Sort By
Publication Year
Deposit Date
Title
Type
Access
Publication Year
2020 (2)
2019 (1)

The electrical breakdown of gases, surface processes and applications

Link to this page

info:eu-repo/grantAgreement/MESTD/Basic Research (BR or ON)/171025/RS//

The electrical breakdown of gases, surface processes and applications (en)
Електрични пробој гасова, површински процеси и примене (sr)
Električni proboj gasova, površinski procesi i primene (sr_RS)
Authors

Publications

Investigation of structural, microstructural and magnetic properties of YbxY1-xF3 solid solutions

Aleksić, Jelena; Barudžija, Tanja; Jugović, Dragana; Mitrić, Miodrag; Bošković, Marko; Jagličić, Zvonko; Lisjak, Darja; Kostić, Ljiljana

(Elsevier, 2020)

TY  - JOUR
AU  - Aleksić, Jelena
AU  - Barudžija, Tanja
AU  - Jugović, Dragana
AU  - Mitrić, Miodrag
AU  - Bošković, Marko
AU  - Jagličić, Zvonko
AU  - Lisjak, Darja
AU  - Kostić, Ljiljana
PY  - 2020
UR  - http://www.sciencedirect.com/science/article/pii/S0022369719325983
UR  - http://dais.sanu.ac.rs/123456789/8948
AB  - In this investigation, we have synthesized YbxY1-xF3 solid solutions by fluorination of yttrium and ytterbium sesquioxides with ammonium hydrogen difluoride. According to the XRD analysis, all synthesized YbxY1-xF3 samples have an orthorhombic crystal structure belonging to the β-YF3 structural type. The refinement of crystal structure was done by the Rietveld method within the Pnma space group using the TCH pseudo-Voigt function. The anisotropic peak broadening was analyzed, and the average apparent crystallite size is about 50 nm with a small anisotropy of shape, while the significant microstrain that is highly anisotropic is present in all samples. The temperature-dependent magnetic susceptibility was analyzed by applying the model of a free ion perturbed by the crystal field. We have obtained the effective magnetic quantum numbers Mieff of four Kramer's doublets of Yb3+ ion along with the entire crystal field splitting of the 2F7/2 manifold of Yb3+ in YF3. The acquired maximum energy splitting of the ground level is about 150 K in our most diluted samples. The field-dependent isothermal magnetization measurements were carried out at various temperatures and analyzed by classical Langevin function. Results obtained from magnetic measurements show that all YbxY1-xF3 (x ≠ 0) solid solutions exhibit pure paramagnetic behavior in the whole temperature range from 2 to 300 K, with a predominant antiferromagnetic exchange interactions.
PB  - Elsevier
T2  - Journal of Physics and Chemistry of Solids
T2  - Journal of Physics and Chemistry of SolidsJournal of Physics and Chemistry of Solids
T1  - Investigation of structural, microstructural and magnetic properties of YbxY1-xF3 solid solutions
SP  - 109449
VL  - 142
DO  - 10.1016/j.jpcs.2020.109449
ER  - 
@article{
author = "Aleksić, Jelena and Barudžija, Tanja and Jugović, Dragana and Mitrić, Miodrag and Bošković, Marko and Jagličić, Zvonko and Lisjak, Darja and Kostić, Ljiljana",
year = "2020",
url = "http://www.sciencedirect.com/science/article/pii/S0022369719325983, http://dais.sanu.ac.rs/123456789/8948",
abstract = "In this investigation, we have synthesized YbxY1-xF3 solid solutions by fluorination of yttrium and ytterbium sesquioxides with ammonium hydrogen difluoride. According to the XRD analysis, all synthesized YbxY1-xF3 samples have an orthorhombic crystal structure belonging to the β-YF3 structural type. The refinement of crystal structure was done by the Rietveld method within the Pnma space group using the TCH pseudo-Voigt function. The anisotropic peak broadening was analyzed, and the average apparent crystallite size is about 50 nm with a small anisotropy of shape, while the significant microstrain that is highly anisotropic is present in all samples. The temperature-dependent magnetic susceptibility was analyzed by applying the model of a free ion perturbed by the crystal field. We have obtained the effective magnetic quantum numbers Mieff of four Kramer's doublets of Yb3+ ion along with the entire crystal field splitting of the 2F7/2 manifold of Yb3+ in YF3. The acquired maximum energy splitting of the ground level is about 150 K in our most diluted samples. The field-dependent isothermal magnetization measurements were carried out at various temperatures and analyzed by classical Langevin function. Results obtained from magnetic measurements show that all YbxY1-xF3 (x ≠ 0) solid solutions exhibit pure paramagnetic behavior in the whole temperature range from 2 to 300 K, with a predominant antiferromagnetic exchange interactions.",
publisher = "Elsevier",
journal = "Journal of Physics and Chemistry of Solids, Journal of Physics and Chemistry of SolidsJournal of Physics and Chemistry of Solids",
title = "Investigation of structural, microstructural and magnetic properties of YbxY1-xF3 solid solutions",
pages = "109449",
volume = "142",
doi = "10.1016/j.jpcs.2020.109449"
}
Aleksić, J., Barudžija, T., Jugović, D., Mitrić, M., Bošković, M., Jagličić, Z., Lisjak, D.,& Kostić, L. (2020). Investigation of structural, microstructural and magnetic properties of YbxY1-xF3 solid solutions.
Journal of Physics and Chemistry of SolidsElsevier., 142, 109449. 
https://doi.org/10.1016/j.jpcs.2020.109449
Aleksić J, Barudžija T, Jugović D, Mitrić M, Bošković M, Jagličić Z, Lisjak D, Kostić L. Investigation of structural, microstructural and magnetic properties of YbxY1-xF3 solid solutions. Journal of Physics and Chemistry of Solids. 2020;142:109449

Investigation of structural, microstructural and magnetic properties of YbxY1-xF3 solid solutions

Aleksić, Jelena; Barudžija, Tanja; Jugović, Dragana; Mitrić, Miodrag; Bošković, Marko; Jagličić, Zvonko; Lisjak, Darja; Kostić, Ljiljana

(Elsevier, 2020)

TY  - JOUR
AU  - Aleksić, Jelena
AU  - Barudžija, Tanja
AU  - Jugović, Dragana
AU  - Mitrić, Miodrag
AU  - Bošković, Marko
AU  - Jagličić, Zvonko
AU  - Lisjak, Darja
AU  - Kostić, Ljiljana
PY  - 2020
UR  - http://www.sciencedirect.com/science/article/pii/S0022369719325983
UR  - http://dais.sanu.ac.rs/123456789/8949
AB  - In this investigation, we have synthesized YbxY1-xF3 solid solutions by fluorination of yttrium and ytterbium sesquioxides with ammonium hydrogen difluoride. According to the XRD analysis, all synthesized YbxY1-xF3 samples have an orthorhombic crystal structure belonging to the β-YF3 structural type. The refinement of crystal structure was done by the Rietveld method within the Pnma space group using the TCH pseudo-Voigt function. The anisotropic peak broadening was analyzed, and the average apparent crystallite size is about 50 nm with a small anisotropy of shape, while the significant microstrain that is highly anisotropic is present in all samples. The temperature-dependent magnetic susceptibility was analyzed by applying the model of a free ion perturbed by the crystal field. We have obtained the effective magnetic quantum numbers Mieff of four Kramer's doublets of Yb3+ ion along with the entire crystal field splitting of the 2F7/2 manifold of Yb3+ in YF3. The acquired maximum energy splitting of the ground level is about 150 K in our most diluted samples. The field-dependent isothermal magnetization measurements were carried out at various temperatures and analyzed by classical Langevin function. Results obtained from magnetic measurements show that all YbxY1-xF3 (x ≠ 0) solid solutions exhibit pure paramagnetic behavior in the whole temperature range from 2 to 300 K, with a predominant antiferromagnetic exchange interactions.
PB  - Elsevier
T2  - Journal of Physics and Chemistry of Solids
T2  - Journal of Physics and Chemistry of SolidsJournal of Physics and Chemistry of Solids
T1  - Investigation of structural, microstructural and magnetic properties of YbxY1-xF3 solid solutions
SP  - 109449
VL  - 142
DO  - 10.1016/j.jpcs.2020.109449
ER  - 
@article{
author = "Aleksić, Jelena and Barudžija, Tanja and Jugović, Dragana and Mitrić, Miodrag and Bošković, Marko and Jagličić, Zvonko and Lisjak, Darja and Kostić, Ljiljana",
year = "2020",
url = "http://www.sciencedirect.com/science/article/pii/S0022369719325983, http://dais.sanu.ac.rs/123456789/8949",
abstract = "In this investigation, we have synthesized YbxY1-xF3 solid solutions by fluorination of yttrium and ytterbium sesquioxides with ammonium hydrogen difluoride. According to the XRD analysis, all synthesized YbxY1-xF3 samples have an orthorhombic crystal structure belonging to the β-YF3 structural type. The refinement of crystal structure was done by the Rietveld method within the Pnma space group using the TCH pseudo-Voigt function. The anisotropic peak broadening was analyzed, and the average apparent crystallite size is about 50 nm with a small anisotropy of shape, while the significant microstrain that is highly anisotropic is present in all samples. The temperature-dependent magnetic susceptibility was analyzed by applying the model of a free ion perturbed by the crystal field. We have obtained the effective magnetic quantum numbers Mieff of four Kramer's doublets of Yb3+ ion along with the entire crystal field splitting of the 2F7/2 manifold of Yb3+ in YF3. The acquired maximum energy splitting of the ground level is about 150 K in our most diluted samples. The field-dependent isothermal magnetization measurements were carried out at various temperatures and analyzed by classical Langevin function. Results obtained from magnetic measurements show that all YbxY1-xF3 (x ≠ 0) solid solutions exhibit pure paramagnetic behavior in the whole temperature range from 2 to 300 K, with a predominant antiferromagnetic exchange interactions.",
publisher = "Elsevier",
journal = "Journal of Physics and Chemistry of Solids, Journal of Physics and Chemistry of SolidsJournal of Physics and Chemistry of Solids",
title = "Investigation of structural, microstructural and magnetic properties of YbxY1-xF3 solid solutions",
pages = "109449",
volume = "142",
doi = "10.1016/j.jpcs.2020.109449"
}
Aleksić, J., Barudžija, T., Jugović, D., Mitrić, M., Bošković, M., Jagličić, Z., Lisjak, D.,& Kostić, L. (2020). Investigation of structural, microstructural and magnetic properties of YbxY1-xF3 solid solutions.
Journal of Physics and Chemistry of SolidsElsevier., 142, 109449. 
https://doi.org/10.1016/j.jpcs.2020.109449
Aleksić J, Barudžija T, Jugović D, Mitrić M, Bošković M, Jagličić Z, Lisjak D, Kostić L. Investigation of structural, microstructural and magnetic properties of YbxY1-xF3 solid solutions. Journal of Physics and Chemistry of Solids. 2020;142:109449

Synthesis, structural and magnetic properties of Y1-xYbxF3 solid solution

Aleksić, Jelena; Barudžija, Tanja; Jugović, Dragana; Mitrić, Miodrag; Bošković, M.; Jagličić, Zvonko; Gyergyek, S.; Kostić, Ljiljana

(Novi Sad : Faculty of Technology, 2019)

TY  - CONF
AU  - Aleksić, Jelena
AU  - Barudžija, Tanja
AU  - Jugović, Dragana
AU  - Mitrić, Miodrag
AU  - Bošković, M.
AU  - Jagličić, Zvonko
AU  - Gyergyek, S.
AU  - Kostić, Ljiljana
PY  - 2019
UR  - http://dais.sanu.ac.rs/123456789/6987
AB  - Many works devoted to obtaining nanodispersed BaTiO3 powder modified with different dopants for suitable properties providing. In particular, recently considerable attention has been given to obtaining modified nanopowders BaTiO3 possessing relaxor behavior order to ensure reliable work of dielectrics. Generally, Ca,Zr,Mn, ,Pb and rare earth elements such as Nb,Y adds order to provide stress, inhibit grain growth and provide Pinching effect, and hence to increase dielectrics relaxor behavior. However, there is still an issue associated with obtaining satisfactory stoichiometry of the obtained powder. From this viewpoint Ca,Zr-doped BaTiO3 were prepared with co-precipitation method via multiligand complexes formation and influence of the precursor type on Ca,Zr-doped BaTiO3 stoichiometry were investigated. Their stoichiometry, crystal structure was examined in order to determine preferential solubility site of Ca,Zr ions in perovskite structure. Stoichiometry Ca,Zr-modified BaTiO3 will be evaluated considering different precursor type. X-ray, IR spectroscopy and X-ray fluorescence analysis were carried out to obtain the knowledge on the occupation site in the Ba1-xСaxTi1-yZryO3 perovskite structure. These results proved influence complex formation on Ca,Zr-modified BaTiO3 stoichiometry.
PB  - Novi Sad : Faculty of Technology
C3  - Programme and book of abstracts / 13th Conference for Young Scientists in Ceramics (CYSC-2017), October 16-19, 2019, Novi Sad
T1  - Synthesis, structural and magnetic properties of Y1-xYbxF3 solid solution
SP  - 37
EP  - 37
ER  - 
@conference{
author = "Aleksić, Jelena and Barudžija, Tanja and Jugović, Dragana and Mitrić, Miodrag and Bošković, M. and Jagličić, Zvonko and Gyergyek, S. and Kostić, Ljiljana",
year = "2019",
url = "http://dais.sanu.ac.rs/123456789/6987",
abstract = "Many works devoted to obtaining nanodispersed BaTiO3 powder modified with different dopants for suitable properties providing. In particular, recently considerable attention has been given to obtaining modified nanopowders BaTiO3 possessing relaxor behavior order to ensure reliable work of dielectrics. Generally, Ca,Zr,Mn, ,Pb and rare earth elements such as Nb,Y adds order to provide stress, inhibit grain growth and provide Pinching effect, and hence to increase dielectrics relaxor behavior. However, there is still an issue associated with obtaining satisfactory stoichiometry of the obtained powder. From this viewpoint Ca,Zr-doped BaTiO3 were prepared with co-precipitation method via multiligand complexes formation and influence of the precursor type on Ca,Zr-doped BaTiO3 stoichiometry were investigated. Their stoichiometry, crystal structure was examined in order to determine preferential solubility site of Ca,Zr ions in perovskite structure. Stoichiometry Ca,Zr-modified BaTiO3 will be evaluated considering different precursor type. X-ray, IR spectroscopy and X-ray fluorescence analysis were carried out to obtain the knowledge on the occupation site in the Ba1-xСaxTi1-yZryO3 perovskite structure. These results proved influence complex formation on Ca,Zr-modified BaTiO3 stoichiometry.",
publisher = "Novi Sad : Faculty of Technology",
journal = "Programme and book of abstracts / 13th Conference for Young Scientists in Ceramics (CYSC-2017), October 16-19, 2019, Novi Sad",
title = "Synthesis, structural and magnetic properties of Y1-xYbxF3 solid solution",
pages = "37-37"
}
Aleksić, J., Barudžija, T., Jugović, D., Mitrić, M., Bošković, M., Jagličić, Z., Gyergyek, S.,& Kostić, L. (2019). Synthesis, structural and magnetic properties of Y1-xYbxF3 solid solution.
Programme and book of abstracts / 13th Conference for Young Scientists in Ceramics (CYSC-2017), October 16-19, 2019, Novi SadNovi Sad : Faculty of Technology., null, 37-37. 
Aleksić J, Barudžija T, Jugović D, Mitrić M, Bošković M, Jagličić Z, Gyergyek S, Kostić L. Synthesis, structural and magnetic properties of Y1-xYbxF3 solid solution. Programme and book of abstracts / 13th Conference for Young Scientists in Ceramics (CYSC-2017), October 16-19, 2019, Novi Sad. 2019;:37-37