stochastic). The results are presented for the sensors with different micro/nanoscale active surfaces. The comparison of the responses obtained by using the two models can be utilized to distinguish the cases in which the application of the deterministic model is justified from those in which the stochastic model is necessary. The presented findings enable more accurate interpretation of measurement results obtained by using micro/nanobiosensors.
PB  - IEEE
C3  - 2017 IEEE 30th International Conference on Microelectronics (MIEL)
T1  - Stochastic time response of adsorption-based micro/nanobiosensors with a fluidic reaction chamber: The influence of mass transfer
SP  - 127
EP  - 130
DO  - 10.1109/MIEL.2017.8190084
ER  - 
@conference{
author = "Jokić, Ivana and Đurić, Zoran G. and Radulović, Katarina and Frantlović, Miloš",
year = "2017",
url = "http://dais.sanu.ac.rs/123456789/3684",
abstract = "An approximate model for efficient analysis of stochastic time response of microfluidic biosensors is presented, that considers a random AD process coupled with mass transfer (convection and diffusion) of target substance particles. The deterministic model of sensor response is also reviewed. We perform the analysis of the mass transfer influence on the kinetics and the steady-state value of the response calculated according to the two models (deterministic and stochastic). The results are presented for the sensors with different micro/nanoscale active surfaces. The comparison of the responses obtained by using the two models can be utilized to distinguish the cases in which the application of the deterministic model is justified from those in which the stochastic model is necessary. The presented findings enable more accurate interpretation of measurement results obtained by using micro/nanobiosensors.",
publisher = "IEEE",
journal = "2017 IEEE 30th International Conference on Microelectronics (MIEL)",
title = "Stochastic time response of adsorption-based micro/nanobiosensors with a fluidic reaction chamber: The influence of mass transfer",
pages = "127-130",
doi = "10.1109/MIEL.2017.8190084"
}
Jokić, I., Đurić, Z. G., Radulović, K.,& Frantlović, M. (2017). Stochastic time response of adsorption-based micro/nanobiosensors with a fluidic reaction chamber: The influence of mass transfer.
2017 IEEE 30th International Conference on Microelectronics (MIEL)IEEE., null, 127-130. 
https://doi.org/10.1109/MIEL.2017.8190084
Jokić I, Đurić ZG, Radulović K, Frantlović M. Stochastic time response of adsorption-based micro/nanobiosensors with a fluidic reaction chamber: The influence of mass transfer. 2017 IEEE 30th International Conference on Microelectronics (MIEL). 2017;:127-130
1
1

Biodegradable polymer/hydrogel composite for controlled delivery of cationic formulations

Janićijević, Željko; Ninkov, Marina; Kataranovski, Marina; Radovanović, Filip

(Belgrade : Institute of Technical Sciences of SASA, 2017)

TY  - CONF
AU  - Janićijević, Željko
AU  - Ninkov, Marina
AU  - Kataranovski, Marina
AU  - Radovanović, Filip
PY  - 2017
UR  - http://dais.sanu.ac.rs/123456789/15452
AB  - Composites of biodegradable polymers and hydrogels are promising materials for controlled delivery systems with prolonged drug release. In this contribution, we present an innovative implant design comprising poly(DL-lactide-co-ε-caprolactone) copolymer base and a crosslinked poly(acrylic acid) hydrogel. Implants were prepared in the form of disks using the modified traditional liquid phase inversion process. Solutions containing all implant precursors were dispensed into transparent non-stick molds and cured by UV irradiation. UV curing was followed by immersion into the phosphate buffer solution bath to achieve phase separation and solidification. Structure and composition of the implant were characterized using SEM and FTIR. Obtained implants exhibited high loading capacity for cationic formulations and a moderate degree of swelling. Studies of implant loading and subsequent release of methylene blue into the phosphate-buffered saline demonstrated diffusioncontrolled delivery kinetics over a period of several weeks. To assess biocompatibility of implants as possible materials for drug delivery systems in mammals, we evaluated their effects on viability (Trypan blue exclusion assay), metabolic activity, proliferation (MTT assay) and priming (nitric oxide/NO production) of freshly isolated rat splenocytes during 24 h and 48 h of cultivation. The viability was unaltered, metabolic activity/proliferation was increased after 48 h and the decrease of NO production, as well as drop in responsiveness to cell mitogen concanavalin A (ConA) in cells on implants were observed. These results suggest that implants could be used as a suitable material for drug delivery systems, but their capacity to stimulate cell proliferation and their immunosuppressive potential deserve further investigations.
PB  - Belgrade : Institute of Technical Sciences of SASA
C3  - Program and the Book of Abstracts / Sixteenth Young Researchers' Conference Materials Sciences and Engineering, December 6-8, 2017, Belgrade, Serbia
T1  - Biodegradable polymer/hydrogel composite for controlled delivery of cationic formulations
SP  - 9
EP  - 9
ER  - 
@conference{
author = "Janićijević, Željko and Ninkov, Marina and Kataranovski, Marina and Radovanović, Filip",
year = "2017",
url = "http://dais.sanu.ac.rs/123456789/15452",
abstract = "Composites of biodegradable polymers and hydrogels are promising materials for controlled delivery systems with prolonged drug release. In this contribution, we present an innovative implant design comprising poly(DL-lactide-co-ε-caprolactone) copolymer base and a crosslinked poly(acrylic acid) hydrogel. Implants were prepared in the form of disks using the modified traditional liquid phase inversion process. Solutions containing all implant precursors were dispensed into transparent non-stick molds and cured by UV irradiation. UV curing was followed by immersion into the phosphate buffer solution bath to achieve phase separation and solidification. Structure and composition of the implant were characterized using SEM and FTIR. Obtained implants exhibited high loading capacity for cationic formulations and a moderate degree of swelling. Studies of implant loading and subsequent release of methylene blue into the phosphate-buffered saline demonstrated diffusioncontrolled delivery kinetics over a period of several weeks. To assess biocompatibility of implants as possible materials for drug delivery systems in mammals, we evaluated their effects on viability (Trypan blue exclusion assay), metabolic activity, proliferation (MTT assay) and priming (nitric oxide/NO production) of freshly isolated rat splenocytes during 24 h and 48 h of cultivation. The viability was unaltered, metabolic activity/proliferation was increased after 48 h and the decrease of NO production, as well as drop in responsiveness to cell mitogen concanavalin A (ConA) in cells on implants were observed. These results suggest that implants could be used as a suitable material for drug delivery systems, but their capacity to stimulate cell proliferation and their immunosuppressive potential deserve further investigations.",
publisher = "Belgrade : Institute of Technical Sciences of SASA",
journal = "Program and the Book of Abstracts / Sixteenth Young Researchers' Conference Materials Sciences and Engineering, December 6-8, 2017, Belgrade, Serbia",
title = "Biodegradable polymer/hydrogel composite for controlled delivery of cationic formulations",
pages = "9-9"
}
Janićijević, Ž., Ninkov, M., Kataranovski, M.,& Radovanović, F. (2017). Biodegradable polymer/hydrogel composite for controlled delivery of cationic formulations.
Program and the Book of Abstracts / Sixteenth Young Researchers' Conference Materials Sciences and Engineering, December 6-8, 2017, Belgrade, SerbiaBelgrade : Institute of Technical Sciences of SASA., null, 9-9. 
Janićijević Ž, Ninkov M, Kataranovski M, Radovanović F. Biodegradable polymer/hydrogel composite for controlled delivery of cationic formulations. Program and the Book of Abstracts / Sixteenth Young Researchers' Conference Materials Sciences and Engineering, December 6-8, 2017, Belgrade, Serbia. 2017;:9-9

Applicability of the lean concept to the management of small-scale manufacturing enterprises in Serbia

Vorkapić, Miloš; Radovanović, Filip; Ćoćkalo, Dragan; Đorđević, Dejan

(2017)

TY  - JOUR
AU  - Vorkapić, Miloš
AU  - Radovanović, Filip
AU  - Ćoćkalo, Dragan
AU  - Đorđević, Dejan
PY  - 2017
UR  - http://dais.sanu.ac.rs/123456789/776
AB  - Lean management (LM) is a set of procedures and principles used in industrial processes for finding and eliminating useless activities. This paper presents the analysis of business practices in small-scale manufacturing enterprises in Serbia in comparison with defined LM principles. The aim of this study was to determine differences between the business practices in small and micro enterprises (SMEs) in Serbia and LM standards in order to provide recommendations for improving business performance and production. Application of LM standards to reduce waste and optimize production in SMEs in Serbia has not been investigated before, although this practice has been successfully used in neighboring countries, such as Slovenia, Romania and Macedonia. The importance of this new approach is directly related to the benefits that can be achieved to improve business practices in SMEs in Serbia. This study shows that enterprises lack a system which ensures that the customer gets a quality product on time, the optimization of production and resources are limited, standard procedures are not sufficiently implemented in micro enterprises, and a significant difference exists between job requirements and skills of the employees. The recommendations to improve operations in accordance with the LM principles include introduction of a monitoring and control system to ensure timely delivery and customer satisfaction, tools introduction such as 5S, Value Stream Mapping (VSM), inventory management, and Kaizen as a philosophy of continuous improvement.
T2  - Tehnički vjesnik
T1  - Applicability of the lean concept to the management of small-scale manufacturing enterprises in Serbia
SP  - 1929
SP  - 1934
EP  - 1934
VL  - 24
IS  - 6
DO  - 10.17559/TV-20150807194942
ER  - 
@article{
author = "Vorkapić, Miloš and Radovanović, Filip and Ćoćkalo, Dragan and Đorđević, Dejan",
year = "2017",
url = "http://dais.sanu.ac.rs/123456789/776",
abstract = "Lean management (LM) is a set of procedures and principles used in industrial processes for finding and eliminating useless activities. This paper presents the analysis of business practices in small-scale manufacturing enterprises in Serbia in comparison with defined LM principles. The aim of this study was to determine differences between the business practices in small and micro enterprises (SMEs) in Serbia and LM standards in order to provide recommendations for improving business performance and production. Application of LM standards to reduce waste and optimize production in SMEs in Serbia has not been investigated before, although this practice has been successfully used in neighboring countries, such as Slovenia, Romania and Macedonia. The importance of this new approach is directly related to the benefits that can be achieved to improve business practices in SMEs in Serbia. This study shows that enterprises lack a system which ensures that the customer gets a quality product on time, the optimization of production and resources are limited, standard procedures are not sufficiently implemented in micro enterprises, and a significant difference exists between job requirements and skills of the employees. The recommendations to improve operations in accordance with the LM principles include introduction of a monitoring and control system to ensure timely delivery and customer satisfaction, tools introduction such as 5S, Value Stream Mapping (VSM), inventory management, and Kaizen as a philosophy of continuous improvement.",
journal = "Tehnički vjesnik",
title = "Applicability of the lean concept to the management of small-scale manufacturing enterprises in Serbia",
pages = "1929-1934-1934",
volume = "24",
number = "6",
doi = "10.17559/TV-20150807194942"
}
Vorkapić, M., Radovanović, F., Ćoćkalo, D.,& Đorđević, D. (2017). Applicability of the lean concept to the management of small-scale manufacturing enterprises in Serbia.
Tehnički vjesnik, 24(6), 1929-1934. 
https://doi.org/10.17559/TV-20150807194942
Vorkapić M, Radovanović F, Ćoćkalo D, Đorđević D. Applicability of the lean concept to the management of small-scale manufacturing enterprises in Serbia. Tehnički vjesnik. 2017;24(6):1929-1934
1
2
4

pH-sensitive membranes with crosslinked poly(acrylic acid) hydrogel for controlled delivery

Janićijević, Željko; Radovanović, Filip

(Belgrade : Institute of Technical Sciences of SASA, 2016)

TY  - CONF
AU  - Janićijević, Željko
AU  - Radovanović, Filip
PY  - 2016
UR  - http://dais.sanu.ac.rs/123456789/887
AB  - Polymeric pH-sensitive membranes and hydrogels are interesting materials for the controlled delivery of chemical agents triggered by external stimuli. In this contribution, we present a novel membrane design consisting of a polyethersulfone polymeric base and a crosslinked poly(acrylic acid) hydrogel containing pH-responsive carboxyl groups. Membranes were prepared using the modified traditional liquid phase inversion process. Solutions containing all membrane precursors were cast on a glass plate and cured by UV irradiation. UV curing was followed by immersion into the water bath to achieve phase separation and solidification. Obtained membranes exhibited high ion-exchange capacity and a moderate swelling degree dependent on the crosslinker properties. Studies of membrane loading with methylene blue and subsequent release of methylene blue from the membrane into the alkaline and acidic buffered solutions demonstrated pH-dependent delivery kinetics.
PB  - Belgrade : Institute of Technical Sciences of SASA
C3  - Program and the Book of Abstracts / Fifteenth Young Researchers' Conference Materials Sciences and Engineering, December 7-9, 2016, Belgrade
T1  - pH-sensitive membranes with crosslinked poly(acrylic acid) hydrogel for controlled delivery
SP  - 55
EP  - 55
ER  - 
@conference{
author = "Janićijević, Željko and Radovanović, Filip",
year = "2016",
url = "http://dais.sanu.ac.rs/123456789/887",
abstract = "Polymeric pH-sensitive membranes and hydrogels are interesting materials for the controlled delivery of chemical agents triggered by external stimuli. In this contribution, we present a novel membrane design consisting of a polyethersulfone polymeric base and a crosslinked poly(acrylic acid) hydrogel containing pH-responsive carboxyl groups. Membranes were prepared using the modified traditional liquid phase inversion process. Solutions containing all membrane precursors were cast on a glass plate and cured by UV irradiation. UV curing was followed by immersion into the water bath to achieve phase separation and solidification. Obtained membranes exhibited high ion-exchange capacity and a moderate swelling degree dependent on the crosslinker properties. Studies of membrane loading with methylene blue and subsequent release of methylene blue from the membrane into the alkaline and acidic buffered solutions demonstrated pH-dependent delivery kinetics.",
publisher = "Belgrade : Institute of Technical Sciences of SASA",
journal = "Program and the Book of Abstracts / Fifteenth Young Researchers' Conference Materials Sciences and Engineering, December 7-9, 2016, Belgrade",
title = "pH-sensitive membranes with crosslinked poly(acrylic acid) hydrogel for controlled delivery",
pages = "55-55"
}
Janićijević, Ž.,& Radovanović, F. (2016). pH-sensitive membranes with crosslinked poly(acrylic acid) hydrogel for controlled delivery.
Program and the Book of Abstracts / Fifteenth Young Researchers' Conference Materials Sciences and Engineering, December 7-9, 2016, BelgradeBelgrade : Institute of Technical Sciences of SASA., null, 55-55. 
Janićijević Ž, Radovanović F. pH-sensitive membranes with crosslinked poly(acrylic acid) hydrogel for controlled delivery. Program and the Book of Abstracts / Fifteenth Young Researchers' Conference Materials Sciences and Engineering, December 7-9, 2016, Belgrade. 2016;:55-55

Preparation of NdFeB Magnetic Nanoparticles by Surfactant-Assisted High Energy Ball Milling

Lamovec, Jelena; Jović, Vesna; Radovanović, Filip; Ranđelović, Danijela; Radulović, Katarina; Jakšić, Zoran; Vasiljević Radović, Dana

(Belgrade : Materials Research Society of Serbia, 2015)

TY  - CONF
AU  - Lamovec, Jelena
AU  - Jović, Vesna
AU  - Radovanović, Filip
AU  - Ranđelović, Danijela
AU  - Radulović, Katarina
AU  - Jakšić, Zoran
AU  - Vasiljević Radović, Dana
PY  - 2015
UR  - http://dais.sanu.ac.rs/123456789/804
AB  - Improved permanent magnets are essential for emergent applications in electronic and electric devices. Different attempts have been made to produce nanoscale anisotropic rare-earth magnetic powder based on Nd-Fe-B material. Recently, high energy surfactant assisted ball milling has been proven to be an effective technique to produce anisotropic hard magnetic Nd-Fe-B nanoparticles. In this paper we are presenting our experimental results on high energy ball milling in planetary mill "Puverisette 7 premium line" from "Fritsch". Except milling material, there are several variables which influence the milling process for the selected mill type. They are: mechanical properties of the milling media material (bowls, balls, etc.), ball-to-powder ratio (BPR), extent of filling of the milling bowl, milling atmosphere, milling speed and duration, and type of solution and surfactant for wet milling. We are going to give influence of all these parameters on obtained NdFeB magnetic materials with nanosized dimensions starting from Nd2Fe14B HDD (Hydrogenated Disproportionated Desorbed) material. 

Acknowledgements: This work is funded by FP7 project MAG-DRIVE: "New permanent magnets for electric-vehicle drive applications", grant agreement no: 605348.
PB  - Belgrade : Materials Research Society of Serbia
C3  - Seventeenth Annual Conference YUCOMAT 2015, Aug 31-Sep 04, 2015, Herceg Novi, Montenegro, Programme and the Book of Abstracts
T1  - Preparation of NdFeB Magnetic Nanoparticles by Surfactant-Assisted High Energy Ball Milling
SP  - 66
EP  - 66
ER  - 
@conference{
author = "Lamovec, Jelena and Jović, Vesna and Radovanović, Filip and Ranđelović, Danijela and Radulović, Katarina and Jakšić, Zoran and Vasiljević Radović, Dana",
year = "2015",
url = "http://dais.sanu.ac.rs/123456789/804",
abstract = "Improved permanent magnets are essential for emergent applications in electronic and electric devices. Different attempts have been made to produce nanoscale anisotropic rare-earth magnetic powder based on Nd-Fe-B material. Recently, high energy surfactant assisted ball milling has been proven to be an effective technique to produce anisotropic hard magnetic Nd-Fe-B nanoparticles. In this paper we are presenting our experimental results on high energy ball milling in planetary mill "Puverisette 7 premium line" from "Fritsch". Except milling material, there are several variables which influence the milling process for the selected mill type. They are: mechanical properties of the milling media material (bowls, balls, etc.), ball-to-powder ratio (BPR), extent of filling of the milling bowl, milling atmosphere, milling speed and duration, and type of solution and surfactant for wet milling. We are going to give influence of all these parameters on obtained NdFeB magnetic materials with nanosized dimensions starting from Nd2Fe14B HDD (Hydrogenated Disproportionated Desorbed) material. 

Acknowledgements: This work is funded by FP7 project MAG-DRIVE: "New permanent magnets for electric-vehicle drive applications", grant agreement no: 605348.",
publisher = "Belgrade : Materials Research Society of Serbia",
journal = "Seventeenth Annual Conference YUCOMAT 2015, Aug 31-Sep 04, 2015, Herceg Novi, Montenegro, Programme and the Book of Abstracts",
title = "Preparation of NdFeB Magnetic Nanoparticles by Surfactant-Assisted High Energy Ball Milling",
pages = "66-66"
}
Lamovec, J., Jović, V., Radovanović, F., Ranđelović, D., Radulović, K., Jakšić, Z.,& Vasiljević Radović, D. (2015). Preparation of NdFeB Magnetic Nanoparticles by Surfactant-Assisted High Energy Ball Milling.
Seventeenth Annual Conference YUCOMAT 2015, Aug 31-Sep 04, 2015, Herceg Novi, Montenegro, Programme and the Book of AbstractsBelgrade : Materials Research Society of Serbia., null, 66-66. 
Lamovec J, Jović V, Radovanović F, Ranđelović D, Radulović K, Jakšić Z, Vasiljević Radović D. Preparation of NdFeB Magnetic Nanoparticles by Surfactant-Assisted High Energy Ball Milling. Seventeenth Annual Conference YUCOMAT 2015, Aug 31-Sep 04, 2015, Herceg Novi, Montenegro, Programme and the Book of Abstracts. 2015;:66-66

Asimetrična porozna membrana sa epoksidnim prstenovima

Radovanović, Filip; Nastasović, Aleksandra; Nešić, Aleksandra; Veličković, Sava

(2015)

TY  - BOOK
AU  - Radovanović, Filip
AU  - Nastasović, Aleksandra
AU  - Nešić, Aleksandra
AU  - Veličković, Sava
PY  - 2015
UR  - http://dais.sanu.ac.rs/123456789/807
AB  - Pronalazak se odnosi na asimetričnu poroznu membranu sa epoksidnim prstenovima. Ovakva membrana se može dobiti pojednostavljenim postupkom koji izbegava mnoge dodatne operacije u cilju funkcionalizacije postojećih asimetričnih membrana. Po tom postupku homogeni rastvor za polimerizaciju koji obuhvata reaktivnu komponentu sa epoksidnim prstenovima, umreživač, staklasti polimer i rastvarač, oblikuje se u određenu formu, izloži izvoru zračenja u cilju polimerizacije i umrežavanja reaktivnih komponenata i potopi u koagulaciono kupatilo u kome se pomenuta membrana konačno formira. Epoksidni prstenovi se jednostavnim hemijskim reakcijama mogu konvertovati u željene funkcionalne grupe i takve membrane se mogu koristiti za čitav niz separacionih procesa, kao što su ultrafiltracija, membranska adsorpcija za hemijske ili biohemijske primene, ili u sklopu senzora zasnovanih na membranama i tankim filmovima.
AB  - The invention herewith described refers to the asymmetric porous membrane with epoxide rings. Such membrane can be prepared using a simplified method which omits many additional steps carried out in order to functionalize existing asymmetric membranes. According to this method a homogeneous polymerizable solution comprising a reactive component with epoxide rings, a crosslinker, a glassy polymer, and a solvent, is formed into a shaped article, exposed to a source of irradiation to polymerize and crosslink the reactive components, and immersed into a coagulation bath to form said membrane.; Epoxide rings can be converted into desired functional groups using simple chemical reactions and such membranes can be utilized for a broad range of separation processes including ultrafiltration, membrane adsorption for chemical or biochemical applications, or in sensing devices based on membranes and thin films.
T1  - Asimetrična porozna membrana sa epoksidnim prstenovima
ER  - 
@BOOK{
author = "Radovanović, Filip and Nastasović, Aleksandra and Nešić, Aleksandra and Veličković, Sava",
year = "2015",
url = "http://dais.sanu.ac.rs/123456789/807",
abstract = "Pronalazak se odnosi na asimetričnu poroznu membranu sa epoksidnim prstenovima. Ovakva membrana se može dobiti pojednostavljenim postupkom koji izbegava mnoge dodatne operacije u cilju funkcionalizacije postojećih asimetričnih membrana. Po tom postupku homogeni rastvor za polimerizaciju koji obuhvata reaktivnu komponentu sa epoksidnim prstenovima, umreživač, staklasti polimer i rastvarač, oblikuje se u određenu formu, izloži izvoru zračenja u cilju polimerizacije i umrežavanja reaktivnih komponenata i potopi u koagulaciono kupatilo u kome se pomenuta membrana konačno formira. Epoksidni prstenovi se jednostavnim hemijskim reakcijama mogu konvertovati u željene funkcionalne grupe i takve membrane se mogu koristiti za čitav niz separacionih procesa, kao što su ultrafiltracija, membranska adsorpcija za hemijske ili biohemijske primene, ili u sklopu senzora zasnovanih na membranama i tankim filmovima., The invention herewith described refers to the asymmetric porous membrane with epoxide rings. Such membrane can be prepared using a simplified method which omits many additional steps carried out in order to functionalize existing asymmetric membranes. According to this method a homogeneous polymerizable solution comprising a reactive component with epoxide rings, a crosslinker, a glassy polymer, and a solvent, is formed into a shaped article, exposed to a source of irradiation to polymerize and crosslink the reactive components, and immersed into a coagulation bath to form said membrane.; Epoxide rings can be converted into desired functional groups using simple chemical reactions and such membranes can be utilized for a broad range of separation processes including ultrafiltration, membrane adsorption for chemical or biochemical applications, or in sensing devices based on membranes and thin films.",
title = "Asimetrična porozna membrana sa epoksidnim prstenovima"
}
Radovanović, F., Nastasović, A., Nešić, A.,& Veličković, S. (2015). Asimetrična porozna membrana sa epoksidnim prstenovima.
null, null. 
Radovanović F, Nastasović A, Nešić A, Veličković S. Asimetrična porozna membrana sa epoksidnim prstenovima. 2015;

NPD in small manufacturing enterprises in Serbia

Vorkapić, Miloš; Radovanović, Filip; Ćoćkalo, Dragan; Đorđević, D.

(2015)

TY  - JOUR
AU  - Vorkapić, Miloš
AU  - Radovanović, Filip
AU  - Ćoćkalo, Dragan
AU  - Đorđević, D.
PY  - 2015
UR  - http://dais.sanu.ac.rs/123456789/811
AB  - New product development in small manufacturing enterprises on the territory of Serbia was investigated on a representative sample of micro and small enterprises covering a broad range of businesses. It was found that market pull was the prevalent strategy for new product development, which was characterized by close collaboration with customers from the idea to the final product including the R&D activities. Besides customers, the main sources of ideas were competitors and trade fairs or exhibitions. The marketing activities associated with new product introduction were quite limited. These findings were compared with new product development practices in neighboring countries. Based on our findings we propose two measures to improve new product development in small manufacturing enterprises in Serbia: establish a closer cooperation with external knowledge centers (universities, research institutes, innovation centers) and set up innovation networks with complementary partners by actively using the open innovation concept.
T2  - Tehnički vjesnik
T1  - NPD in small manufacturing enterprises in Serbia
SP  - 327
EP  - 332
VL  - 24
IS  - 1
DO  - 10.17559/TV-20150807185156
ER  - 
@article{
author = "Vorkapić, Miloš and Radovanović, Filip and Ćoćkalo, Dragan and Đorđević, D.",
year = "2015",
url = "http://dais.sanu.ac.rs/123456789/811",
abstract = "New product development in small manufacturing enterprises on the territory of Serbia was investigated on a representative sample of micro and small enterprises covering a broad range of businesses. It was found that market pull was the prevalent strategy for new product development, which was characterized by close collaboration with customers from the idea to the final product including the R&D activities. Besides customers, the main sources of ideas were competitors and trade fairs or exhibitions. The marketing activities associated with new product introduction were quite limited. These findings were compared with new product development practices in neighboring countries. Based on our findings we propose two measures to improve new product development in small manufacturing enterprises in Serbia: establish a closer cooperation with external knowledge centers (universities, research institutes, innovation centers) and set up innovation networks with complementary partners by actively using the open innovation concept.",
journal = "Tehnički vjesnik",
title = "NPD in small manufacturing enterprises in Serbia",
pages = "327-332",
volume = "24",
number = "1",
doi = "10.17559/TV-20150807185156"
}
Vorkapić, M., Radovanović, F., Ćoćkalo, D.,& Đorđević, D. (2015). NPD in small manufacturing enterprises in Serbia.
Tehnički vjesnik, 24(1), 327-332. 
https://doi.org/10.17559/TV-20150807185156
Vorkapić M, Radovanović F, Ćoćkalo D, Đorđević D. NPD in small manufacturing enterprises in Serbia. Tehnički vjesnik. 2015;24(1):327-332
4
4
6

Plasmonic Nanomembranes for Detection and Sensing

Jakšić, Zoran; Matović, Jovan; Obradov, Marko; Tanasković, Dragan; Radovanović, Filip; Jakšić, Olga

(Belgrade : s. n., 2015)

TY  - CONF
AU  - Jakšić, Zoran
AU  - Matović, Jovan
AU  - Obradov, Marko
AU  - Tanasković, Dragan
AU  - Radovanović, Filip
AU  - Jakšić, Olga
PY  - 2015
UR  - http://dais.sanu.ac.rs/123456789/803
AB  - Nanomembranes, freestanding quasi-2D structures with thickness of the order of tens of nm and smaller and a giant aspect ratio with lateral dimensions of the order of millimeters, even centimeters, represent an important building blocks in micro and nanosystems [1], corresponding to ubiquitous bilipid membranes in living cells [2]. In this contribution we present our results in theory, design and experimental fabrication of metallic and metal-dielectric nanomembranes with plasmonic properties, intended for the use in the field of sensing. We first consider different approaches to functionalization and nanostructuring of nanomembranes [3]. These include introduction of noble metal or transparent conductive oxides fillers directly into the nanomembrane, lamination (multilayering) and patterning by 2D arrays of subwavelength nanoholes. Within this context we describe our results on nanofabrication of 8 nm thick chromium-based composite nanomembranes. Biomimetic structures utilizing nanochannel-based pores are also considered. We further present our results related to the design of chemical and biological sensors based on nanomembranes with plasmonic metamaterial properties [4]. Such sensors function as refractometric devices utilizing evanescent near fields as optical concentrators and adsorption-desorption mechanism, which ensures their ultra-high sensitivity that reaches single molecule detection [5]. We present some results on chemical sensors utilizing nanomembranes exhibiting extraordinary optical transmission, as well as those based on doublefishnet structures. Finally we consider the enhancement of infrared detectors by nanomembranes [6] utilizing the designer plasmon mechanism [7].

REFERENCES
1. Jiang, C., Markutsya, S., Pikus, Y., and Tsukruk, V. V., Nature Mater., 3, 721-728 (2004).
2. Matović, J., and Jakšić, Z., "Bionic (Nano)Membranes" in Biomimetics – Materials, Structures and Processes. Examples, Ideas and Case Studies, edited by Gruber, P.; Bruckner, D.; Hellmich, C.; Schmiedmayer, H.-B.; Stachelberger, H.; Gebeshuber, I. C., Berlin: Springer, 2011, pp 9-24.
3. Jakšić, Z., and Matovic, J., Materials, 3, 165-200, (2010).
4. Jakšić, Z., Vuković, S. M., Buha, J., and Matovic, J., J. Nanophotonics, 5, 051818 (2011)
5. Jakšić, Z., Micro and Nanophotonics for Semiconductor Infrared Detectors: Towards an Ultimate Uncooled Device, Cham: Springer, 2014.
6. Zijlstra, P., Paulo, P. M. R., and Orrit, M., Nature Nanotech., 7, 379-382 (2012).
7. Pendry, J. B., Martín-Moreno, L., and Garcia-Vidal, F. J., Science, 305 847-848 (2004).
PB  - Belgrade : s. n.
C3  - XIX Symposium on Condensed Matter Physics SFKM 2015, 7–11 September 2015, Belgrade, Serbia: Book of Abstracts
T1  - Plasmonic Nanomembranes for Detection and Sensing
SP  - 68
EP  - 68
ER  - 
@conference{
author = "Jakšić, Zoran and Matović, Jovan and Obradov, Marko and Tanasković, Dragan and Radovanović, Filip and Jakšić, Olga",
year = "2015",
url = "http://dais.sanu.ac.rs/123456789/803",
abstract = "Nanomembranes, freestanding quasi-2D structures with thickness of the order of tens of nm and smaller and a giant aspect ratio with lateral dimensions of the order of millimeters, even centimeters, represent an important building blocks in micro and nanosystems [1], corresponding to ubiquitous bilipid membranes in living cells [2]. In this contribution we present our results in theory, design and experimental fabrication of metallic and metal-dielectric nanomembranes with plasmonic properties, intended for the use in the field of sensing. We first consider different approaches to functionalization and nanostructuring of nanomembranes [3]. These include introduction of noble metal or transparent conductive oxides fillers directly into the nanomembrane, lamination (multilayering) and patterning by 2D arrays of subwavelength nanoholes. Within this context we describe our results on nanofabrication of 8 nm thick chromium-based composite nanomembranes. Biomimetic structures utilizing nanochannel-based pores are also considered. We further present our results related to the design of chemical and biological sensors based on nanomembranes with plasmonic metamaterial properties [4]. Such sensors function as refractometric devices utilizing evanescent near fields as optical concentrators and adsorption-desorption mechanism, which ensures their ultra-high sensitivity that reaches single molecule detection [5]. We present some results on chemical sensors utilizing nanomembranes exhibiting extraordinary optical transmission, as well as those based on doublefishnet structures. Finally we consider the enhancement of infrared detectors by nanomembranes [6] utilizing the designer plasmon mechanism [7].

REFERENCES
1. Jiang, C., Markutsya, S., Pikus, Y., and Tsukruk, V. V., Nature Mater., 3, 721-728 (2004).
2. Matović, J., and Jakšić, Z., "Bionic (Nano)Membranes" in Biomimetics – Materials, Structures and Processes. Examples, Ideas and Case Studies, edited by Gruber, P.; Bruckner, D.; Hellmich, C.; Schmiedmayer, H.-B.; Stachelberger, H.; Gebeshuber, I. C., Berlin: Springer, 2011, pp 9-24.
3. Jakšić, Z., and Matovic, J., Materials, 3, 165-200, (2010).
4. Jakšić, Z., Vuković, S. M., Buha, J., and Matovic, J., J. Nanophotonics, 5, 051818 (2011)
5. Jakšić, Z., Micro and Nanophotonics for Semiconductor Infrared Detectors: Towards an Ultimate Uncooled Device, Cham: Springer, 2014.
6. Zijlstra, P., Paulo, P. M. R., and Orrit, M., Nature Nanotech., 7, 379-382 (2012).
7. Pendry, J. B., Martín-Moreno, L., and Garcia-Vidal, F. J., Science, 305 847-848 (2004).",
publisher = "Belgrade : s. n.",
journal = "XIX Symposium on Condensed Matter Physics SFKM 2015, 7–11 September 2015, Belgrade, Serbia: Book of Abstracts",
title = "Plasmonic Nanomembranes for Detection and Sensing",
pages = "68-68"
}
Jakšić, Z., Matović, J., Obradov, M., Tanasković, D., Radovanović, F.,& Jakšić, O. (2015). Plasmonic Nanomembranes for Detection and Sensing.
XIX Symposium on Condensed Matter Physics SFKM 2015, 7–11 September 2015, Belgrade, Serbia: Book of AbstractsBelgrade : s. n.., null, 68-68. 
Jakšić Z, Matović J, Obradov M, Tanasković D, Radovanović F, Jakšić O. Plasmonic Nanomembranes for Detection and Sensing. XIX Symposium on Condensed Matter Physics SFKM 2015, 7–11 September 2015, Belgrade, Serbia: Book of Abstracts. 2015;:68-68

Modelling the size separation of NdFeB magnetic microparticles by magnetophoresis and gravity settling

Radulović, Katarina; Radovanović, Filip; Ranđelović, Danijela; Jović, Vesna; Lamovec, Jelena; Vasiljević Radović, Dana; Jakšić, Zoran

(Belgrade : ETRAN Society, 2015)

TY  - CONF
AU  - Radulović, Katarina
AU  - Radovanović, Filip
AU  - Ranđelović, Danijela
AU  - Jović, Vesna
AU  - Lamovec, Jelena
AU  - Vasiljević Radović, Dana
AU  - Jakšić, Zoran
PY  - 2015
UR  - http://dais.sanu.ac.rs/123456789/787
AB  - Properties of sintered NdFeB magnets strongly depend on granulation and size distribution of constituent particles, which requires an efficient method for their separation into relatively narrow size fractions. We investigated two methods of magnetic particle separation from a mixture with different sizes using simulation by finite element method: magnetophoresis and gravity settling. In the case of magnetophoresis magnetic particles ranging in diameter from 1 to 10 m were deflected from the direction of continuous laminar flow by a perpendicular magnetic field. Larger particles were deflected from the direction of laminar flow more than smaller particles. The applied flow rate and strength and gradient of the applied magnetic field were the key parameters in controlling the deflection. The gravity settling model simulated spherical particles falling in heptane. Particles of various sizes were divided according to the time they needed to reach the bottom. The model used an axially symmetric fluid-flow simulation in a moving coordinate system connected with the particle, coupled with an ordinary differential equation for the force balance of the particle (gravity and drag force). The grain accelerated from standstill and rapidly reached its terminal velocity. This velocity was approximately proportional to the square of the particle radius, which led to clear separation of 5-10 um particles from those with a diameter of 1 um.
PB  - Belgrade : ETRAN Society
C3  - 59. Konferencija za elektroniku, telekomunikacije, računarstvo, automatiku i nuklearnu tehniku, Srebrno jezero, 8-11. juna, 2015. godine [i] 2nd International Conference on Electrical, Electronic and Computing Engineering IcETRAN 2015 Silver Lake (Srebrno jezero), Serbia, June 8-11, 2015: Proceedings
T1  - Modelling the size separation of NdFeB magnetic microparticles by magnetophoresis and gravity settling
ER  - 
@conference{
author = "Radulović, Katarina and Radovanović, Filip and Ranđelović, Danijela and Jović, Vesna and Lamovec, Jelena and Vasiljević Radović, Dana and Jakšić, Zoran",
year = "2015",
url = "http://dais.sanu.ac.rs/123456789/787",
abstract = "Properties of sintered NdFeB magnets strongly depend on granulation and size distribution of constituent particles, which requires an efficient method for their separation into relatively narrow size fractions. We investigated two methods of magnetic particle separation from a mixture with different sizes using simulation by finite element method: magnetophoresis and gravity settling. In the case of magnetophoresis magnetic particles ranging in diameter from 1 to 10 m were deflected from the direction of continuous laminar flow by a perpendicular magnetic field. Larger particles were deflected from the direction of laminar flow more than smaller particles. The applied flow rate and strength and gradient of the applied magnetic field were the key parameters in controlling the deflection. The gravity settling model simulated spherical particles falling in heptane. Particles of various sizes were divided according to the time they needed to reach the bottom. The model used an axially symmetric fluid-flow simulation in a moving coordinate system connected with the particle, coupled with an ordinary differential equation for the force balance of the particle (gravity and drag force). The grain accelerated from standstill and rapidly reached its terminal velocity. This velocity was approximately proportional to the square of the particle radius, which led to clear separation of 5-10 um particles from those with a diameter of 1 um.",
publisher = "Belgrade : ETRAN Society",
journal = "59. Konferencija za elektroniku, telekomunikacije, računarstvo, automatiku i nuklearnu tehniku, Srebrno jezero, 8-11. juna, 2015. godine [i] 2nd International Conference on Electrical, Electronic and Computing Engineering IcETRAN 2015 Silver Lake (Srebrno jezero), Serbia, June 8-11, 2015: Proceedings",
title = "Modelling the size separation of NdFeB magnetic microparticles by magnetophoresis and gravity settling"
}
Radulović, K., Radovanović, F., Ranđelović, D., Jović, V., Lamovec, J., Vasiljević Radović, D.,& Jakšić, Z. (2015). Modelling the size separation of NdFeB magnetic microparticles by magnetophoresis and gravity settling.
59. Konferencija za elektroniku, telekomunikacije, računarstvo, automatiku i nuklearnu tehniku, Srebrno jezero, 8-11. juna, 2015. godine [i] 2nd International Conference on Electrical, Electronic and Computing Engineering IcETRAN 2015 Silver Lake (Srebrno jezero), Serbia, June 8-11, 2015: ProceedingsBelgrade : ETRAN Society., null. 
Radulović K, Radovanović F, Ranđelović D, Jović V, Lamovec J, Vasiljević Radović D, Jakšić Z. Modelling the size separation of NdFeB magnetic microparticles by magnetophoresis and gravity settling. 59. Konferencija za elektroniku, telekomunikacije, računarstvo, automatiku i nuklearnu tehniku, Srebrno jezero, 8-11. juna, 2015. godine [i] 2nd International Conference on Electrical, Electronic and Computing Engineering IcETRAN 2015 Silver Lake (Srebrno jezero), Serbia, June 8-11, 2015: Proceedings. 2015;

Novel negatively-charged membrane adsorbers made using combination of photopolymerization and immersion precipitation

Tomković, Tanja; Radovanović, Filip; Grgur, Branimir; Nastasović, Aleksandra; Vasiljević Radović, Dana; Onjia, Antonije

(2015)

TY  - JOUR
AU  - Tomković, Tanja
AU  - Radovanović, Filip
AU  - Grgur, Branimir
AU  - Nastasović, Aleksandra
AU  - Vasiljević Radović, Dana
AU  - Onjia, Antonije
PY  - 2015
UR  - http://dais.sanu.ac.rs/123456789/775
AB  - A novel method combining a traditional immersion precipitation process for making membranes with photopolymerization and crosslinking of functional monomers included in the casting solution was used to prepare asymmetric polyethersulfone membranes with submicron particles incorporating glycidyl methacrylate copolymer. In order to introduce sulfonic groups epoxide rings of glycidyl methacrylate were opened using two methods. The first method was functionalization with sodium sulfite, and the second method was functionalization with sulfuric acid and then grafting with 2-acrylamido-2-methylpropane sulfonic acid. Obtained membranes were characterized using infrared spectroscopy, conductometric titration and water permeability measurements. Scanning electron microscopy and atomic force microscopy were used to investigate the surface morphology and topology of membrane. Dynamic adsorption of Rhodamine B as a model dye was used to demonstrate suitability of these novel membranes for membrane adsorption since the adsorption capacity for dye cations was much better for both functionalized membrane with sodium sulfite and grafted membrane with 2-acrylamido-2-methylpropane sulfonic acid compared to the nonfunctionalized membrane.
T2  - Journal of the Serbian Chemical Society
T1  - Novel negatively-charged membrane adsorbers made using combination of photopolymerization and immersion precipitation
SP  - 419
EP  - 431
VL  - 81
IS  - 4
DO  - 10.2298/JSC150805083T
ER  - 
@article{
author = "Tomković, Tanja and Radovanović, Filip and Grgur, Branimir and Nastasović, Aleksandra and Vasiljević Radović, Dana and Onjia, Antonije",
year = "2015",
url = "http://dais.sanu.ac.rs/123456789/775",
abstract = "A novel method combining a traditional immersion precipitation process for making membranes with photopolymerization and crosslinking of functional monomers included in the casting solution was used to prepare asymmetric polyethersulfone membranes with submicron particles incorporating glycidyl methacrylate copolymer. In order to introduce sulfonic groups epoxide rings of glycidyl methacrylate were opened using two methods. The first method was functionalization with sodium sulfite, and the second method was functionalization with sulfuric acid and then grafting with 2-acrylamido-2-methylpropane sulfonic acid. Obtained membranes were characterized using infrared spectroscopy, conductometric titration and water permeability measurements. Scanning electron microscopy and atomic force microscopy were used to investigate the surface morphology and topology of membrane. Dynamic adsorption of Rhodamine B as a model dye was used to demonstrate suitability of these novel membranes for membrane adsorption since the adsorption capacity for dye cations was much better for both functionalized membrane with sodium sulfite and grafted membrane with 2-acrylamido-2-methylpropane sulfonic acid compared to the nonfunctionalized membrane.",
journal = "Journal of the Serbian Chemical Society",
title = "Novel negatively-charged membrane adsorbers made using combination of photopolymerization and immersion precipitation",
pages = "419-431",
volume = "81",
number = "4",
doi = "10.2298/JSC150805083T"
}
Tomković, T., Radovanović, F., Grgur, B., Nastasović, A., Vasiljević Radović, D.,& Onjia, A. (2015). Novel negatively-charged membrane adsorbers made using combination of photopolymerization and immersion precipitation.
Journal of the Serbian Chemical Society, 81(4), 419-431. 
https://doi.org/10.2298/JSC150805083T
Tomković T, Radovanović F, Grgur B, Nastasović A, Vasiljević Radović D, Onjia A. Novel negatively-charged membrane adsorbers made using combination of photopolymerization and immersion precipitation. Journal of the Serbian Chemical Society. 2015;81(4):419-431
2
2
2