Sort By
Publication Year
Deposit Date
Title
Type
Access
Publication Year
2020 (4)
2019 (19)
2018 (7)
2017 (5)
2016 (7)
2015 (4)
2014 (2)
2013 (8)
2012 (2)
2011 (3)

Zero- to Three-Dimensional Nanostructures for Application in Electronics and Renewable Energy Sources: Synthesis, Characterization and Processing

Link to this page

info:eu-repo/grantAgreement/MESTD/Integrated and Interdisciplinary Research (IIR or III)/45007/RS//

Zero- to Three-Dimensional Nanostructures for Application in Electronics and Renewable Energy Sources: Synthesis, Characterization and Processing (en)
0-3D наноструктуре за примену у електроници и обновљивим изворима енергије: синтеза, карактеризација и процесирање (sr)
0-3D nanostrukture za primenu u elektronici i obnovljivim izvorima energije: sinteza, karakterizacija i procesiranje (sr_RS)

Publications

Structural, morphological and textural properties of iron manganite (FeMnO3) thick films applied for humidity sensing

Nikolić, Maria Vesna; Krstić, Jugoslav; Labus, Nebojša; Luković, Miloljub; Dojčinović, Milena; Radovanović, Milan; Tadić, Nenad

(Elsevier, 2020)

TY  - JOUR
AU  - Nikolić, Maria Vesna
AU  - Krstić, Jugoslav
AU  - Labus, Nebojša
AU  - Luković, Miloljub
AU  - Dojčinović, Milena
AU  - Radovanović, Milan
AU  - Tadić, Nenad
PY  - 2020
UR  - https://dais.sanu.ac.rs/123456789/10036
AB  - Iron manganite (FeMnO3) powder with a cubic (bixbyite,−Ia3) crystal structure was obtained by a solid statereaction. Thick film paste (powder+organic vehicles) was screen printed on alumina substrate with test interdigitatedPdAg electrodes. Significant porosity (60.6%) composed of macropores (larger than 100 nm) wasdetermined by Hg porosimetry, changing only slightly from the first extrusion run indicating a stable poresystem. Hg porosimetry evaluation of thick film samples enabled estimation of true textural parameters of thethick film compared to powder. Impedance response of the thick film sensor was monitored in a humiditychamber in the relative humidity (RH) range 30–90%, at room temperature (25 °C) and frequency range from42 Hz to 1 MHz. At 100 Hz the impedance reduced from 10.41 MΩ for RH 30% to 0.68 MΩ for RH 90%. Analysisof complex impedance using an equivalent circuit showed the dominant influence of grain boundaries. Thesensor response and recovery was fast (several seconds) and a relatively low hysteresis value of 2.8% wasobtained.
PB  - Elsevier
T2  - Materials Science and Engineering B: Solid-State Materials for Advanced Technology
T1  - Structural, morphological and textural properties of iron manganite (FeMnO3) thick films applied for humidity sensing
SP  - 114547
VL  - 257
DO  - 10.1016/j.mseb.2020.114547
ER  - 
@article{
author = "Nikolić, Maria Vesna and Krstić, Jugoslav and Labus, Nebojša and Luković, Miloljub and Dojčinović, Milena and Radovanović, Milan and Tadić, Nenad",
year = "2020",
url = "https://dais.sanu.ac.rs/123456789/10036",
abstract = "Iron manganite (FeMnO3) powder with a cubic (bixbyite,−Ia3) crystal structure was obtained by a solid statereaction. Thick film paste (powder+organic vehicles) was screen printed on alumina substrate with test interdigitatedPdAg electrodes. Significant porosity (60.6%) composed of macropores (larger than 100 nm) wasdetermined by Hg porosimetry, changing only slightly from the first extrusion run indicating a stable poresystem. Hg porosimetry evaluation of thick film samples enabled estimation of true textural parameters of thethick film compared to powder. Impedance response of the thick film sensor was monitored in a humiditychamber in the relative humidity (RH) range 30–90%, at room temperature (25 °C) and frequency range from42 Hz to 1 MHz. At 100 Hz the impedance reduced from 10.41 MΩ for RH 30% to 0.68 MΩ for RH 90%. Analysisof complex impedance using an equivalent circuit showed the dominant influence of grain boundaries. Thesensor response and recovery was fast (several seconds) and a relatively low hysteresis value of 2.8% wasobtained.",
publisher = "Elsevier",
journal = "Materials Science and Engineering B: Solid-State Materials for Advanced Technology",
title = "Structural, morphological and textural properties of iron manganite (FeMnO3) thick films applied for humidity sensing",
pages = "114547",
volume = "257",
doi = "10.1016/j.mseb.2020.114547"
}
Nikolić, M. V., Krstić, J., Labus, N., Luković, M., Dojčinović, M., Radovanović, M.,& Tadić, N. (2020). Structural, morphological and textural properties of iron manganite (FeMnO3) thick films applied for humidity sensing.
Materials Science and Engineering B: Solid-State Materials for Advanced TechnologyElsevier., 257, 114547. 
https://doi.org/10.1016/j.mseb.2020.114547
Nikolić MV, Krstić J, Labus N, Luković M, Dojčinović M, Radovanović M, Tadić N. Structural, morphological and textural properties of iron manganite (FeMnO3) thick films applied for humidity sensing. Materials Science and Engineering B: Solid-State Materials for Advanced Technology. 2020;257:114547
1
1
1

Nanocomposite Zn2SnO4/SnO2 Thick Films as a Humidity Sensing Material

Nikolić, Maria Vesna; Dojčinović, Milena; Vasiljević, Zorka Ž.; Luković, Miloljub D.; Labus, Nebojša

(IEEE, 2020)

TY  - JOUR
AU  - Nikolić, Maria Vesna
AU  - Dojčinović, Milena
AU  - Vasiljević, Zorka Ž.
AU  - Luković, Miloljub D.
AU  - Labus, Nebojša
PY  - 2020
UR  - http://dais.sanu.ac.rs/123456789/7450
AB  - Nanocomposite Zn2SnO4/SnO2 powder was
obtained by solid state synthesis from homogenized
starting nanopowders of ZnO and SnO2, mixed in the 1:1
molar ratio, structurally and morphologically characterized
using X-ray diffraction (XRD) and Scanning Electron
Microscopy (SEM). Thick film paste was made by adding
organic vehicles to the obtained powder. Three to five
layers (layer thickness approx. 12 µm) were screen printed
on alumina substrate with small test PdAg electrodes and
fired at 600oC for 30 minutes. SEM analysis confirmed formation of a porous structure suitable for humidity sensing.
Impedance response was studied at the working temperatures of 25 and 50oC in a humidity chamber where the
relative humidity (RH) was 30-90% and measured frequency 42 Hz – 1 MHz. With increase in film thickness the overall
sensor impedance increased. It reduced at 100 Hz from 36 to 0.25 MΩ (60 µm), from 23.4 to 0.25 MΩ (48 µm) and from
6.8 to 0.02 MΩ (36 µm) at 25 oC, while at 50 oC and also 100 Hz it reduced from 14 MΩ to 0.72 MΩ (48 µm) for RH 30 and
90%, respectively. The response (8 s) and recovery (10 s) was fast, showing that this nanocomposite has potential for
application in humidity sensing.
PB  - IEEE
T2  - IEEE Sensors Journal
T1  - Nanocomposite Zn2SnO4/SnO2 Thick Films as a Humidity Sensing Material
SP  - 7509
EP  - 7516
VL  - 20
IS  - 14
DO  - 10.1109/JSEN.2020.2983135
ER  - 
@article{
author = "Nikolić, Maria Vesna and Dojčinović, Milena and Vasiljević, Zorka Ž. and Luković, Miloljub D. and Labus, Nebojša",
year = "2020",
url = "http://dais.sanu.ac.rs/123456789/7450",
abstract = "Nanocomposite Zn2SnO4/SnO2 powder was
obtained by solid state synthesis from homogenized
starting nanopowders of ZnO and SnO2, mixed in the 1:1
molar ratio, structurally and morphologically characterized
using X-ray diffraction (XRD) and Scanning Electron
Microscopy (SEM). Thick film paste was made by adding
organic vehicles to the obtained powder. Three to five
layers (layer thickness approx. 12 µm) were screen printed
on alumina substrate with small test PdAg electrodes and
fired at 600oC for 30 minutes. SEM analysis confirmed formation of a porous structure suitable for humidity sensing.
Impedance response was studied at the working temperatures of 25 and 50oC in a humidity chamber where the
relative humidity (RH) was 30-90% and measured frequency 42 Hz – 1 MHz. With increase in film thickness the overall
sensor impedance increased. It reduced at 100 Hz from 36 to 0.25 MΩ (60 µm), from 23.4 to 0.25 MΩ (48 µm) and from
6.8 to 0.02 MΩ (36 µm) at 25 oC, while at 50 oC and also 100 Hz it reduced from 14 MΩ to 0.72 MΩ (48 µm) for RH 30 and
90%, respectively. The response (8 s) and recovery (10 s) was fast, showing that this nanocomposite has potential for
application in humidity sensing.",
publisher = "IEEE",
journal = "IEEE Sensors Journal",
title = "Nanocomposite Zn2SnO4/SnO2 Thick Films as a Humidity Sensing Material",
pages = "7509-7516",
volume = "20",
number = "14",
doi = "10.1109/JSEN.2020.2983135"
}
Nikolić, M. V., Dojčinović, M., Vasiljević, Z. Ž., Luković, M. D.,& Labus, N. (2020). Nanocomposite Zn2SnO4/SnO2 Thick Films as a Humidity Sensing Material.
IEEE Sensors JournalIEEE., 20(14), 7509-7516. 
https://doi.org/10.1109/JSEN.2020.2983135
Nikolić MV, Dojčinović M, Vasiljević ZŽ, Luković MD, Labus N. Nanocomposite Zn2SnO4/SnO2 Thick Films as a Humidity Sensing Material. IEEE Sensors Journal. 2020;20(14):7509-7516
2
1
2

Nanocomposite Zn2SnO4/SnO2 Thick Films as a Humidity Sensing Material

Nikolić, Maria Vesna; Dojčinović, Milena; Vasiljević, Zorka Ž.; Luković, Miloljub D.; Labus, Nebojša

(IEEE, 2020)

TY  - JOUR
AU  - Nikolić, Maria Vesna
AU  - Dojčinović, Milena
AU  - Vasiljević, Zorka Ž.
AU  - Luković, Miloljub D.
AU  - Labus, Nebojša
PY  - 2020
UR  - http://dais.sanu.ac.rs/123456789/7450
UR  - http://dais.sanu.ac.rs/123456789/8942
AB  - Nanocomposite Zn2SnO4/SnO2 powder wasobtained by solid state synthesis from homogenizedstarting nanopowders of ZnO and SnO2, mixed in the 1:1molar ratio, structurally and morphologically characterizedusing X-ray diffraction (XRD) and Scanning ElectronMicroscopy (SEM). Thick film paste was made by addingorganic vehicles to the obtained powder. Three to fivelayers (layer thickness approx. 12 µm) were screen printedon alumina substrate with small test PdAg electrodes andfired at 600oC for 30 minutes. SEM analysis confirmed formation of a porous structure suitable for humidity sensing.Impedance response was studied at the working temperatures of 25 and 50oC in a humidity chamber where therelative humidity (RH) was 30-90% and measured frequency 42 Hz – 1 MHz. With increase in film thickness the overallsensor impedance increased. It reduced at 100 Hz from 36 to 0.25 MΩ (60 µm), from 23.4 to 0.25 MΩ (48 µm) and from6.8 to 0.02 MΩ (36 µm) at 25 oC, while at 50 oC and also 100 Hz it reduced from 14 MΩ to 0.72 MΩ (48 µm) for RH 30 and90%, respectively. The response (8 s) and recovery (10 s) was fast, showing that this nanocomposite has potential forapplication in humidity sensing.
PB  - IEEE
T2  - IEEE Sensors Journal
T1  - Nanocomposite Zn2SnO4/SnO2 Thick Films as a Humidity Sensing Material
SP  - 7509
EP  - 7516
VL  - 20
IS  - 14
DO  - 10.1109/JSEN.2020.2983135
ER  - 
@article{
author = "Nikolić, Maria Vesna and Dojčinović, Milena and Vasiljević, Zorka Ž. and Luković, Miloljub D. and Labus, Nebojša",
year = "2020",
url = "http://dais.sanu.ac.rs/123456789/7450, http://dais.sanu.ac.rs/123456789/8942",
abstract = "Nanocomposite Zn2SnO4/SnO2 powder wasobtained by solid state synthesis from homogenizedstarting nanopowders of ZnO and SnO2, mixed in the 1:1molar ratio, structurally and morphologically characterizedusing X-ray diffraction (XRD) and Scanning ElectronMicroscopy (SEM). Thick film paste was made by addingorganic vehicles to the obtained powder. Three to fivelayers (layer thickness approx. 12 µm) were screen printedon alumina substrate with small test PdAg electrodes andfired at 600oC for 30 minutes. SEM analysis confirmed formation of a porous structure suitable for humidity sensing.Impedance response was studied at the working temperatures of 25 and 50oC in a humidity chamber where therelative humidity (RH) was 30-90% and measured frequency 42 Hz – 1 MHz. With increase in film thickness the overallsensor impedance increased. It reduced at 100 Hz from 36 to 0.25 MΩ (60 µm), from 23.4 to 0.25 MΩ (48 µm) and from6.8 to 0.02 MΩ (36 µm) at 25 oC, while at 50 oC and also 100 Hz it reduced from 14 MΩ to 0.72 MΩ (48 µm) for RH 30 and90%, respectively. The response (8 s) and recovery (10 s) was fast, showing that this nanocomposite has potential forapplication in humidity sensing.",
publisher = "IEEE",
journal = "IEEE Sensors Journal",
title = "Nanocomposite Zn2SnO4/SnO2 Thick Films as a Humidity Sensing Material",
pages = "7509-7516",
volume = "20",
number = "14",
doi = "10.1109/JSEN.2020.2983135"
}
Nikolić, M. V., Dojčinović, M., Vasiljević, Z. Ž., Luković, M. D.,& Labus, N. (2020). Nanocomposite Zn2SnO4/SnO2 Thick Films as a Humidity Sensing Material.
IEEE Sensors JournalIEEE., 20(14), 7509-7516. 
https://doi.org/10.1109/JSEN.2020.2983135
Nikolić MV, Dojčinović M, Vasiljević ZŽ, Luković MD, Labus N. Nanocomposite Zn2SnO4/SnO2 Thick Films as a Humidity Sensing Material. IEEE Sensors Journal. 2020;20(14):7509-7516
2
1
2

Structural, morphological and textural properties of iron manganite (FeMnO3) thick films applied for humidity sensing

Nikolić, Maria Vesna; Krstić, Jugoslav; Labus, Nebojša; Luković, Miloljub; Dojčinović, Milena; Radovanović, Milan; Tadić, Nenad

(Elsevier, 2020)

TY  - JOUR
AU  - Nikolić, Maria Vesna
AU  - Krstić, Jugoslav
AU  - Labus, Nebojša
AU  - Luković, Miloljub
AU  - Dojčinović, Milena
AU  - Radovanović, Milan
AU  - Tadić, Nenad
PY  - 2020
UR  - http://dais.sanu.ac.rs/123456789/8950
AB  - Iron manganite (FeMnO3) powder with a cubic (bixbyite,−Ia3) crystal structure was obtained by a solid statereaction. Thick film paste (powder+organic vehicles) was screen printed on alumina substrate with test interdigitatedPdAg electrodes. Significant porosity (60.6%) composed of macropores (larger than 100 nm) wasdetermined by Hg porosimetry, changing only slightly from the first extrusion run indicating a stable poresystem. Hg porosimetry evaluation of thick film samples enabled estimation of true textural parameters of thethick film compared to powder. Impedance response of the thick film sensor was monitored in a humiditychamber in the relative humidity (RH) range 30–90%, at room temperature (25 °C) and frequency range from42 Hz to 1 MHz. At 100 Hz the impedance reduced from 10.41 MΩ for RH 30% to 0.68 MΩ for RH 90%. Analysisof complex impedance using an equivalent circuit showed the dominant influence of grain boundaries. Thesensor response and recovery was fast (several seconds) and a relatively low hysteresis value of 2.8% wasobtained.
PB  - Elsevier
T2  - Materials Science and Engineering B: Solid-State Materials for Advanced Technology
T1  - Structural, morphological and textural properties of iron manganite (FeMnO3) thick films applied for humidity sensing
SP  - 114547
VL  - 257
DO  - 10.1016/j.mseb.2020.114547
ER  - 
@article{
author = "Nikolić, Maria Vesna and Krstić, Jugoslav and Labus, Nebojša and Luković, Miloljub and Dojčinović, Milena and Radovanović, Milan and Tadić, Nenad",
year = "2020",
url = "http://dais.sanu.ac.rs/123456789/8950",
abstract = "Iron manganite (FeMnO3) powder with a cubic (bixbyite,−Ia3) crystal structure was obtained by a solid statereaction. Thick film paste (powder+organic vehicles) was screen printed on alumina substrate with test interdigitatedPdAg electrodes. Significant porosity (60.6%) composed of macropores (larger than 100 nm) wasdetermined by Hg porosimetry, changing only slightly from the first extrusion run indicating a stable poresystem. Hg porosimetry evaluation of thick film samples enabled estimation of true textural parameters of thethick film compared to powder. Impedance response of the thick film sensor was monitored in a humiditychamber in the relative humidity (RH) range 30–90%, at room temperature (25 °C) and frequency range from42 Hz to 1 MHz. At 100 Hz the impedance reduced from 10.41 MΩ for RH 30% to 0.68 MΩ for RH 90%. Analysisof complex impedance using an equivalent circuit showed the dominant influence of grain boundaries. Thesensor response and recovery was fast (several seconds) and a relatively low hysteresis value of 2.8% wasobtained.",
publisher = "Elsevier",
journal = "Materials Science and Engineering B: Solid-State Materials for Advanced Technology",
title = "Structural, morphological and textural properties of iron manganite (FeMnO3) thick films applied for humidity sensing",
pages = "114547",
volume = "257",
doi = "10.1016/j.mseb.2020.114547"
}
Nikolić, M. V., Krstić, J., Labus, N., Luković, M., Dojčinović, M., Radovanović, M.,& Tadić, N. (2020). Structural, morphological and textural properties of iron manganite (FeMnO3) thick films applied for humidity sensing.
Materials Science and Engineering B: Solid-State Materials for Advanced TechnologyElsevier., 257, 114547. 
https://doi.org/10.1016/j.mseb.2020.114547
Nikolić MV, Krstić J, Labus N, Luković M, Dojčinović M, Radovanović M, Tadić N. Structural, morphological and textural properties of iron manganite (FeMnO3) thick films applied for humidity sensing. Materials Science and Engineering B: Solid-State Materials for Advanced Technology. 2020;257:114547
1
1
1

Structural, photocatalytic and photoelectrochemical characteristics of ZnO nanoparticles synthesized by a glycine-nitrate process

Dojčinović, Milena; Stojković Simatović, Ivana; Marković, Smilja; Janković Častvan, Ivona; Bajuk Bogdanović, Danica; Stojadinović, Stevan; Rac, Vladislav; Nikolić, Maria Vesna

(Budapest : [s. n.], 2019)

TY  - CONF
AU  - Dojčinović, Milena
AU  - Stojković Simatović, Ivana
AU  - Marković, Smilja
AU  - Janković Častvan, Ivona
AU  - Bajuk Bogdanović, Danica
AU  - Stojadinović, Stevan
AU  - Rac, Vladislav
AU  - Nikolić, Maria Vesna
PY  - 2019
UR  - http://dais.sanu.ac.rs/123456789/6998
AB  - Zinc oxide is a semiconductor material which still, after a century of scientific research, shows great potential in modern day utilisements such as heterogenous photocatalysis of organic pollutants and as a photoanode material for efficient water splitting and oxygen generation. In this work zinc oxide was synthesized by a glycine-nitrate combustion process, which is a cheap, simple and efficient method for synthesizing transition metal oxides. The obtained powder was calcined at 400 and 500 °C and samples were characterized in detail using X-ray powder diffraction (XRPD), Fourier-trasform infrared spectroscopy (FTIR), Raman spectroscopy, field emission scanning electron microscopy (FESEM), photoluminescence spectroscopy (PL) and UV-Vis diffuse reflectance spectroscopy (DRS). Photoelectrocatalytic properties were investigated via electrochemical methods: linear voltammetry (LV), chronoamperometry (CA) and impedance spectroscopy (EIS). The results show that the obtained samples are nanocrystalline wurtzite zinc oxide with no impurities, with average particle diameters of 33 nm (annealed at 400 °C) and 48 nm (annealed at 500 °C). Both samples show significant amounts of various crystal deffects. The determined zinc oxide band gap was lower than the band gap of bulk zinc oxide. Photoelectrochemical measurements revealed that this material is photostable and reactive to light. Water oxidation is enhanced by exposing the light. Finally, photocatalytic properties were tested via determining kinetic parameters of organic pollutant decomposition. Both samples showed excellent photocatalytic activity by decomposing methylene blue and phenol.
PB  - Budapest : [s. n.]
C3  - Abstracts / International Workshop on Woman in Ceramic Science (WoCeram2019), April 7-9, 2019/ Budapest, Hungary, Novotel Danube Budapest
T1  - Structural, photocatalytic and photoelectrochemical characteristics of ZnO nanoparticles synthesized by a glycine-nitrate process
SP  - 16
EP  - 16
ER  - 
@conference{
author = "Dojčinović, Milena and Stojković Simatović, Ivana and Marković, Smilja and Janković Častvan, Ivona and Bajuk Bogdanović, Danica and Stojadinović, Stevan and Rac, Vladislav and Nikolić, Maria Vesna",
year = "2019",
url = "http://dais.sanu.ac.rs/123456789/6998",
abstract = "Zinc oxide is a semiconductor material which still, after a century of scientific research, shows great potential in modern day utilisements such as heterogenous photocatalysis of organic pollutants and as a photoanode material for efficient water splitting and oxygen generation. In this work zinc oxide was synthesized by a glycine-nitrate combustion process, which is a cheap, simple and efficient method for synthesizing transition metal oxides. The obtained powder was calcined at 400 and 500 °C and samples were characterized in detail using X-ray powder diffraction (XRPD), Fourier-trasform infrared spectroscopy (FTIR), Raman spectroscopy, field emission scanning electron microscopy (FESEM), photoluminescence spectroscopy (PL) and UV-Vis diffuse reflectance spectroscopy (DRS). Photoelectrocatalytic properties were investigated via electrochemical methods: linear voltammetry (LV), chronoamperometry (CA) and impedance spectroscopy (EIS). The results show that the obtained samples are nanocrystalline wurtzite zinc oxide with no impurities, with average particle diameters of 33 nm (annealed at 400 °C) and 48 nm (annealed at 500 °C). Both samples show significant amounts of various crystal deffects. The determined zinc oxide band gap was lower than the band gap of bulk zinc oxide. Photoelectrochemical measurements revealed that this material is photostable and reactive to light. Water oxidation is enhanced by exposing the light. Finally, photocatalytic properties were tested via determining kinetic parameters of organic pollutant decomposition. Both samples showed excellent photocatalytic activity by decomposing methylene blue and phenol.",
publisher = "Budapest : [s. n.]",
journal = "Abstracts / International Workshop on Woman in Ceramic Science (WoCeram2019), April 7-9, 2019/ Budapest, Hungary, Novotel Danube Budapest",
title = "Structural, photocatalytic and photoelectrochemical characteristics of ZnO nanoparticles synthesized by a glycine-nitrate process",
pages = "16-16"
}
Dojčinović, M., Stojković Simatović, I., Marković, S., Janković Častvan, I., Bajuk Bogdanović, D., Stojadinović, S., Rac, V.,& Nikolić, M. V. (2019). Structural, photocatalytic and photoelectrochemical characteristics of ZnO nanoparticles synthesized by a glycine-nitrate process.
Abstracts / International Workshop on Woman in Ceramic Science (WoCeram2019), April 7-9, 2019/ Budapest, Hungary, Novotel Danube BudapestBudapest : [s. n.]., null, 16-16. 
Dojčinović M, Stojković Simatović I, Marković S, Janković Častvan I, Bajuk Bogdanović D, Stojadinović S, Rac V, Nikolić MV. Structural, photocatalytic and photoelectrochemical characteristics of ZnO nanoparticles synthesized by a glycine-nitrate process. Abstracts / International Workshop on Woman in Ceramic Science (WoCeram2019), April 7-9, 2019/ Budapest, Hungary, Novotel Danube Budapest. 2019;:16-16

Sinteza, struktura, karakterizacija i fotoelektrohemijska primena debelih slojeva pseudobrukita, Fe2TiO5

Vasiljević, Zorka Ž.

(Универзитет у Београду, Технолошко-металуршки факултет, 2019)

TY  - BOOK
AU  - Vasiljević, Zorka Ž.
PY  - 2019
UR  - http://eteze.bg.ac.rs/application/showtheses?thesesId=7301
UR  - http://nardus.mpn.gov.rs/handle/123456789/12112
UR  - https://fedorabg.bg.ac.rs/fedora/get/o:21082/bdef:Content/download
UR  - http://vbs.rs/scripts/cobiss?command=DISPLAY&base=70036&RID=51887375
UR  - https://dais.sanu.ac.rs/123456789/9153
AB  - U poređenju sa fotonaponskim ćelijama, fotoelektrohemijske ćelije predstavljajuefikasan vid pretvaranja sunčeve energije u električnu, jer se pored energije dobija ivodonik koji se može iskoristiti kao gorivo. Fotoelektrohemijske ćelije sastoje se odpoluprovodničke anode (p- ili n-tipa) koja apsorbuje svetlost, pri čemu se konverzijaenergije odigrava na granici faza poluprovodnik-elektrolit.U ovoj doktorskoj disertaciji primenjena su tri istraživačka pravca za dobijanjefilmova u svojstvu fotoaktivnih anoda. Prvi istraživački pravac bio je pripremananočestičnog poluprovodnika - pseudobrukita, Fe2TiO5, reakcijom u čvrstom stanjuizmeđu anatasa, TiO2 i hematita, α-Fe2O3. Analiza dobijanja najpre je praćena natabletama radi optimizacije sastava, temperature i vremena sinterovanja. Ispitan je uticajpromene temperature sinterovanja (750 – 1250 C) na fazni sastav, temperaturu faznogprelaza, morfologiju, kao i električna svojstva sinterovanih uzoraka. Izabrane su dveoksidne smeše  maseni odnos prahova 40%α-Fe2O3/60%TiO2 (4F6T) i60%α-Fe2O3/40%TiO2 (6F4T) što približno odgovara molskom odnosu početnihprahova hematita i anatasa od 1:3 i 1,5:2, sa ciljem da se dobije pseudobrukit i analizirauticaj viška anatasa. Uzorci sinterovani na temperaturi 850 C sadržali su rutil ipseudobrukit sa rombičnom strukturom čime je potvrđeno da gvožđe ubrzava faznutransformaciju anatasa u rutil pri čemu se formira i pseudobrukitna faza. Dalje povišenjetemperature uticalo je na povećanje gustine uzoraka, promene u veličini zrna ismanjenje električne otpornosti.Drugi istraživački pravac bio je priprema elektrodnih filmova sitoštampanjempasti koje su dobijene mešanjem homogenizovanih prahova sa organskom smolom(butil celuloza), rastvaračem (terpinol) i malom količinom veziva – ROSiO2B2O3staklo (RO-oksid retkih zemalja). Dobijene paste deponovane su sitoštampom nasupstrat od alumine i potom sinterovane u hibridnoj peći 60 minuta u temperaturnomopsegu 800 – 950 C. Rendgenskom difrakcionom analizom utvrđeno je da se na800 C formira monoklinični pseudobrukit i da je završena fazna transformacija anatasau rutil, kao i da je dalje povišenje temperature utiče na prelaz monokliničnog u rombičnipseudobrukit. Uzorci sinterovani na 850 C imali su malu veličinu zrna sa homogenomstrukturom, dok je dalje povišenje temperature uticalo na formiranje pseudobrukita savećim zrnima štapićastog oblika. Strujno-naponska analiza pokazala je da uzorak60%α-Fe2O3/40%TiO2 sinterovan na 850 C ima mogućnost za primenu ufotoelektrohemijskim ćelijama...
AB  - Compared to photovoltaic cells, photoelectrochemical cells represent an efficientway of converting solar into electrical energy, because besides energy, hydrogen is alsoavailable that could be used as a fuel. A photoelectrochemical cell consists of asemiconductor anode (p- or n-type) that absorbs light, whereby energy conversion takesplace at the boundary of the semiconductor-electrolyte phase.This doctoral dissertation is divided into three main research directions, relatedto the preparation of films in the form of photoactive anodes. The first one describespreparation of the nanoparticle semiconductor - pseudobrookite, Fe2TiO5, by a solidstate reaction between anatase, TiO2, and hematite, α-Fe2O3. Pseudobrookite formationwas first monitored on tablets to optimize the composition, temperature and time ofsintering. The influence of the sintering temperature (750 –1250C) on the phasecomposition, phase transition temperature, morphology and electrical properties of bulksintered powder mixtures composed of starting anatase and hematite nanopowders wasinvestigated. Two oxide mixtures were first selected - nanopowders of -Fe2O3(hematite) and TiO2 (anatase 99.7%) were mixed in the weight ratios 40:60 and 60:40,respectively which approximately corresponds to the molar ratios of starting hematiteand anatase powders of 1:3 and 1.5:2, with the aim of obtaining pseudobrookite andanalyzing the effect of excess anatase. Samples sintered at 850 °C contained rutile andpseudobrookite with an orthorhombic structure, which confirmed that iron acceleratesthe phase transformation of anatase to rutile, thereby forming a pseudobrookite phase.Higher sintering temperatures lead to increased sample density, changes in grain sizeand decreased electric resistivity.The second research direction was the preparation of films starting fromprepared oxide mixtures with an organic vehicle (butyl cellulose), solvent (terpinol) anda small amount of binding lead boron silicone oxide glass frit (ROSiO2B2O3). Pasteswere deposited onto alumina substrate using the screen printing technique and thensintered 60 minutes at 800  950 C. X-ray diffraction analysis determined formation ofmonoclinic pseudobrookite at 800 C and completion of the phase transformation ofanatase into rutile. Further increase in temperature leads to the transition of monoclinicpseudobrookite into orthorhombic pseudobrookite. Samples sintered at 850 C still hada small grain size, with a relatively homogenous distribution, while further increase intemperature lead to the formation of larger rod-shaped grains. Analysis of currentvoltage measurements of thick film samples sintered at 850 C showed that the60%α-Fe2O3/40%TiO2 sample had potential for application as a photoanode for lightdriven water splitting...
PB  - Универзитет у Београду, Технолошко-металуршки факултет
T2  - Универзитет у Београду
T1  - Sinteza, struktura, karakterizacija i fotoelektrohemijska primena debelih slojeva pseudobrukita, Fe2TiO5
ER  - 
@phdthesis{
author = "Vasiljević, Zorka Ž.",
year = "2019",
url = "http://eteze.bg.ac.rs/application/showtheses?thesesId=7301, http://nardus.mpn.gov.rs/handle/123456789/12112, https://fedorabg.bg.ac.rs/fedora/get/o:21082/bdef:Content/download, http://vbs.rs/scripts/cobiss?command=DISPLAY&base=70036&RID=51887375, https://dais.sanu.ac.rs/123456789/9153",
abstract = "U poređenju sa fotonaponskim ćelijama, fotoelektrohemijske ćelije predstavljajuefikasan vid pretvaranja sunčeve energije u električnu, jer se pored energije dobija ivodonik koji se može iskoristiti kao gorivo. Fotoelektrohemijske ćelije sastoje se odpoluprovodničke anode (p- ili n-tipa) koja apsorbuje svetlost, pri čemu se konverzijaenergije odigrava na granici faza poluprovodnik-elektrolit.U ovoj doktorskoj disertaciji primenjena su tri istraživačka pravca za dobijanjefilmova u svojstvu fotoaktivnih anoda. Prvi istraživački pravac bio je pripremananočestičnog poluprovodnika - pseudobrukita, Fe2TiO5, reakcijom u čvrstom stanjuizmeđu anatasa, TiO2 i hematita, α-Fe2O3. Analiza dobijanja najpre je praćena natabletama radi optimizacije sastava, temperature i vremena sinterovanja. Ispitan je uticajpromene temperature sinterovanja (750 – 1250 C) na fazni sastav, temperaturu faznogprelaza, morfologiju, kao i električna svojstva sinterovanih uzoraka. Izabrane su dveoksidne smeše  maseni odnos prahova 40%α-Fe2O3/60%TiO2 (4F6T) i60%α-Fe2O3/40%TiO2 (6F4T) što približno odgovara molskom odnosu početnihprahova hematita i anatasa od 1:3 i 1,5:2, sa ciljem da se dobije pseudobrukit i analizirauticaj viška anatasa. Uzorci sinterovani na temperaturi 850 C sadržali su rutil ipseudobrukit sa rombičnom strukturom čime je potvrđeno da gvožđe ubrzava faznutransformaciju anatasa u rutil pri čemu se formira i pseudobrukitna faza. Dalje povišenjetemperature uticalo je na povećanje gustine uzoraka, promene u veličini zrna ismanjenje električne otpornosti.Drugi istraživački pravac bio je priprema elektrodnih filmova sitoštampanjempasti koje su dobijene mešanjem homogenizovanih prahova sa organskom smolom(butil celuloza), rastvaračem (terpinol) i malom količinom veziva – ROSiO2B2O3staklo (RO-oksid retkih zemalja). Dobijene paste deponovane su sitoštampom nasupstrat od alumine i potom sinterovane u hibridnoj peći 60 minuta u temperaturnomopsegu 800 – 950 C. Rendgenskom difrakcionom analizom utvrđeno je da se na800 C formira monoklinični pseudobrukit i da je završena fazna transformacija anatasau rutil, kao i da je dalje povišenje temperature utiče na prelaz monokliničnog u rombičnipseudobrukit. Uzorci sinterovani na 850 C imali su malu veličinu zrna sa homogenomstrukturom, dok je dalje povišenje temperature uticalo na formiranje pseudobrukita savećim zrnima štapićastog oblika. Strujno-naponska analiza pokazala je da uzorak60%α-Fe2O3/40%TiO2 sinterovan na 850 C ima mogućnost za primenu ufotoelektrohemijskim ćelijama..., Compared to photovoltaic cells, photoelectrochemical cells represent an efficientway of converting solar into electrical energy, because besides energy, hydrogen is alsoavailable that could be used as a fuel. A photoelectrochemical cell consists of asemiconductor anode (p- or n-type) that absorbs light, whereby energy conversion takesplace at the boundary of the semiconductor-electrolyte phase.This doctoral dissertation is divided into three main research directions, relatedto the preparation of films in the form of photoactive anodes. The first one describespreparation of the nanoparticle semiconductor - pseudobrookite, Fe2TiO5, by a solidstate reaction between anatase, TiO2, and hematite, α-Fe2O3. Pseudobrookite formationwas first monitored on tablets to optimize the composition, temperature and time ofsintering. The influence of the sintering temperature (750 –1250C) on the phasecomposition, phase transition temperature, morphology and electrical properties of bulksintered powder mixtures composed of starting anatase and hematite nanopowders wasinvestigated. Two oxide mixtures were first selected - nanopowders of -Fe2O3(hematite) and TiO2 (anatase 99.7%) were mixed in the weight ratios 40:60 and 60:40,respectively which approximately corresponds to the molar ratios of starting hematiteand anatase powders of 1:3 and 1.5:2, with the aim of obtaining pseudobrookite andanalyzing the effect of excess anatase. Samples sintered at 850 °C contained rutile andpseudobrookite with an orthorhombic structure, which confirmed that iron acceleratesthe phase transformation of anatase to rutile, thereby forming a pseudobrookite phase.Higher sintering temperatures lead to increased sample density, changes in grain sizeand decreased electric resistivity.The second research direction was the preparation of films starting fromprepared oxide mixtures with an organic vehicle (butyl cellulose), solvent (terpinol) anda small amount of binding lead boron silicone oxide glass frit (ROSiO2B2O3). Pasteswere deposited onto alumina substrate using the screen printing technique and thensintered 60 minutes at 800  950 C. X-ray diffraction analysis determined formation ofmonoclinic pseudobrookite at 800 C and completion of the phase transformation ofanatase into rutile. Further increase in temperature leads to the transition of monoclinicpseudobrookite into orthorhombic pseudobrookite. Samples sintered at 850 C still hada small grain size, with a relatively homogenous distribution, while further increase intemperature lead to the formation of larger rod-shaped grains. Analysis of currentvoltage measurements of thick film samples sintered at 850 C showed that the60%α-Fe2O3/40%TiO2 sample had potential for application as a photoanode for lightdriven water splitting...",
publisher = "Универзитет у Београду, Технолошко-металуршки факултет",
journal = "Универзитет у Београду",
title = "Sinteza, struktura, karakterizacija i fotoelektrohemijska primena debelih slojeva pseudobrukita, Fe2TiO5"
}
,& Vasiljević, Z. Ž. (2019). Sinteza, struktura, karakterizacija i fotoelektrohemijska primena debelih slojeva pseudobrukita, Fe2TiO5.
Универзитет у БеоградуУниверзитет у Београду, Технолошко-металуршки факултет., null. 
Vasiljević ZŽ. Sinteza, struktura, karakterizacija i fotoelektrohemijska primena debelih slojeva pseudobrukita, Fe2TiO5. Универзитет у Београду. 2019;

Investigation of ZnFe2O4 spinel ferrite nanocrystalline screen‐printed thick films for application in humidity sensing

Nikolić, Maria Vesna; Vasiljević, Zorka Ž.; Luković, Miloljub D.; Pavlović, Vera P.; Krstić, Jugoslav B.; Vujančević, Jelena; Tadić, Nenad B.; Vlahović, Branislav; Pavlović, Vladimir B.

(John Wiley & Sons, Inc., 2019)

TY  - JOUR
AU  - Nikolić, Maria Vesna
AU  - Vasiljević, Zorka Ž.
AU  - Luković, Miloljub D.
AU  - Pavlović, Vera P.
AU  - Krstić, Jugoslav B.
AU  - Vujančević, Jelena
AU  - Tadić, Nenad B.
AU  - Vlahović, Branislav
AU  - Pavlović, Vladimir B.
PY  - 2019
UR  - https://ceramics.onlinelibrary.wiley.com/doi/abs/10.1111/ijac.13190
UR  - http://dais.sanu.ac.rs/123456789/4848
AB  - Zinc ferrite nanocrystalline powder was obtained by solid state synthesis of starting zinc oxide and hematite nanopowders. Field emission scanning electron microscopy (FESEM and transmission electron microscopy (TEM), X‐ray diffraction (XRD), X‐ray photoelectron spectroscopy (XPS) and Raman spectroscopy confirmed the formation of nanocrystalline zinc‐ferrite powder with a mixed spinel structure with small amounts of remaining zinc oxide and hematite as impurities. Thick film paste was formed and screen printed on test interdigitated PdAg electrodes on alumina substrate. Formation of a porous nanocrystalline structure was confirmed by scanning electron microscopy (SEM) and Hg porosimetry. Humidity sensing properties of zinc ferrite thick films were investigated by monitoring the change in impedance in the relative humidity interval 30‐90% in the frequency range 42 Hz – 1 MHz at room temperature (25 °C) and 50 °C. At 42 Hz at both analyzed temperatures the impedance reduced ~ 46 times in the humidity range 30‐90%. The dominant influence of grain boundaries was confirmed by analysis of complex impedance with an equivalent circuit.
PB  - John Wiley & Sons, Inc.
T2  - International Journal of Applied Ceramic Technology
T1  - Investigation of ZnFe2O4 spinel ferrite nanocrystalline screen‐printed thick films for application in humidity sensing
SP  - 981
EP  - 993
VL  - 16
IS  - 3
DO  - 10.1111/ijac.13190
ER  - 
@article{
author = "Nikolić, Maria Vesna and Vasiljević, Zorka Ž. and Luković, Miloljub D. and Pavlović, Vera P. and Krstić, Jugoslav B. and Vujančević, Jelena and Tadić, Nenad B. and Vlahović, Branislav and Pavlović, Vladimir B.",
year = "2019",
url = "https://ceramics.onlinelibrary.wiley.com/doi/abs/10.1111/ijac.13190, http://dais.sanu.ac.rs/123456789/4848",
abstract = "Zinc ferrite nanocrystalline powder was obtained by solid state synthesis of starting zinc oxide and hematite nanopowders. Field emission scanning electron microscopy (FESEM and transmission electron microscopy (TEM), X‐ray diffraction (XRD), X‐ray photoelectron spectroscopy (XPS) and Raman spectroscopy confirmed the formation of nanocrystalline zinc‐ferrite powder with a mixed spinel structure with small amounts of remaining zinc oxide and hematite as impurities. Thick film paste was formed and screen printed on test interdigitated PdAg electrodes on alumina substrate. Formation of a porous nanocrystalline structure was confirmed by scanning electron microscopy (SEM) and Hg porosimetry. Humidity sensing properties of zinc ferrite thick films were investigated by monitoring the change in impedance in the relative humidity interval 30‐90% in the frequency range 42 Hz – 1 MHz at room temperature (25 °C) and 50 °C. At 42 Hz at both analyzed temperatures the impedance reduced ~ 46 times in the humidity range 30‐90%. The dominant influence of grain boundaries was confirmed by analysis of complex impedance with an equivalent circuit.",
publisher = "John Wiley & Sons, Inc.",
journal = "International Journal of Applied Ceramic Technology",
title = "Investigation of ZnFe2O4 spinel ferrite nanocrystalline screen‐printed thick films for application in humidity sensing",
pages = "981-993",
volume = "16",
number = "3",
doi = "10.1111/ijac.13190"
}
Nikolić, M. V., Vasiljević, Z. Ž., Luković, M. D., Pavlović, V. P., Krstić, J. B., Vujančević, J., Tadić, N. B., Vlahović, B.,& Pavlović, V. B. (2019). Investigation of ZnFe2O4 spinel ferrite nanocrystalline screen‐printed thick films for application in humidity sensing.
International Journal of Applied Ceramic TechnologyJohn Wiley & Sons, Inc.., 16(3), 981-993. 
https://doi.org/10.1111/ijac.13190
Nikolić MV, Vasiljević ZŽ, Luković MD, Pavlović VP, Krstić JB, Vujančević J, Tadić NB, Vlahović B, Pavlović VB. Investigation of ZnFe2O4 spinel ferrite nanocrystalline screen‐printed thick films for application in humidity sensing. International Journal of Applied Ceramic Technology. 2019;16(3):981-993
9
4
8

Investigation of ZnFe2O4 spinel ferrite nanocrystalline screen‐printed thick films for application in humidity sensing

Nikolić, Maria Vesna; Vasiljević, Zorka Ž.; Luković, Miloljub D.; Pavlović, Vera P.; Krstić, Jugoslav B.; Vujančević, Jelena; Tadić, Nenad B.; Vlahović, Branislav; Pavlović, Vladimir B.

(John Wiley & Sons, Inc., 2019)

TY  - JOUR
AU  - Nikolić, Maria Vesna
AU  - Vasiljević, Zorka Ž.
AU  - Luković, Miloljub D.
AU  - Pavlović, Vera P.
AU  - Krstić, Jugoslav B.
AU  - Vujančević, Jelena
AU  - Tadić, Nenad B.
AU  - Vlahović, Branislav
AU  - Pavlović, Vladimir B.
PY  - 2019
UR  - https://ceramics.onlinelibrary.wiley.com/doi/abs/10.1111/ijac.13190
UR  - http://dais.sanu.ac.rs/123456789/5766
AB  - Zinc ferrite nanocrystalline powder was obtained by solid state synthesis of starting zinc oxide and hematite nanopowders. Field emission scanning electron microscopy (FESEM and transmission electron microscopy (TEM), X‐ray diffraction (XRD), X‐ray photoelectron spectroscopy (XPS) and Raman spectroscopy confirmed the formation of nanocrystalline zinc‐ferrite powder with a mixed spinel structure with small amounts of remaining zinc oxide and hematite as impurities. Thick film paste was formed and screen printed on test interdigitated PdAg electrodes on alumina substrate. Formation of a porous nanocrystalline structure was confirmed by scanning electron microscopy (SEM) and Hg porosimetry. Humidity sensing properties of zinc ferrite thick films were investigated by monitoring the change in impedance in the relative humidity interval 30‐90% in the frequency range 42 Hz – 1 MHz at room temperature (25 °C) and 50 °C. At 42 Hz at both analyzed temperatures the impedance reduced ~ 46 times in the humidity range 30‐90%. The dominant influence of grain boundaries was confirmed by analysis of complex impedance with an equivalent circuit.
PB  - John Wiley & Sons, Inc.
T2  - International Journal of Applied Ceramic Technology
T1  - Investigation of ZnFe2O4 spinel ferrite nanocrystalline screen‐printed thick films for application in humidity sensing
SP  - 981
EP  - 993
VL  - 16
IS  - 3
DO  - 10.1111/ijac.13190
ER  - 
@article{
author = "Nikolić, Maria Vesna and Vasiljević, Zorka Ž. and Luković, Miloljub D. and Pavlović, Vera P. and Krstić, Jugoslav B. and Vujančević, Jelena and Tadić, Nenad B. and Vlahović, Branislav and Pavlović, Vladimir B.",
year = "2019",
url = "https://ceramics.onlinelibrary.wiley.com/doi/abs/10.1111/ijac.13190, http://dais.sanu.ac.rs/123456789/5766",
abstract = "Zinc ferrite nanocrystalline powder was obtained by solid state synthesis of starting zinc oxide and hematite nanopowders. Field emission scanning electron microscopy (FESEM and transmission electron microscopy (TEM), X‐ray diffraction (XRD), X‐ray photoelectron spectroscopy (XPS) and Raman spectroscopy confirmed the formation of nanocrystalline zinc‐ferrite powder with a mixed spinel structure with small amounts of remaining zinc oxide and hematite as impurities. Thick film paste was formed and screen printed on test interdigitated PdAg electrodes on alumina substrate. Formation of a porous nanocrystalline structure was confirmed by scanning electron microscopy (SEM) and Hg porosimetry. Humidity sensing properties of zinc ferrite thick films were investigated by monitoring the change in impedance in the relative humidity interval 30‐90% in the frequency range 42 Hz – 1 MHz at room temperature (25 °C) and 50 °C. At 42 Hz at both analyzed temperatures the impedance reduced ~ 46 times in the humidity range 30‐90%. The dominant influence of grain boundaries was confirmed by analysis of complex impedance with an equivalent circuit.",
publisher = "John Wiley & Sons, Inc.",
journal = "International Journal of Applied Ceramic Technology",
title = "Investigation of ZnFe2O4 spinel ferrite nanocrystalline screen‐printed thick films for application in humidity sensing",
pages = "981-993",
volume = "16",
number = "3",
doi = "10.1111/ijac.13190"
}
Nikolić, M. V., Vasiljević, Z. Ž., Luković, M. D., Pavlović, V. P., Krstić, J. B., Vujančević, J., Tadić, N. B., Vlahović, B.,& Pavlović, V. B. (2019). Investigation of ZnFe2O4 spinel ferrite nanocrystalline screen‐printed thick films for application in humidity sensing.
International Journal of Applied Ceramic TechnologyJohn Wiley & Sons, Inc.., 16(3), 981-993. 
https://doi.org/10.1111/ijac.13190
Nikolić MV, Vasiljević ZŽ, Luković MD, Pavlović VP, Krstić JB, Vujančević J, Tadić NB, Vlahović B, Pavlović VB. Investigation of ZnFe2O4 spinel ferrite nanocrystalline screen‐printed thick films for application in humidity sensing. International Journal of Applied Ceramic Technology. 2019;16(3):981-993
9
4
8

The effect of pH on visible-light photocatalytic properties of pseudobrookite nanoparticles

Vasiljević, Zorka Ž.; Dojčinović, Milena; Vujančević, Jelena; Tadić, Nenad B.; Nikolić, Maria Vesna

(Belgrade : Materials Research Society of Serbia, 2019)

TY  - CONF
AU  - Vasiljević, Zorka Ž.
AU  - Dojčinović, Milena
AU  - Vujančević, Jelena
AU  - Tadić, Nenad B.
AU  - Nikolić, Maria Vesna
PY  - 2019
UR  - http://dais.sanu.ac.rs/123456789/6673
AB  - In this study, pseudobrookite (Fe2TiO5) nanoparticles were fabricated by a modified sol-gel method using Fe(NO3)39H2O and Ti(OC3H7)4 as starting reagents and ethanol as solvent. Oxalic acid was used as a chelating agent while cetyltrimethyammonium bromide (CTAB) and citric monohydrate were used as surfactants. Structral and morphological characterization using X-Ray Diffraction (XRD) and Field Emission Scanning Electron Microscopy (FESEM) analysis confirmed the formation of pseudobrookite nanoparticles. As synthetized Fe2TiO5 nanoparticles were utilized as photocatalysts for decolorisation of Methylene blue (MB) under visible light irradiation. It was observed that the adsorption of MB onto Fe2TiO5 nanoparticles is strongly dependent on the solution pH. Maximum decolorozation was observed for Fe2TiO5 nanoparticles prepared with CTAB under alcaline conditions (pH=10.5).
PB  - Belgrade : Materials Research Society of Serbia
C3  - Programme and The Book of abstracts / Twenty-first Annual Conference YUCOMAT 2019 & Eleventh World Round Table Conference on Sintering WRTCS 2019, Herceg Novi, Montenegro, September 2-6, 2019
T1  - The effect of pH on visible-light photocatalytic properties of pseudobrookite nanoparticles
SP  - 130
EP  - 130
ER  - 
@conference{
author = "Vasiljević, Zorka Ž. and Dojčinović, Milena and Vujančević, Jelena and Tadić, Nenad B. and Nikolić, Maria Vesna",
year = "2019",
url = "http://dais.sanu.ac.rs/123456789/6673",
abstract = "In this study, pseudobrookite (Fe2TiO5) nanoparticles were fabricated by a modified sol-gel method using Fe(NO3)39H2O and Ti(OC3H7)4 as starting reagents and ethanol as solvent. Oxalic acid was used as a chelating agent while cetyltrimethyammonium bromide (CTAB) and citric monohydrate were used as surfactants. Structral and morphological characterization using X-Ray Diffraction (XRD) and Field Emission Scanning Electron Microscopy (FESEM) analysis confirmed the formation of pseudobrookite nanoparticles. As synthetized Fe2TiO5 nanoparticles were utilized as photocatalysts for decolorisation of Methylene blue (MB) under visible light irradiation. It was observed that the adsorption of MB onto Fe2TiO5 nanoparticles is strongly dependent on the solution pH. Maximum decolorozation was observed for Fe2TiO5 nanoparticles prepared with CTAB under alcaline conditions (pH=10.5).",
publisher = "Belgrade : Materials Research Society of Serbia",
journal = "Programme and The Book of abstracts / Twenty-first Annual Conference YUCOMAT 2019 & Eleventh World Round Table Conference on Sintering WRTCS 2019, Herceg Novi, Montenegro, September 2-6, 2019",
title = "The effect of pH on visible-light photocatalytic properties of pseudobrookite nanoparticles",
pages = "130-130"
}
Vasiljević, Z. Ž., Dojčinović, M., Vujančević, J., Tadić, N. B.,& Nikolić, M. V. (2019). The effect of pH on visible-light photocatalytic properties of pseudobrookite nanoparticles.
Programme and The Book of abstracts / Twenty-first Annual Conference YUCOMAT 2019 & Eleventh World Round Table Conference on Sintering WRTCS 2019, Herceg Novi, Montenegro, September 2-6, 2019Belgrade : Materials Research Society of Serbia., null, 130-130. 
Vasiljević ZŽ, Dojčinović M, Vujančević J, Tadić NB, Nikolić MV. The effect of pH on visible-light photocatalytic properties of pseudobrookite nanoparticles. Programme and The Book of abstracts / Twenty-first Annual Conference YUCOMAT 2019 & Eleventh World Round Table Conference on Sintering WRTCS 2019, Herceg Novi, Montenegro, September 2-6, 2019. 2019;:130-130

Structure, morphology and photocatalytic properties of CoxMg1-xFe2O4 (0<x<1) spinel ferrites obtained by sol-gel synthesis

Vasiljević, Zorka Ž.; Dojčinović, Milena; Pavlović, Vera P.; Vujančević, Jelena; Tadić, Nenad B.; Nikolić, Maria Vesna

(Belgrade : Materials Research Society of Serbia, 2019)

TY  - CONF
AU  - Vasiljević, Zorka Ž.
AU  - Dojčinović, Milena
AU  - Pavlović, Vera P.
AU  - Vujančević, Jelena
AU  - Tadić, Nenad B.
AU  - Nikolić, Maria Vesna
PY  - 2019
UR  - http://dais.sanu.ac.rs/123456789/6679
AB  - Nanocrystalline cobalt magnesium ferrites with varying cobalt and magnesium content (CoxMg1-xFe2O4, 0<x<1) were synthesized using the sol-gel self-combustion method with citric acid as fuel, followed by calcination at 700 C for 2 hours. Structural characterization was performed using Xray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) and Raman spectroscopy. It confirmed the formation of agglomerated nanocrystalline ferrites with an inverse cubic spinel structure. The optical band gap energy was determined using UV/Vis spectrophotometry. It reduced with increased Co content. Visible light photocatalytic activity was tested using natural and artificial light sources through a series of experimental degradations of the methylene blue (MB) solution.
PB  - Belgrade : Materials Research Society of Serbia
C3  - Programme and The Book of abstracts / Twenty-first Annual Conference YUCOMAT 2019 & Eleventh World Round Table Conference on Sintering WRTCS 2019, Herceg Novi, Montenegro, September 2-6, 2019
T1  - Structure, morphology and photocatalytic properties of CoxMg1-xFe2O4 (0<x<1) spinel ferrites obtained by sol-gel synthesis
SP  - 126
EP  - 126
ER  - 
@conference{
author = "Vasiljević, Zorka Ž. and Dojčinović, Milena and Pavlović, Vera P. and Vujančević, Jelena and Tadić, Nenad B. and Nikolić, Maria Vesna",
year = "2019",
url = "http://dais.sanu.ac.rs/123456789/6679",
abstract = "Nanocrystalline cobalt magnesium ferrites with varying cobalt and magnesium content (CoxMg1-xFe2O4, 0<x<1) were synthesized using the sol-gel self-combustion method with citric acid as fuel, followed by calcination at 700 C for 2 hours. Structural characterization was performed using Xray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) and Raman spectroscopy. It confirmed the formation of agglomerated nanocrystalline ferrites with an inverse cubic spinel structure. The optical band gap energy was determined using UV/Vis spectrophotometry. It reduced with increased Co content. Visible light photocatalytic activity was tested using natural and artificial light sources through a series of experimental degradations of the methylene blue (MB) solution.",
publisher = "Belgrade : Materials Research Society of Serbia",
journal = "Programme and The Book of abstracts / Twenty-first Annual Conference YUCOMAT 2019 & Eleventh World Round Table Conference on Sintering WRTCS 2019, Herceg Novi, Montenegro, September 2-6, 2019",
title = "Structure, morphology and photocatalytic properties of CoxMg1-xFe2O4 (0<x<1) spinel ferrites obtained by sol-gel synthesis",
pages = "126-126"
}
Vasiljević, Z. Ž., Dojčinović, M., Pavlović, V. P., Vujančević, J., Tadić, N. B.,& Nikolić, M. V. (2019). Structure, morphology and photocatalytic properties of CoxMg1-xFe2O4 (0<x<1) spinel ferrites obtained by sol-gel synthesis.
Programme and The Book of abstracts / Twenty-first Annual Conference YUCOMAT 2019 & Eleventh World Round Table Conference on Sintering WRTCS 2019, Herceg Novi, Montenegro, September 2-6, 2019Belgrade : Materials Research Society of Serbia., null, 126-126. 
Vasiljević ZŽ, Dojčinović M, Pavlović VP, Vujančević J, Tadić NB, Nikolić MV. Structure, morphology and photocatalytic properties of CoxMg1-xFe2O4 (0<x<1) spinel ferrites obtained by sol-gel synthesis. Programme and The Book of abstracts / Twenty-first Annual Conference YUCOMAT 2019 & Eleventh World Round Table Conference on Sintering WRTCS 2019, Herceg Novi, Montenegro, September 2-6, 2019. 2019;:126-126

Photocatalytic degradation of methylene blue and oxytetracycline via sol-gel synthesized pseudobrookite

Vasiljević, Zorka Ž.; Dojčinović, Milena; Janković Častvan, Ivona; Vujančević, Jelena; Tadić, Nenad B.; Nikolić, Maria Vesna

(Belgrade : Institute of Technical Sciences of SASA, 2019)

TY  - CONF
AU  - Vasiljević, Zorka Ž.
AU  - Dojčinović, Milena
AU  - Janković Častvan, Ivona
AU  - Vujančević, Jelena
AU  - Tadić, Nenad B.
AU  - Nikolić, Maria Vesna
PY  - 2019
UR  - http://dais.sanu.ac.rs/123456789/6967
AB  - Fe2TiO5 nanoparticles were synthesized by modified sol-gel method using Fe(NO3)3×9H2O and Ti(OC3H7)4 as starting reagents, oxalic acid as chilate agent and cetyltrimethylammonium bromide as surfactant. The aim of this study was to asses the photocatalytic degradaton of water pollutants, methylene blue and the antibiotic Oxytetracycline (OTC) using natural sunlight irradiation. As prepared nanoparticles were characterized by XRD, BET, FESEM and UV-vis DRS. The optimal operating conditions of photocatalytic degradation of water pollutants were achived by changing the pH of the solution and changing the concentration of photocatalyst.
PB  - Belgrade : Institute of Technical Sciences of SASA
C3  - Program and the Book of abstracts / Eighteenth Young Researchers' Conference Materials Sciences and Engineering, December 4-6, 2019, Belgrade, Serbia
T1  - Photocatalytic degradation of methylene blue and oxytetracycline via sol-gel synthesized pseudobrookite
SP  - 70
EP  - 70
ER  - 
@conference{
author = "Vasiljević, Zorka Ž. and Dojčinović, Milena and Janković Častvan, Ivona and Vujančević, Jelena and Tadić, Nenad B. and Nikolić, Maria Vesna",
year = "2019",
url = "http://dais.sanu.ac.rs/123456789/6967",
abstract = "Fe2TiO5 nanoparticles were synthesized by modified sol-gel method using Fe(NO3)3×9H2O and Ti(OC3H7)4 as starting reagents, oxalic acid as chilate agent and cetyltrimethylammonium bromide as surfactant. The aim of this study was to asses the photocatalytic degradaton of water pollutants, methylene blue and the antibiotic Oxytetracycline (OTC) using natural sunlight irradiation. As prepared nanoparticles were characterized by XRD, BET, FESEM and UV-vis DRS. The optimal operating conditions of photocatalytic degradation of water pollutants were achived by changing the pH of the solution and changing the concentration of photocatalyst.",
publisher = "Belgrade : Institute of Technical Sciences of SASA",
journal = "Program and the Book of abstracts / Eighteenth Young Researchers' Conference Materials Sciences and Engineering, December 4-6, 2019, Belgrade, Serbia",
title = "Photocatalytic degradation of methylene blue and oxytetracycline via sol-gel synthesized pseudobrookite",
pages = "70-70"
}
Vasiljević, Z. Ž., Dojčinović, M., Janković Častvan, I., Vujančević, J., Tadić, N. B.,& Nikolić, M. V. (2019). Photocatalytic degradation of methylene blue and oxytetracycline via sol-gel synthesized pseudobrookite.
Program and the Book of abstracts / Eighteenth Young Researchers' Conference Materials Sciences and Engineering, December 4-6, 2019, Belgrade, SerbiaBelgrade : Institute of Technical Sciences of SASA., null, 70-70. 
Vasiljević ZŽ, Dojčinović M, Janković Častvan I, Vujančević J, Tadić NB, Nikolić MV. Photocatalytic degradation of methylene blue and oxytetracycline via sol-gel synthesized pseudobrookite. Program and the Book of abstracts / Eighteenth Young Researchers' Conference Materials Sciences and Engineering, December 4-6, 2019, Belgrade, Serbia. 2019;:70-70

Visible light photocatalytic activity of nanocrystalline CoxMg1-xFe2O4 (x = 0-1)

Dojčinović, Milena; Vasiljević, Zorka Ž.; Vujančević, Jelena; Pavlović, Vera P.; Marković, Smilja; Tadić, Nenad B.; Nikolić, Marina V.

(Novi Sad : Faculty of Technology, 2019)

TY  - CONF
AU  - Dojčinović, Milena
AU  - Vasiljević, Zorka Ž.
AU  - Vujančević, Jelena
AU  - Pavlović, Vera P.
AU  - Marković, Smilja
AU  - Tadić, Nenad B.
AU  - Nikolić, Marina V.
PY  - 2019
UR  - http://dais.sanu.ac.rs/123456789/6986
AB  - The sol-gel combustion method was applied for synthesis of spinel magnesium cobalt ferrites CoxMg1-xFe2O4, with varying cobalt and magnesium content, x = 0.0, 0.1, 0.3, 0.5, 0.7, 0.9. Magnesium nitrate, cobalt nitrate and iron nitrate were used as oxidizers and citric acid was used as a reducing agent. Structural and morphological properties of the obtained ferrite powders were investigated and characterized by X-ray diffraction (XRD), Raman spectroscopy, Field emission scanning electron microscope (FESEM) and Fourier transform infrared (FT-IR) spectroscopy. Optical properties were investigated by UV-VIS spectrophotometry. A cubic spinel structure with multigrain agglomerates formed. Visible light photocatalytic activity of the spinel ferrite powder samples was evaluated by measuring the rate of photodegradation reaction of methylene blue (MB). After 240 min Co0.1Mg0.9Fe2O4 showed the best rate of photodecomposition of MB resulting in 90% of its initial concentration in an alkaline environment.
PB  - Novi Sad : Faculty of Technology
C3  - Programme and book of abstracts / 13th Conference for Young Scientists in Ceramics (CYSC-2017), October 16-19, 2019, Novi Sad
T1  - Visible light photocatalytic activity of nanocrystalline CoxMg1-xFe2O4 (x = 0-1)
SP  - 136
EP  - 136
ER  - 
@conference{
author = "Dojčinović, Milena and Vasiljević, Zorka Ž. and Vujančević, Jelena and Pavlović, Vera P. and Marković, Smilja and Tadić, Nenad B. and Nikolić, Marina V.",
year = "2019",
url = "http://dais.sanu.ac.rs/123456789/6986",
abstract = "The sol-gel combustion method was applied for synthesis of spinel magnesium cobalt ferrites CoxMg1-xFe2O4, with varying cobalt and magnesium content, x = 0.0, 0.1, 0.3, 0.5, 0.7, 0.9. Magnesium nitrate, cobalt nitrate and iron nitrate were used as oxidizers and citric acid was used as a reducing agent. Structural and morphological properties of the obtained ferrite powders were investigated and characterized by X-ray diffraction (XRD), Raman spectroscopy, Field emission scanning electron microscope (FESEM) and Fourier transform infrared (FT-IR) spectroscopy. Optical properties were investigated by UV-VIS spectrophotometry. A cubic spinel structure with multigrain agglomerates formed. Visible light photocatalytic activity of the spinel ferrite powder samples was evaluated by measuring the rate of photodegradation reaction of methylene blue (MB). After 240 min Co0.1Mg0.9Fe2O4 showed the best rate of photodecomposition of MB resulting in 90% of its initial concentration in an alkaline environment.",
publisher = "Novi Sad : Faculty of Technology",
journal = "Programme and book of abstracts / 13th Conference for Young Scientists in Ceramics (CYSC-2017), October 16-19, 2019, Novi Sad",
title = "Visible light photocatalytic activity of nanocrystalline CoxMg1-xFe2O4 (x = 0-1)",
pages = "136-136"
}
Dojčinović, M., Vasiljević, Z. Ž., Vujančević, J., Pavlović, V. P., Marković, S., Tadić, N. B.,& Nikolić, M. V. (2019). Visible light photocatalytic activity of nanocrystalline CoxMg1-xFe2O4 (x = 0-1).
Programme and book of abstracts / 13th Conference for Young Scientists in Ceramics (CYSC-2017), October 16-19, 2019, Novi SadNovi Sad : Faculty of Technology., null, 136-136. 
Dojčinović M, Vasiljević ZŽ, Vujančević J, Pavlović VP, Marković S, Tadić NB, Nikolić MV. Visible light photocatalytic activity of nanocrystalline CoxMg1-xFe2O4 (x = 0-1). Programme and book of abstracts / 13th Conference for Young Scientists in Ceramics (CYSC-2017), October 16-19, 2019, Novi Sad. 2019;:136-136

Structure and photocatalytic properties of sol-gel synthesized pseudobrookite

Vasiljević, Zorka Ž.; Dojčinović, Milena; Janković Častvan, Ivona; Vujančević, Jelena; Tadić, Nenad B.; Nikolić, Maria Vesna

(Novi Sad : Faculty of Technology, 2019)

TY  - CONF
AU  - Vasiljević, Zorka Ž.
AU  - Dojčinović, Milena
AU  - Janković Častvan, Ivona
AU  - Vujančević, Jelena
AU  - Tadić, Nenad B.
AU  - Nikolić, Maria Vesna
PY  - 2019
UR  - http://dais.sanu.ac.rs/123456789/6988
AB  - Fe2TiO5 nanopartcles were synthesized by modified sol-gel method with aid of
Fe(NO3)3 9H2O and Ti(OC3H7)4 as starting reagents, oxalic acid as chilate agent and cetyltrimethylammonium bromide as surfactant. The aim of this study was to asses the photocatalytic degradaton of the antibiotic Oxytetracycline (OTC) using visible light irradiation. As prepared nanoparticles were characterized by XRD, BET, FESEM and UV-vis DRS. The optimal operating conditions of oxytetracycline photocatalytic degradation were achived by changing the pH of the solution and changing the concentration of photocatalyst.
PB  - Novi Sad : Faculty of Technology
C3  - Programme and book of abstracts / 13th Conference for Young Scientists in Ceramics (CYSC-2017), October 16-19, 2019, Novi Sad
T1  - Structure and photocatalytic properties of sol-gel synthesized pseudobrookite
SP  - 133
EP  - 133
ER  - 
@conference{
author = "Vasiljević, Zorka Ž. and Dojčinović, Milena and Janković Častvan, Ivona and Vujančević, Jelena and Tadić, Nenad B. and Nikolić, Maria Vesna",
year = "2019",
url = "http://dais.sanu.ac.rs/123456789/6988",
abstract = "Fe2TiO5 nanopartcles were synthesized by modified sol-gel method with aid of
Fe(NO3)3 9H2O and Ti(OC3H7)4 as starting reagents, oxalic acid as chilate agent and cetyltrimethylammonium bromide as surfactant. The aim of this study was to asses the photocatalytic degradaton of the antibiotic Oxytetracycline (OTC) using visible light irradiation. As prepared nanoparticles were characterized by XRD, BET, FESEM and UV-vis DRS. The optimal operating conditions of oxytetracycline photocatalytic degradation were achived by changing the pH of the solution and changing the concentration of photocatalyst.",
publisher = "Novi Sad : Faculty of Technology",
journal = "Programme and book of abstracts / 13th Conference for Young Scientists in Ceramics (CYSC-2017), October 16-19, 2019, Novi Sad",
title = "Structure and photocatalytic properties of sol-gel synthesized pseudobrookite",
pages = "133-133"
}
Vasiljević, Z. Ž., Dojčinović, M., Janković Častvan, I., Vujančević, J., Tadić, N. B.,& Nikolić, M. V. (2019). Structure and photocatalytic properties of sol-gel synthesized pseudobrookite.
Programme and book of abstracts / 13th Conference for Young Scientists in Ceramics (CYSC-2017), October 16-19, 2019, Novi SadNovi Sad : Faculty of Technology., null, 133-133. 
Vasiljević ZŽ, Dojčinović M, Janković Častvan I, Vujančević J, Tadić NB, Nikolić MV. Structure and photocatalytic properties of sol-gel synthesized pseudobrookite. Programme and book of abstracts / 13th Conference for Young Scientists in Ceramics (CYSC-2017), October 16-19, 2019, Novi Sad. 2019;:133-133

Influence of Co2+ ions on photocatalytic properties of MgFe2O4 ferrites

Vasiljević, Zorka Ž.; Dojčinović, Milena; Pavlović, Vera P.; Vujančević, Jelena; Marković, Smilja; Tadić, Nenad B.; Nikolić, Maria Vesna

(Belgrade : Institute for Multidisciplinary Research, 2019)

TY  - CONF
AU  - Vasiljević, Zorka Ž.
AU  - Dojčinović, Milena
AU  - Pavlović, Vera P.
AU  - Vujančević, Jelena
AU  - Marković, Smilja
AU  - Tadić, Nenad B.
AU  - Nikolić, Maria Vesna
PY  - 2019
UR  - http://dais.sanu.ac.rs/123456789/7003
AB  - In this work, spinel magnesium cobalt ferrites (CoxMg1-xFe2O4, x = 0.0, 0.1, 0.3, 0.5, 0.7, 0.9) were synthesized by a sol-gel combustion method. Magnesium nitrate, cobalt nitrate and iron nitrate were used as oxidizers and citric acid was used as a reducing agent. The effects of cobalt ions on structural and morphological properties were investigated and characterized by X-ray diffraction (XRD), Raman spectroscopy, Field emission scanning electron microscope (FESEM) and Fourier transform infrared (FT-IR) spectroscopy. A cubic spinel structure formed with a varied distribution of cobalt and magnesium ions on tetrahedral and octahedral sites that depended on their content. All ferrite powders consisted of multigrain agglomerates. Optical properties were investigated by UV- vis spectrophotometry. The photocatalytic activity of as prepared samples was evaluated by measuring the rate of photodegradation reaction of methylene blue (MB) under visible light irradiation. After 240 min, compared to other samples, the sample labeled as Co0.1Mg0.9Fe2O4 showed the best rate of photodecomposition of MB resulting in reduction of 90% of its initial concentration.
PB  - Belgrade : Institute for Multidisciplinary Research
C3  - Programme and the Book of Abstracts / 5th Conference of The Serbian Society for Ceramic Materials, 5CSCS-2019, June 11-13, 2019, Belgrade, Serbia
T1  - Influence of Co2+ ions on photocatalytic properties of MgFe2O4 ferrites
SP  - 73
EP  - 73
ER  - 
@conference{
author = "Vasiljević, Zorka Ž. and Dojčinović, Milena and Pavlović, Vera P. and Vujančević, Jelena and Marković, Smilja and Tadić, Nenad B. and Nikolić, Maria Vesna",
year = "2019",
url = "http://dais.sanu.ac.rs/123456789/7003",
abstract = "In this work, spinel magnesium cobalt ferrites (CoxMg1-xFe2O4, x = 0.0, 0.1, 0.3, 0.5, 0.7, 0.9) were synthesized by a sol-gel combustion method. Magnesium nitrate, cobalt nitrate and iron nitrate were used as oxidizers and citric acid was used as a reducing agent. The effects of cobalt ions on structural and morphological properties were investigated and characterized by X-ray diffraction (XRD), Raman spectroscopy, Field emission scanning electron microscope (FESEM) and Fourier transform infrared (FT-IR) spectroscopy. A cubic spinel structure formed with a varied distribution of cobalt and magnesium ions on tetrahedral and octahedral sites that depended on their content. All ferrite powders consisted of multigrain agglomerates. Optical properties were investigated by UV- vis spectrophotometry. The photocatalytic activity of as prepared samples was evaluated by measuring the rate of photodegradation reaction of methylene blue (MB) under visible light irradiation. After 240 min, compared to other samples, the sample labeled as Co0.1Mg0.9Fe2O4 showed the best rate of photodecomposition of MB resulting in reduction of 90% of its initial concentration.",
publisher = "Belgrade : Institute for Multidisciplinary Research",
journal = "Programme and the Book of Abstracts / 5th Conference of The Serbian Society for Ceramic Materials, 5CSCS-2019, June 11-13, 2019, Belgrade, Serbia",
title = "Influence of Co2+ ions on photocatalytic properties of MgFe2O4 ferrites",
pages = "73-73"
}
Vasiljević, Z. Ž., Dojčinović, M., Pavlović, V. P., Vujančević, J., Marković, S., Tadić, N. B.,& Nikolić, M. V. (2019). Influence of Co2+ ions on photocatalytic properties of MgFe2O4 ferrites.
Programme and the Book of Abstracts / 5th Conference of The Serbian Society for Ceramic Materials, 5CSCS-2019, June 11-13, 2019, Belgrade, SerbiaBelgrade : Institute for Multidisciplinary Research., null, 73-73. 
Vasiljević ZŽ, Dojčinović M, Pavlović VP, Vujančević J, Marković S, Tadić NB, Nikolić MV. Influence of Co2+ ions on photocatalytic properties of MgFe2O4 ferrites. Programme and the Book of Abstracts / 5th Conference of The Serbian Society for Ceramic Materials, 5CSCS-2019, June 11-13, 2019, Belgrade, Serbia. 2019;:73-73

Nanocrystalline iron-manganite (FeMnO3) applied for humidity sensing

Vasiljević, Zorka Ž.; Dojčinović, Milena; Vujančević, Jelena; Tadić, Nenad B.; Nikolić, Maria Vesna

(Belgrade : Institute for Multidisciplinary Research, 2019)

TY  - CONF
AU  - Vasiljević, Zorka Ž.
AU  - Dojčinović, Milena
AU  - Vujančević, Jelena
AU  - Tadić, Nenad B.
AU  - Nikolić, Maria Vesna
PY  - 2019
UR  - http://dais.sanu.ac.rs/123456789/7005
AB  - Nanocrystalline iron manganite was synthesized using a sol-gel self-combustion method with glycine as fuel, followed by calcination at 900 °C for 8 hours. Structural characterization was performed using X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM). It confirmed the formation of nanocrystalline iron-manganite with a perovskite structure. Humidity sensing properties of bulk and thick film samples of the obtained nanocrystalline iron manganite powder were analyzed. Organic vehicles were added to the powder to form a thick film paste that was screen printed on alumina substrate with test PdAg interdigitated electrodes. Impedance response of bulk and thick film samples was analyzed in a humidity chamber in the relative humidity range 30-90% in the frequency range 42 Hz to 1 MHz in view of applying iron-manganite for humidity sensing applications.
PB  - Belgrade : Institute for Multidisciplinary Research
C3  - Programme and the Book of Abstracts / 5th Conference of The Serbian Society for Ceramic Materials, 5CSCS-2019, June 11-13, 2019, Belgrade, Serbia
T1  - Nanocrystalline iron-manganite (FeMnO3) applied for humidity sensing
SP  - 94
EP  - 94
ER  - 
@conference{
author = "Vasiljević, Zorka Ž. and Dojčinović, Milena and Vujančević, Jelena and Tadić, Nenad B. and Nikolić, Maria Vesna",
year = "2019",
url = "http://dais.sanu.ac.rs/123456789/7005",
abstract = "Nanocrystalline iron manganite was synthesized using a sol-gel self-combustion method with glycine as fuel, followed by calcination at 900 °C for 8 hours. Structural characterization was performed using X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM). It confirmed the formation of nanocrystalline iron-manganite with a perovskite structure. Humidity sensing properties of bulk and thick film samples of the obtained nanocrystalline iron manganite powder were analyzed. Organic vehicles were added to the powder to form a thick film paste that was screen printed on alumina substrate with test PdAg interdigitated electrodes. Impedance response of bulk and thick film samples was analyzed in a humidity chamber in the relative humidity range 30-90% in the frequency range 42 Hz to 1 MHz in view of applying iron-manganite for humidity sensing applications.",
publisher = "Belgrade : Institute for Multidisciplinary Research",
journal = "Programme and the Book of Abstracts / 5th Conference of The Serbian Society for Ceramic Materials, 5CSCS-2019, June 11-13, 2019, Belgrade, Serbia",
title = "Nanocrystalline iron-manganite (FeMnO3) applied for humidity sensing",
pages = "94-94"
}
Vasiljević, Z. Ž., Dojčinović, M., Vujančević, J., Tadić, N. B.,& Nikolić, M. V. (2019). Nanocrystalline iron-manganite (FeMnO3) applied for humidity sensing.
Programme and the Book of Abstracts / 5th Conference of The Serbian Society for Ceramic Materials, 5CSCS-2019, June 11-13, 2019, Belgrade, SerbiaBelgrade : Institute for Multidisciplinary Research., null, 94-94. 
Vasiljević ZŽ, Dojčinović M, Vujančević J, Tadić NB, Nikolić MV. Nanocrystalline iron-manganite (FeMnO3) applied for humidity sensing. Programme and the Book of Abstracts / 5th Conference of The Serbian Society for Ceramic Materials, 5CSCS-2019, June 11-13, 2019, Belgrade, Serbia. 2019;:94-94

Nanocomposite Zn2SnO4/SnO2 Thick films as a Humidity Sensing Material

Nikolić, Maria Vesna; Dojčinović, Milena; Vasiljević, Zorka Ž.; Luković, Miloljub D.; Labus, Nebojša

(IEEE, 2019)

TY  - CONF
AU  - Nikolić, Maria Vesna
AU  - Dojčinović, Milena
AU  - Vasiljević, Zorka Ž.
AU  - Luković, Miloljub D.
AU  - Labus, Nebojša
PY  - 2019
UR  - http://dais.sanu.ac.rs/123456789/6687
AB  - Nanocomposite Zn2SnO4/SnO2 powder was obtained by solid state synthesis from homogenized starting nanopowders of ZnO and SnO2 mixed in the 1:1 molar ratio, structurally and morphologically characterized using X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM). Thick film paste was made by adding organic vehicles to the obtained powder. Three to five layers (layer thickness approx. 12 μm) were screen printed on alumina substrate with small test PdAg electrodes and fired at 600°C for 30 minutes. SEM analysis confirmed formation of a porous structure suitable for humidity sensing. Impedance response was studied at the working temperatures of 25 and 50°in a humidity chamber where the relative humidity (RH) was 30-90% and measured frequency 42 Hz - 1 MHz. With increase in film thickness the overall sensor impedance increased. It reduced at 100 Hz from 36 to 0.25 MΩ (60 μm), from 23.4 to 0.25 MΩ (48 μm) and from 6.8 to 0.02 MΩ (36 μm) at 25°C, while at 50°C the overall measured impedance was lower, and reduced from 14 MΩ to 0.72 MΩ (48 μm) for RH 30 and 90%, respectively. The response (8 s) and recovery (10 s) was fast, showing that this nanocomposite has potential for application in humidity sensing.
PB  - IEEE
C3  - 2019 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS)
T1  - Nanocomposite Zn2SnO4/SnO2 Thick films as a Humidity Sensing Material
SP  - 1
EP  - 3
DO  - 10.1109/FLEPS.2019.8792304
ER  - 
@conference{
author = "Nikolić, Maria Vesna and Dojčinović, Milena and Vasiljević, Zorka Ž. and Luković, Miloljub D. and Labus, Nebojša",
year = "2019",
url = "http://dais.sanu.ac.rs/123456789/6687",
abstract = "Nanocomposite Zn2SnO4/SnO2 powder was obtained by solid state synthesis from homogenized starting nanopowders of ZnO and SnO2 mixed in the 1:1 molar ratio, structurally and morphologically characterized using X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM). Thick film paste was made by adding organic vehicles to the obtained powder. Three to five layers (layer thickness approx. 12 μm) were screen printed on alumina substrate with small test PdAg electrodes and fired at 600°C for 30 minutes. SEM analysis confirmed formation of a porous structure suitable for humidity sensing. Impedance response was studied at the working temperatures of 25 and 50°in a humidity chamber where the relative humidity (RH) was 30-90% and measured frequency 42 Hz - 1 MHz. With increase in film thickness the overall sensor impedance increased. It reduced at 100 Hz from 36 to 0.25 MΩ (60 μm), from 23.4 to 0.25 MΩ (48 μm) and from 6.8 to 0.02 MΩ (36 μm) at 25°C, while at 50°C the overall measured impedance was lower, and reduced from 14 MΩ to 0.72 MΩ (48 μm) for RH 30 and 90%, respectively. The response (8 s) and recovery (10 s) was fast, showing that this nanocomposite has potential for application in humidity sensing.",
publisher = "IEEE",
journal = "2019 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS)",
title = "Nanocomposite Zn2SnO4/SnO2 Thick films as a Humidity Sensing Material",
pages = "1-3",
doi = "10.1109/FLEPS.2019.8792304"
}
Nikolić, M. V., Dojčinović, M., Vasiljević, Z. Ž., Luković, M. D.,& Labus, N. (2019). Nanocomposite Zn2SnO4/SnO2 Thick films as a Humidity Sensing Material.
2019 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS)IEEE., null, 1-3. 
https://doi.org/10.1109/FLEPS.2019.8792304
Nikolić MV, Dojčinović M, Vasiljević ZŽ, Luković MD, Labus N. Nanocomposite Zn2SnO4/SnO2 Thick films as a Humidity Sensing Material. 2019 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS). 2019;:1-3

Nanocomposite Zn2SnO4/SnO2 Thick films as a Humidity Sensing Material

Nikolić, Maria Vesna; Dojčinović, Milena; Vasiljević, Zorka Ž.; Luković, Miloljub D.; Labus, Nebojša

(IEEE, 2019)

TY  - CONF
AU  - Nikolić, Maria Vesna
AU  - Dojčinović, Milena
AU  - Vasiljević, Zorka Ž.
AU  - Luković, Miloljub D.
AU  - Labus, Nebojša
PY  - 2019
UR  - http://dais.sanu.ac.rs/123456789/6688
AB  - Nanocomposite Zn2SnO4/SnO2 powder was obtained by solid state synthesis from homogenized starting nanopowders of ZnO and SnO2 mixed in the 1:1 molar ratio, structurally and morphologically characterized using X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM). Thick film paste was made by adding organic vehicles to the obtained powder. Three to five layers (layer thickness approx. 12 μm) were screen printed on alumina substrate with small test PdAg electrodes and fired at 600°C for 30 minutes. SEM analysis confirmed formation of a porous structure suitable for humidity sensing. Impedance response was studied at the working temperatures of 25 and 50°in a humidity chamber where the relative humidity (RH) was 30-90% and measured frequency 42 Hz - 1 MHz. With increase in film thickness the overall sensor impedance increased. It reduced at 100 Hz from 36 to 0.25 MΩ (60 μm), from 23.4 to 0.25 MΩ (48 μm) and from 6.8 to 0.02 MΩ (36 μm) at 25°C, while at 50°C the overall measured impedance was lower, and reduced from 14 MΩ to 0.72 MΩ (48 μm) for RH 30 and 90%, respectively. The response (8 s) and recovery (10 s) was fast, showing that this nanocomposite has potential for application in humidity sensing.
PB  - IEEE
C3  - 2019 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS)
T1  - Nanocomposite Zn2SnO4/SnO2 Thick films as a Humidity Sensing Material
SP  - 1
EP  - 3
DO  - 10.1109/FLEPS.2019.8792304
ER  - 
@conference{
author = "Nikolić, Maria Vesna and Dojčinović, Milena and Vasiljević, Zorka Ž. and Luković, Miloljub D. and Labus, Nebojša",
year = "2019",
url = "http://dais.sanu.ac.rs/123456789/6688",
abstract = "Nanocomposite Zn2SnO4/SnO2 powder was obtained by solid state synthesis from homogenized starting nanopowders of ZnO and SnO2 mixed in the 1:1 molar ratio, structurally and morphologically characterized using X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM). Thick film paste was made by adding organic vehicles to the obtained powder. Three to five layers (layer thickness approx. 12 μm) were screen printed on alumina substrate with small test PdAg electrodes and fired at 600°C for 30 minutes. SEM analysis confirmed formation of a porous structure suitable for humidity sensing. Impedance response was studied at the working temperatures of 25 and 50°in a humidity chamber where the relative humidity (RH) was 30-90% and measured frequency 42 Hz - 1 MHz. With increase in film thickness the overall sensor impedance increased. It reduced at 100 Hz from 36 to 0.25 MΩ (60 μm), from 23.4 to 0.25 MΩ (48 μm) and from 6.8 to 0.02 MΩ (36 μm) at 25°C, while at 50°C the overall measured impedance was lower, and reduced from 14 MΩ to 0.72 MΩ (48 μm) for RH 30 and 90%, respectively. The response (8 s) and recovery (10 s) was fast, showing that this nanocomposite has potential for application in humidity sensing.",
publisher = "IEEE",
journal = "2019 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS)",
title = "Nanocomposite Zn2SnO4/SnO2 Thick films as a Humidity Sensing Material",
pages = "1-3",
doi = "10.1109/FLEPS.2019.8792304"
}
Nikolić, M. V., Dojčinović, M., Vasiljević, Z. Ž., Luković, M. D.,& Labus, N. (2019). Nanocomposite Zn2SnO4/SnO2 Thick films as a Humidity Sensing Material.
2019 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS)IEEE., null, 1-3. 
https://doi.org/10.1109/FLEPS.2019.8792304
Nikolić MV, Dojčinović M, Vasiljević ZŽ, Luković MD, Labus N. Nanocomposite Zn2SnO4/SnO2 Thick films as a Humidity Sensing Material. 2019 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS). 2019;:1-3

Finding optimal conditions and investigating the structure & morphology of cobalt/magnesium ferrite based cubic spinels (CoxMg1-xFe2O4) as photocatalysts

Dojčinović, Milena; Vasiljević, Zorka Ž.; Tadić, Nenad B.; Pavlović, Vera P.; Barišić, Dario; Pajić, Damir; Nikolić, Maria Vesna

(Belgrade : Institute of Technical Sciences of SASA, 2019)

TY  - CONF
AU  - Dojčinović, Milena
AU  - Vasiljević, Zorka Ž.
AU  - Tadić, Nenad B.
AU  - Pavlović, Vera P.
AU  - Barišić, Dario
AU  - Pajić, Damir
AU  - Nikolić, Maria Vesna
PY  - 2019
UR  - http://dais.sanu.ac.rs/123456789/6963
AB  - Cobalt/magnesium ferrites with various mole percentage ratio of the metals (obtained structures are CoxMg1-xFe2O4 with x being 0, 0.1, 0.3, 0.5, 0.7, 0.9, 1.0) were synthesized by sol-gel combustion synthesis using glycine as fuel, following the rules of propellant chemistry. The powders were then sintered at 700 °C for 3 hours. Obtained powders were characterized by X-Ray diffraction (XRD), scanning electron microscopy (SEM), Raman
spectroscopy, UV/vis diffuse reflectance spectroscopy (DRS). Investigation of the magnetic properties was also conducted by vibrating sample magnetometry (VSM). The obtained powders were proved to be phase-pure cubic spinels which formed agglomerated micrograins. Series of photocatalytic experiments of methylene blue degradation were done.
The influence of different experimental conditions was investigated including variations of: pH values, concentrations of the pollutant, masses of the photocatalyst, different light sources and therefore different light irradiation. Interesting results, including enhancement of the degradation rate with the introduction of cobalt into MgFe2O4 and decrease of the degradation rate with further increase of cobalt content and formation of hard agglomerates, open new possibilities for further investigation of the utilisation of Co/Mg ferrites as photocatalysts.
PB  - Belgrade : Institute of Technical Sciences of SASA
C3  - Program and the Book of abstracts / Eighteenth Young Researchers' Conference Materials Sciences and Engineering, December 4-6, 2019, Belgrade, Serbia
T1  - Finding optimal conditions and investigating the structure & morphology of cobalt/magnesium ferrite based cubic spinels (CoxMg1-xFe2O4) as photocatalysts
SP  - 71
EP  - 71
ER  - 
@conference{
author = "Dojčinović, Milena and Vasiljević, Zorka Ž. and Tadić, Nenad B. and Pavlović, Vera P. and Barišić, Dario and Pajić, Damir and Nikolić, Maria Vesna",
year = "2019",
url = "http://dais.sanu.ac.rs/123456789/6963",
abstract = "Cobalt/magnesium ferrites with various mole percentage ratio of the metals (obtained structures are CoxMg1-xFe2O4 with x being 0, 0.1, 0.3, 0.5, 0.7, 0.9, 1.0) were synthesized by sol-gel combustion synthesis using glycine as fuel, following the rules of propellant chemistry. The powders were then sintered at 700 °C for 3 hours. Obtained powders were characterized by X-Ray diffraction (XRD), scanning electron microscopy (SEM), Raman
spectroscopy, UV/vis diffuse reflectance spectroscopy (DRS). Investigation of the magnetic properties was also conducted by vibrating sample magnetometry (VSM). The obtained powders were proved to be phase-pure cubic spinels which formed agglomerated micrograins. Series of photocatalytic experiments of methylene blue degradation were done.
The influence of different experimental conditions was investigated including variations of: pH values, concentrations of the pollutant, masses of the photocatalyst, different light sources and therefore different light irradiation. Interesting results, including enhancement of the degradation rate with the introduction of cobalt into MgFe2O4 and decrease of the degradation rate with further increase of cobalt content and formation of hard agglomerates, open new possibilities for further investigation of the utilisation of Co/Mg ferrites as photocatalysts.",
publisher = "Belgrade : Institute of Technical Sciences of SASA",
journal = "Program and the Book of abstracts / Eighteenth Young Researchers' Conference Materials Sciences and Engineering, December 4-6, 2019, Belgrade, Serbia",
title = "Finding optimal conditions and investigating the structure & morphology of cobalt/magnesium ferrite based cubic spinels (CoxMg1-xFe2O4) as photocatalysts",
pages = "71-71"
}
Dojčinović, M., Vasiljević, Z. Ž., Tadić, N. B., Pavlović, V. P., Barišić, D., Pajić, D.,& Nikolić, M. V. (2019). Finding optimal conditions and investigating the structure & morphology of cobalt/magnesium ferrite based cubic spinels (CoxMg1-xFe2O4) as photocatalysts.
Program and the Book of abstracts / Eighteenth Young Researchers' Conference Materials Sciences and Engineering, December 4-6, 2019, Belgrade, SerbiaBelgrade : Institute of Technical Sciences of SASA., null, 71-71. 
Dojčinović M, Vasiljević ZŽ, Tadić NB, Pavlović VP, Barišić D, Pajić D, Nikolić MV. Finding optimal conditions and investigating the structure & morphology of cobalt/magnesium ferrite based cubic spinels (CoxMg1-xFe2O4) as photocatalysts. Program and the Book of abstracts / Eighteenth Young Researchers' Conference Materials Sciences and Engineering, December 4-6, 2019, Belgrade, Serbia. 2019;:71-71

Humidity sensing potential of iron manganite (FeMNO3)

Nikolić, Maria Vesna; Luković, Miloljub D.; Vasiljević, Zorka Ž.; Dojčinović, Milena; Labus, Nebojša

(Budapest : [s. n.], 2019)

TY  - CONF
AU  - Nikolić, Maria Vesna
AU  - Luković, Miloljub D.
AU  - Vasiljević, Zorka Ž.
AU  - Dojčinović, Milena
AU  - Labus, Nebojša
PY  - 2019
UR  - http://dais.sanu.ac.rs/123456789/6999
AB  - Though different metal oxide systems have been investigated and applied in humidity sensing as resistive or capacitive ceramic humidity sensors new materials remain the subject of much research. Iron manganite (FeMnO3) has a bixybyite type structure with the cubic space group. Iron manganite powder was obtained by solid state synthesis (milling in a planetary ball mill, calcination at 1000°C for 2 hours, milling) of starting hematite (Fe2O3) and manganese carbonate (MnCO3) powders mixed in a suitable ratio. Bulk samples were obtained by sintering green samples of pressed powder 8 mm in diameter at 1000oC for 4 hours. Thick film paste was obtained by mixing the powder with organic vehicles. Four layers were screen printed on test interdigitated electrodes on alumina substrate and fired at 900oC for 6 h. XRD analysis of bulk and thick film samples confirmed the formation of iron manganite with a perovskite structure. Scanning electron microscopy (SEM) analysis of freshly cleaved bulk samples showed a network of interconnected grains and pores. A similar structure was observed for the thick film sample surface. Change of complex impedance was monitored in a humidity chamber in the relative humidity range 30-90% at the working temperature of 25°C and frequency range 42 Hz to 1 MHz. In bulk samples at 100 Hz the impedance decreased from 32 (RH 30%) to 3 MΩ (RH 90%), while in thick film samples on test interdigitated electrodes it decreased from 8.24 (RH 30%) to 0.87 MΩ ((RH 90%). The thick film sensor response and recovery was several seconds and a low hysteresis value of 2.78% was obtained showing that iron manganite can successfully be applied for humidity sensing applications.
PB  - Budapest : [s. n.]
C3  - Abstracts / International Workshop on Woman in Ceramic Science (WoCeram2019), April 7-9, 2019/ Budapest, Hungary, Novotel Danube Budapest
T1  - Humidity sensing potential of iron manganite (FeMNO3)
SP  - 16
EP  - 17
ER  - 
@conference{
author = "Nikolić, Maria Vesna and Luković, Miloljub D. and Vasiljević, Zorka Ž. and Dojčinović, Milena and Labus, Nebojša",
year = "2019",
url = "http://dais.sanu.ac.rs/123456789/6999",
abstract = "Though different metal oxide systems have been investigated and applied in humidity sensing as resistive or capacitive ceramic humidity sensors new materials remain the subject of much research. Iron manganite (FeMnO3) has a bixybyite type structure with the cubic space group. Iron manganite powder was obtained by solid state synthesis (milling in a planetary ball mill, calcination at 1000°C for 2 hours, milling) of starting hematite (Fe2O3) and manganese carbonate (MnCO3) powders mixed in a suitable ratio. Bulk samples were obtained by sintering green samples of pressed powder 8 mm in diameter at 1000oC for 4 hours. Thick film paste was obtained by mixing the powder with organic vehicles. Four layers were screen printed on test interdigitated electrodes on alumina substrate and fired at 900oC for 6 h. XRD analysis of bulk and thick film samples confirmed the formation of iron manganite with a perovskite structure. Scanning electron microscopy (SEM) analysis of freshly cleaved bulk samples showed a network of interconnected grains and pores. A similar structure was observed for the thick film sample surface. Change of complex impedance was monitored in a humidity chamber in the relative humidity range 30-90% at the working temperature of 25°C and frequency range 42 Hz to 1 MHz. In bulk samples at 100 Hz the impedance decreased from 32 (RH 30%) to 3 MΩ (RH 90%), while in thick film samples on test interdigitated electrodes it decreased from 8.24 (RH 30%) to 0.87 MΩ ((RH 90%). The thick film sensor response and recovery was several seconds and a low hysteresis value of 2.78% was obtained showing that iron manganite can successfully be applied for humidity sensing applications.",
publisher = "Budapest : [s. n.]",
journal = "Abstracts / International Workshop on Woman in Ceramic Science (WoCeram2019), April 7-9, 2019/ Budapest, Hungary, Novotel Danube Budapest",
title = "Humidity sensing potential of iron manganite (FeMNO3)",
pages = "16-17"
}
Nikolić, M. V., Luković, M. D., Vasiljević, Z. Ž., Dojčinović, M.,& Labus, N. (2019). Humidity sensing potential of iron manganite (FeMNO3).
Abstracts / International Workshop on Woman in Ceramic Science (WoCeram2019), April 7-9, 2019/ Budapest, Hungary, Novotel Danube BudapestBudapest : [s. n.]., null, 16-17. 
Nikolić MV, Luković MD, Vasiljević ZŽ, Dojčinović M, Labus N. Humidity sensing potential of iron manganite (FeMNO3). Abstracts / International Workshop on Woman in Ceramic Science (WoCeram2019), April 7-9, 2019/ Budapest, Hungary, Novotel Danube Budapest. 2019;:16-17

Nanocrystalline SnO2-Zn2SnO4 composite thick films applied as humidity sensors

Nikolić, Maria Vesna; Luković, Miloljub D.; Dojčinović, Milena; Vasiljević, Zorka Ž.

(Belgrade : Institute for Multidisciplinary Research, 2019)

TY  - CONF
AU  - Nikolić, Maria Vesna
AU  - Luković, Miloljub D.
AU  - Dojčinović, Milena
AU  - Vasiljević, Zorka Ž.
PY  - 2019
UR  - http://dais.sanu.ac.rs/123456789/7006
AB  - Starting ZnO and SnO2 nanopowders (<100 nm) were mixed in a suitable ratio and calcined at 1050 °C for 2 hours to obtain nanocrystalline SnO2-Zn2SnO4 composite powder. Structural characterization performed by X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM) showed that a nanocrystalline composite SnO2-Zn2SnO4 powder was obtained. Thick film paste was made by adding organic vehicles to the powder. Screen printing of four and five layers of thick film paste was performed on two interdigitated test electrode configurations. They were calcined at 500 and 600 °C for 30 minutes. Impedance response was analyzed at several working temperatures (20-60 °C) in the relative humidity range 30-90% and frequency 42 Hz to 1 MHz. Increase in relative humidity lead to a decrease in impedance, especially at lower frequencies. The sensor time delay between absorption and desorption processes was low and the response and recovery times fast showing that the nanocystalline SnO2-Zn2SnO4 composite has potential for application in humidity sensing.
PB  - Belgrade : Institute for Multidisciplinary Research
C3  - Programme and the Book of Abstracts / 5th Conference of The Serbian Society for Ceramic Materials, 5CSCS-2019, June 11-13, 2019, Belgrade, Serbia
T1  - Nanocrystalline SnO2-Zn2SnO4 composite thick films applied as humidity sensors
SP  - 82
EP  - 82
ER  - 
@conference{
author = "Nikolić, Maria Vesna and Luković, Miloljub D. and Dojčinović, Milena and Vasiljević, Zorka Ž.",
year = "2019",
url = "http://dais.sanu.ac.rs/123456789/7006",
abstract = "Starting ZnO and SnO2 nanopowders (<100 nm) were mixed in a suitable ratio and calcined at 1050 °C for 2 hours to obtain nanocrystalline SnO2-Zn2SnO4 composite powder. Structural characterization performed by X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM) showed that a nanocrystalline composite SnO2-Zn2SnO4 powder was obtained. Thick film paste was made by adding organic vehicles to the powder. Screen printing of four and five layers of thick film paste was performed on two interdigitated test electrode configurations. They were calcined at 500 and 600 °C for 30 minutes. Impedance response was analyzed at several working temperatures (20-60 °C) in the relative humidity range 30-90% and frequency 42 Hz to 1 MHz. Increase in relative humidity lead to a decrease in impedance, especially at lower frequencies. The sensor time delay between absorption and desorption processes was low and the response and recovery times fast showing that the nanocystalline SnO2-Zn2SnO4 composite has potential for application in humidity sensing.",
publisher = "Belgrade : Institute for Multidisciplinary Research",
journal = "Programme and the Book of Abstracts / 5th Conference of The Serbian Society for Ceramic Materials, 5CSCS-2019, June 11-13, 2019, Belgrade, Serbia",
title = "Nanocrystalline SnO2-Zn2SnO4 composite thick films applied as humidity sensors",
pages = "82-82"
}
Nikolić, M. V., Luković, M. D., Dojčinović, M.,& Vasiljević, Z. Ž. (2019). Nanocrystalline SnO2-Zn2SnO4 composite thick films applied as humidity sensors.
Programme and the Book of Abstracts / 5th Conference of The Serbian Society for Ceramic Materials, 5CSCS-2019, June 11-13, 2019, Belgrade, SerbiaBelgrade : Institute for Multidisciplinary Research., null, 82-82. 
Nikolić MV, Luković MD, Dojčinović M, Vasiljević ZŽ. Nanocrystalline SnO2-Zn2SnO4 composite thick films applied as humidity sensors. Programme and the Book of Abstracts / 5th Conference of The Serbian Society for Ceramic Materials, 5CSCS-2019, June 11-13, 2019, Belgrade, Serbia. 2019;:82-82

Characterization of MgAl2O4 sintered ceramics

Obradović, Nina; Fahrenholtz, William G.; Filipović, Suzana; Corlett, Cole; Đorđević, Pavle; Rogan, Jelena; Vulić, Predrag J.; Buljak, Vladimir; Pavlović, Vladimir B.

(ETRAN, 2019)

TY  - JOUR
AU  - Obradović, Nina
AU  - Fahrenholtz, William G.
AU  - Filipović, Suzana
AU  - Corlett, Cole
AU  - Đorđević, Pavle
AU  - Rogan, Jelena
AU  - Vulić, Predrag J.
AU  - Buljak, Vladimir
AU  - Pavlović, Vladimir B.
PY  - 2019
UR  - http://dais.sanu.ac.rs/123456789/6949
AB  - Single phase MgAl2O4 was made from a one-to-one molar ratio of MgO and Al2O3 powders mixed using ball-milling. Mixtures of MgO and Al2O3 were subsequently treated in planetary ball mill for 30, 60, 90 and 120 minutes in air. The aim of this study was to examine phase composition, microstructure, and densification behavior of sintered specimens. After sintering in dilatometer at 1500 °C, the powder was converted to single phase MgAl2O4. The results show that mechanical activation improved the densification behavior of MgAl2O4 sintered specimens, and it reduced the onset temperature for sintering by approx. 100 oC. Based on dilatometer data, powders were subsequently densified at 1450 oC by hot pressing. Almost аll specimens exhibited full density, while sample activated for 30 minutes showed the fastest densification rate.
PB  - ETRAN
T2  - Science of Sintering
T1  - Characterization of MgAl2O4 sintered ceramics
SP  - 363
EP  - 376
VL  - 51
IS  - 4
DO  - 10.2298/SOS1904363O
ER  - 
@article{
author = "Obradović, Nina and Fahrenholtz, William G. and Filipović, Suzana and Corlett, Cole and Đorđević, Pavle and Rogan, Jelena and Vulić, Predrag J. and Buljak, Vladimir and Pavlović, Vladimir B.",
year = "2019",
url = "http://dais.sanu.ac.rs/123456789/6949",
abstract = "Single phase MgAl2O4 was made from a one-to-one molar ratio of MgO and Al2O3 powders mixed using ball-milling. Mixtures of MgO and Al2O3 were subsequently treated in planetary ball mill for 30, 60, 90 and 120 minutes in air. The aim of this study was to examine phase composition, microstructure, and densification behavior of sintered specimens. After sintering in dilatometer at 1500 °C, the powder was converted to single phase MgAl2O4. The results show that mechanical activation improved the densification behavior of MgAl2O4 sintered specimens, and it reduced the onset temperature for sintering by approx. 100 oC. Based on dilatometer data, powders were subsequently densified at 1450 oC by hot pressing. Almost аll specimens exhibited full density, while sample activated for 30 minutes showed the fastest densification rate.",
publisher = "ETRAN",
journal = "Science of Sintering",
title = "Characterization of MgAl2O4 sintered ceramics",
pages = "363-376",
volume = "51",
number = "4",
doi = "10.2298/SOS1904363O"
}
Obradović, N., Fahrenholtz, W. G., Filipović, S., Corlett, C., Đorđević, P., Rogan, J., Vulić, P. J., Buljak, V.,& Pavlović, V. B. (2019). Characterization of MgAl2O4 sintered ceramics.
Science of SinteringETRAN., 51(4), 363-376. 
https://doi.org/10.2298/SOS1904363O
Obradović N, Fahrenholtz WG, Filipović S, Corlett C, Đorđević P, Rogan J, Vulić PJ, Buljak V, Pavlović VB. Characterization of MgAl2O4 sintered ceramics. Science of Sintering. 2019;51(4):363-376
1
2

The effect of mechanical activation on synthesis and properties of MgAl2O4 ceramics

Obradović, Nina; Fahrenholtz, William G.; Filipović, Suzana; Kosanović, Darko; Dapčević, A.; Đorđević, Antonije; Balać, Igor; Pavlović, Vladimir B.

(Elsevier, 2019)

TY  - JOUR
AU  - Obradović, Nina
AU  - Fahrenholtz, William G.
AU  - Filipović, Suzana
AU  - Kosanović, Darko
AU  - Dapčević, A.
AU  - Đorđević, Antonije
AU  - Balać, Igor
AU  - Pavlović, Vladimir B.
PY  - 2019
UR  - http://www.sciencedirect.com/science/article/pii/S0272884219306340
UR  - http://dais.sanu.ac.rs/123456789/5763
AB  - Magnesium aluminate, MgAl2O4 and other alumina-based spinels are ceramics with high hardness, high melting point and mechanical strenght. Spinels can also be used as dielectrics in microwave applications. The goal of this study was to examine the effects of mechanical activation and sintering temperatures on physico-chemical properties of spinel. MgAl2O4 was produced by solid state reaction between MgO and α-Al2O3. The starting powders were mixed by ball milling to homogenize without significant particle size reduction. Mechanical activation of mixed powders was performed in a high-energy planetary ball mill in air for 1 h. Powders were compacted at 300 MPa. Heat treatments were performed in air, at temperatures ranging from 1200 to 1600 °C with 2 h dwell time, to determine the amount of spinel formation as a function of temperature. Phase composition and microstructure of initial powders and heated samples were determined by means of X-ray diffraction, particle size analysis, and scanning electron microscopy. The influences of milling and consolidation parameters were studied by electrical measurements and mechanical characterization. The main conclusion of this study was that mechanical activation for 60 min initiated a mechano-chemical reaction, resulted in spinel formation at much lower temperatures than within non-activated powders, and indicated that final sintering stage started at much lower temperatures for activated powders. Changes in microstructure parameters, as a consequence of mechanical treatment and subsequent heating of investigated powder mixtures, strongly affect electrical and mechanical properties of the final ceramics.
PB  - Elsevier
T2  - Ceramics International
T1  - The effect of mechanical activation on synthesis and properties of MgAl2O4 ceramics
SP  - 12015
EP  - 12021
VL  - 45
IS  - 9
DO  - 10.1016/j.ceramint.2019.03.095
ER  - 
@article{
author = "Obradović, Nina and Fahrenholtz, William G. and Filipović, Suzana and Kosanović, Darko and Dapčević, A. and Đorđević, Antonije and Balać, Igor and Pavlović, Vladimir B.",
year = "2019",
url = "http://www.sciencedirect.com/science/article/pii/S0272884219306340, http://dais.sanu.ac.rs/123456789/5763",
abstract = "Magnesium aluminate, MgAl2O4 and other alumina-based spinels are ceramics with high hardness, high melting point and mechanical strenght. Spinels can also be used as dielectrics in microwave applications. The goal of this study was to examine the effects of mechanical activation and sintering temperatures on physico-chemical properties of spinel. MgAl2O4 was produced by solid state reaction between MgO and α-Al2O3. The starting powders were mixed by ball milling to homogenize without significant particle size reduction. Mechanical activation of mixed powders was performed in a high-energy planetary ball mill in air for 1 h. Powders were compacted at 300 MPa. Heat treatments were performed in air, at temperatures ranging from 1200 to 1600 °C with 2 h dwell time, to determine the amount of spinel formation as a function of temperature. Phase composition and microstructure of initial powders and heated samples were determined by means of X-ray diffraction, particle size analysis, and scanning electron microscopy. The influences of milling and consolidation parameters were studied by electrical measurements and mechanical characterization. The main conclusion of this study was that mechanical activation for 60 min initiated a mechano-chemical reaction, resulted in spinel formation at much lower temperatures than within non-activated powders, and indicated that final sintering stage started at much lower temperatures for activated powders. Changes in microstructure parameters, as a consequence of mechanical treatment and subsequent heating of investigated powder mixtures, strongly affect electrical and mechanical properties of the final ceramics.",
publisher = "Elsevier",
journal = "Ceramics International",
title = "The effect of mechanical activation on synthesis and properties of MgAl2O4 ceramics",
pages = "12015-12021",
volume = "45",
number = "9",
doi = "10.1016/j.ceramint.2019.03.095"
}
Obradović, N., Fahrenholtz, W. G., Filipović, S., Kosanović, D., Dapčević, A., Đorđević, A., Balać, I.,& Pavlović, V. B. (2019). The effect of mechanical activation on synthesis and properties of MgAl2O4 ceramics.
Ceramics InternationalElsevier., 45(9), 12015-12021. 
https://doi.org/10.1016/j.ceramint.2019.03.095
Obradović N, Fahrenholtz WG, Filipović S, Kosanović D, Dapčević A, Đorđević A, Balać I, Pavlović VB. The effect of mechanical activation on synthesis and properties of MgAl2O4 ceramics. Ceramics International. 2019;45(9):12015-12021
7
7
5

The effect of mechanical activation on synthesis and properties of MgAl2O4 ceramics

Obradović, Nina; Fahrenholtz, William G.; Filipović, Suzana; Kosanović, Darko; Dapčević, A.; Đorđević, Antonije; Balać, Igor; Pavlović, Vladimir B.

(Elsevier, 2019)

TY  - JOUR
AU  - Obradović, Nina
AU  - Fahrenholtz, William G.
AU  - Filipović, Suzana
AU  - Kosanović, Darko
AU  - Dapčević, A.
AU  - Đorđević, Antonije
AU  - Balać, Igor
AU  - Pavlović, Vladimir B.
PY  - 2019
UR  - http://www.sciencedirect.com/science/article/pii/S0272884219306340
UR  - http://dais.sanu.ac.rs/123456789/5272
AB  - Magnesium aluminate, MgAl2O4 and other alumina-based spinels are ceramics with high hardness, high melting point and mechanical strenght. Spinels can also be used as dielectrics in microwave applications. The goal of this study was to examine the effects of mechanical activation and sintering temperatures on physico-chemical properties of spinel. MgAl2O4 was produced by solid state reaction between MgO and α-Al2O3. The starting powders were mixed by ball milling to homogenize without significant particle size reduction. Mechanical activation of mixed powders was performed in a high-energy planetary ball mill in air for 1 h. Powders were compacted at 300 MPa. Heat treatments were performed in air, at temperatures ranging from 1200 to 1600 °C with 2 h dwell time, to determine the amount of spinel formation as a function of temperature. Phase composition and microstructure of initial powders and heated samples were determined by means of X-ray diffraction, particle size analysis, and scanning electron microscopy. The influences of milling and consolidation parameters were studied by electrical measurements and mechanical characterization. The main conclusion of this study was that mechanical activation for 60 min initiated a mechano-chemical reaction, resulted in spinel formation at much lower temperatures than within non-activated powders, and indicated that final sintering stage started at much lower temperatures for activated powders. Changes in microstructure parameters, as a consequence of mechanical treatment and subsequent heating of investigated powder mixtures, strongly affect electrical and mechanical properties of the final ceramics.
PB  - Elsevier
T2  - Ceramics International
T1  - The effect of mechanical activation on synthesis and properties of MgAl2O4 ceramics
SP  - 12015
EP  - 12021
VL  - 45
IS  - 9
DO  - 10.1016/j.ceramint.2019.03.095
ER  - 
@article{
author = "Obradović, Nina and Fahrenholtz, William G. and Filipović, Suzana and Kosanović, Darko and Dapčević, A. and Đorđević, Antonije and Balać, Igor and Pavlović, Vladimir B.",
year = "2019",
url = "http://www.sciencedirect.com/science/article/pii/S0272884219306340, http://dais.sanu.ac.rs/123456789/5272",
abstract = "Magnesium aluminate, MgAl2O4 and other alumina-based spinels are ceramics with high hardness, high melting point and mechanical strenght. Spinels can also be used as dielectrics in microwave applications. The goal of this study was to examine the effects of mechanical activation and sintering temperatures on physico-chemical properties of spinel. MgAl2O4 was produced by solid state reaction between MgO and α-Al2O3. The starting powders were mixed by ball milling to homogenize without significant particle size reduction. Mechanical activation of mixed powders was performed in a high-energy planetary ball mill in air for 1 h. Powders were compacted at 300 MPa. Heat treatments were performed in air, at temperatures ranging from 1200 to 1600 °C with 2 h dwell time, to determine the amount of spinel formation as a function of temperature. Phase composition and microstructure of initial powders and heated samples were determined by means of X-ray diffraction, particle size analysis, and scanning electron microscopy. The influences of milling and consolidation parameters were studied by electrical measurements and mechanical characterization. The main conclusion of this study was that mechanical activation for 60 min initiated a mechano-chemical reaction, resulted in spinel formation at much lower temperatures than within non-activated powders, and indicated that final sintering stage started at much lower temperatures for activated powders. Changes in microstructure parameters, as a consequence of mechanical treatment and subsequent heating of investigated powder mixtures, strongly affect electrical and mechanical properties of the final ceramics.",
publisher = "Elsevier",
journal = "Ceramics International",
title = "The effect of mechanical activation on synthesis and properties of MgAl2O4 ceramics",
pages = "12015-12021",
volume = "45",
number = "9",
doi = "10.1016/j.ceramint.2019.03.095"
}
Obradović, N., Fahrenholtz, W. G., Filipović, S., Kosanović, D., Dapčević, A., Đorđević, A., Balać, I.,& Pavlović, V. B. (2019). The effect of mechanical activation on synthesis and properties of MgAl2O4 ceramics.
Ceramics InternationalElsevier., 45(9), 12015-12021. 
https://doi.org/10.1016/j.ceramint.2019.03.095
Obradović N, Fahrenholtz WG, Filipović S, Kosanović D, Dapčević A, Đorđević A, Balać I, Pavlović VB. The effect of mechanical activation on synthesis and properties of MgAl2O4 ceramics. Ceramics International. 2019;45(9):12015-12021
7
7
5

Humidity sensing potential of Fe2TiO5—pseudobrookite

Nikolić, Maria Vesna; Luković, Miloljub D.; Vasiljević, Zorka Ž.; Labus, Nebojša; Aleksić, Obrad S.

(Springer US, 2018)

TY  - JOUR
AU  - Nikolić, Maria Vesna
AU  - Luković, Miloljub D.
AU  - Vasiljević, Zorka Ž.
AU  - Labus, Nebojša
AU  - Aleksić, Obrad S.
PY  - 2018
UR  - http://dais.sanu.ac.rs/123456789/3706
AB  - Bulk samples of pseudobrookite with an orthorhombic crystal structure were prepared by sintering a mixture of starting hematite and anatase nano powders in the weight ratio 60:40 at three different sintering temperatures (950, 1050 and 1150 °C) resulting in different microstructures determined by SEM analysis. Humidity sensing properties of pseudobrookite were investigated by measuring changes in electrical properties at operating temperatures of 20, 40 and 60 °C in the frequency range 100 Hz–100 kHz in the relative humidity range 30–90% in a climatic chamber. At 100 Hz, and 20 °C the impedance of pseudobrookite sintered at 1150 °C reduced over 5 times in the humidity range 40–90%, and 7 times at 60 °C for pseudobrookite sintered at 950 °C. Detailed analysis of dielectric properties showed that the dielectric constant increased noticeably with increase in humidity at low frequencies. Electrical conductivity change with frequency followed the Jonscher power law, and increased with increase in relative humidity. The determined frequency constant reduced with increase in sample temperature and increase in relative humidity. The conduction mechanism can be explained using the correlated barrier hopping model. Analysis of complex impedance using an equivalent circuit showed the dominant influence of grain boundaries. Low hysteresis (3.6 and 2.99%) was obtained in the 40–90% humidity range at room temperature (25 °C) for pseudobrookite sintered at 950 and 1150 °C. © 2018, Springer Science+Business Media, LLC, part of Springer Nature.
PB  - Springer US
T2  - Journal of Materials Science: Materials in Electronics
T2  - Journal of Materials Science: Materials in Electronics
T1  - Humidity sensing potential of Fe2TiO5—pseudobrookite
SP  - 9227
EP  - 9238
VL  - 29
IS  - 11
DO  - 10.1007/s10854-018-8951-1
ER  - 
@article{
author = "Nikolić, Maria Vesna and Luković, Miloljub D. and Vasiljević, Zorka Ž. and Labus, Nebojša and Aleksić, Obrad S.",
year = "2018",
url = "http://dais.sanu.ac.rs/123456789/3706",
abstract = "Bulk samples of pseudobrookite with an orthorhombic crystal structure were prepared by sintering a mixture of starting hematite and anatase nano powders in the weight ratio 60:40 at three different sintering temperatures (950, 1050 and 1150 °C) resulting in different microstructures determined by SEM analysis. Humidity sensing properties of pseudobrookite were investigated by measuring changes in electrical properties at operating temperatures of 20, 40 and 60 °C in the frequency range 100 Hz–100 kHz in the relative humidity range 30–90% in a climatic chamber. At 100 Hz, and 20 °C the impedance of pseudobrookite sintered at 1150 °C reduced over 5 times in the humidity range 40–90%, and 7 times at 60 °C for pseudobrookite sintered at 950 °C. Detailed analysis of dielectric properties showed that the dielectric constant increased noticeably with increase in humidity at low frequencies. Electrical conductivity change with frequency followed the Jonscher power law, and increased with increase in relative humidity. The determined frequency constant reduced with increase in sample temperature and increase in relative humidity. The conduction mechanism can be explained using the correlated barrier hopping model. Analysis of complex impedance using an equivalent circuit showed the dominant influence of grain boundaries. Low hysteresis (3.6 and 2.99%) was obtained in the 40–90% humidity range at room temperature (25 °C) for pseudobrookite sintered at 950 and 1150 °C. © 2018, Springer Science+Business Media, LLC, part of Springer Nature.",
publisher = "Springer US",
journal = "Journal of Materials Science: Materials in Electronics, Journal of Materials Science: Materials in Electronics",
title = "Humidity sensing potential of Fe2TiO5—pseudobrookite",
pages = "9227-9238",
volume = "29",
number = "11",
doi = "10.1007/s10854-018-8951-1"
}
Nikolić, M. V., Luković, M. D., Vasiljević, Z. Ž., Labus, N.,& Aleksić, O. S. (2018). Humidity sensing potential of Fe2TiO5—pseudobrookite.
Journal of Materials Science: Materials in ElectronicsSpringer US., 29(11), 9227-9238. 
https://doi.org/10.1007/s10854-018-8951-1
Nikolić MV, Luković MD, Vasiljević ZŽ, Labus N, Aleksić OS. Humidity sensing potential of Fe2TiO5—pseudobrookite. Journal of Materials Science: Materials in Electronics. 2018;29(11):9227-9238
8
7
9

Application of Nanocrystalline Pseudobrookite (Fe2TiO5) Thick Films for Humidity Sensing

Nikolić, Maria Vesna; Luković, Miloljub; Vasiljević, Zorka Ž.; Vujančević, Jelena

(IEEE Computer Society, 2018)

TY  - CONF
AU  - Nikolić, Maria Vesna
AU  - Luković, Miloljub
AU  - Vasiljević, Zorka Ž.
AU  - Vujančević, Jelena
PY  - 2018
UR  - http://dais.sanu.ac.rs/123456789/4078
AB  - Pseudobrookite nanocrystalline thick films were screen printed on alumina substrate with small interdigitated PdAg electrodes (width 6 mm, length 12 mm, electrode spacing 0.2 mm) and fired at 600°C for 30 minutes. Scanning electron microscopy (SEM) of the thick film surface confirmed the formation of a porous structure consisting of agglomerated nanocrystalline grains of pseudobrookite. Impedance response of pseudobrookite thick film samples was measured in a humidity chamber at operating temperatures of 25 and 50°C in the relative humidity (RH) range 40-90% and frequency range 42 Hz-1 MHz. At the lowest frequency of 42 Hz at 25°C the impedance reduced 7 times (from 35.74 MΩ for RH 40% to 4.91 MΩ for RH 90%) and at 50°C 33 times (from 30.98 MΩ for RH 40% to 0.944MΩ for RH 90%). Low hysteresis (1.82 and 3.65%) was obtained at 25 and 50°C, respectively. Complex impedance was analyzed using an equivalent circuit consisting of parallel impedance and constant phase (CPE) element showing the dominant influence of grain boundaries. © 2018 IEEE.
PB  - IEEE Computer Society
C3  - Proceedings of the International Spring Seminar on Electronics Technology
T1  - Application of Nanocrystalline Pseudobrookite (Fe2TiO5) Thick Films for Humidity Sensing
DO  - 10.1109/ISSE.2018.8443672
ER  - 
@conference{
author = "Nikolić, Maria Vesna and Luković, Miloljub and Vasiljević, Zorka Ž. and Vujančević, Jelena",
year = "2018",
url = "http://dais.sanu.ac.rs/123456789/4078",
abstract = "Pseudobrookite nanocrystalline thick films were screen printed on alumina substrate with small interdigitated PdAg electrodes (width 6 mm, length 12 mm, electrode spacing 0.2 mm) and fired at 600°C for 30 minutes. Scanning electron microscopy (SEM) of the thick film surface confirmed the formation of a porous structure consisting of agglomerated nanocrystalline grains of pseudobrookite. Impedance response of pseudobrookite thick film samples was measured in a humidity chamber at operating temperatures of 25 and 50°C in the relative humidity (RH) range 40-90% and frequency range 42 Hz-1 MHz. At the lowest frequency of 42 Hz at 25°C the impedance reduced 7 times (from 35.74 MΩ for RH 40% to 4.91 MΩ for RH 90%) and at 50°C 33 times (from 30.98 MΩ for RH 40% to 0.944MΩ for RH 90%). Low hysteresis (1.82 and 3.65%) was obtained at 25 and 50°C, respectively. Complex impedance was analyzed using an equivalent circuit consisting of parallel impedance and constant phase (CPE) element showing the dominant influence of grain boundaries. © 2018 IEEE.",
publisher = "IEEE Computer Society",
journal = "Proceedings of the International Spring Seminar on Electronics Technology",
title = "Application of Nanocrystalline Pseudobrookite (Fe2TiO5) Thick Films for Humidity Sensing",
doi = "10.1109/ISSE.2018.8443672"
}
Nikolić, M. V., Luković, M., Vasiljević, Z. Ž.,& Vujančević, J. (2018). Application of Nanocrystalline Pseudobrookite (Fe2TiO5) Thick Films for Humidity Sensing.
Proceedings of the International Spring Seminar on Electronics TechnologyIEEE Computer Society., null. 
https://doi.org/10.1109/ISSE.2018.8443672
Nikolić MV, Luković M, Vasiljević ZŽ, Vujančević J. Application of Nanocrystalline Pseudobrookite (Fe2TiO5) Thick Films for Humidity Sensing. Proceedings of the International Spring Seminar on Electronics Technology. 2018;