Sort By
Publication Year
Deposit Date
Title
Type
Access
Publication Year
2018 (2)
Type

National Council for Scientific and Technological Development of Brazil

Link to this page

National Council for Scientific and Technological Development of Brazil

Authors

Publications

Visible light sensitive mesoporous nanohybrids of lepidocrocite-like ferrititanate coupled to a charge transfer complex: Synthesis, characterization and photocatalytic degradation of NO

Habran, Margarita; Pontón, Patricia I.; Mančić, Lidija; Pandoli, Omar; Krambrock, Klaus; Maia da Costa, Marcelo Eduardo Huguenin; Letichevsky, Sonia; Costa, Antonio Mario Leal Martins; Morgado, Edisson Jr.; Marinković, Bojan A.

(Elsevier, 2018)

TY  - JOUR
AU  - Habran, Margarita
AU  - Pontón, Patricia I.
AU  - Mančić, Lidija
AU  - Pandoli, Omar
AU  - Krambrock, Klaus
AU  - Maia da Costa, Marcelo Eduardo Huguenin
AU  - Letichevsky, Sonia
AU  - Costa, Antonio Mario Leal Martins
AU  - Morgado, Edisson Jr.
AU  - Marinković, Bojan A.
PY  - 2018
UR  - http://dais.sanu.ac.rs/123456789/3692
AB  - The efficiency of photo-oxidation of pollutants catalysed by semiconductors is still limited for real-world applications due to several drawbacks, such as a) insufficient absorption of visible radiation, which predominates in solar spectrum, b) rapid free electron to hole recombination, c) small surface area, built from equilibrium crystallographic facets with low adsorption capacities and d) photo-corrosion. The present study disclosures new mesoporous heterostructures, built from exfoliated lepidocrocite-like ferrititanates and TiO2 (anatase)-acetylacetone charge transfer complex, capable of reducing free electron-to-hole recombination rate through a robust charge separation and sensitive to the visible light spectrum. The synthesis route is based on soft-chemistry and low temperature calcination at 300 °C. Two different partially pillarized heterostructures, denoted as HM-1 and HM-2, have been synthesized. It was observed that the heterostructure HM-1 was four times more active toward photocatalytic degradation of NO gas in comparison to the benchmark photocatalytic material P25. The lower activity of the heterostructure HM-2, comparable to that of P-25, was attributed to the high value of Urbach energy that indicates high number of defect sites within energy band-gap of the constituent semiconductor components. [Ti] anatase/[Ti] ferrititanate mol ratio might also play a role in photocatalytic efficiency. © 2018 Elsevier B.V.
PB  - Elsevier
T2  - Journal of Photochemistry and Photobiology A: Chemistry
T1  - Visible light sensitive mesoporous nanohybrids of lepidocrocite-like ferrititanate coupled to a charge transfer complex: Synthesis, characterization and photocatalytic degradation of NO
SP  - 133
EP  - 144
VL  - 365
DO  - 10.1016/j.jphotochem.2018.07.038
ER  - 
@article{
author = "Habran, Margarita and Pontón, Patricia I. and Mančić, Lidija and Pandoli, Omar and Krambrock, Klaus and Maia da Costa, Marcelo Eduardo Huguenin and Letichevsky, Sonia and Costa, Antonio Mario Leal Martins and Morgado, Edisson Jr. and Marinković, Bojan A.",
year = "2018",
url = "http://dais.sanu.ac.rs/123456789/3692",
abstract = "The efficiency of photo-oxidation of pollutants catalysed by semiconductors is still limited for real-world applications due to several drawbacks, such as a) insufficient absorption of visible radiation, which predominates in solar spectrum, b) rapid free electron to hole recombination, c) small surface area, built from equilibrium crystallographic facets with low adsorption capacities and d) photo-corrosion. The present study disclosures new mesoporous heterostructures, built from exfoliated lepidocrocite-like ferrititanates and TiO2 (anatase)-acetylacetone charge transfer complex, capable of reducing free electron-to-hole recombination rate through a robust charge separation and sensitive to the visible light spectrum. The synthesis route is based on soft-chemistry and low temperature calcination at 300 °C. Two different partially pillarized heterostructures, denoted as HM-1 and HM-2, have been synthesized. It was observed that the heterostructure HM-1 was four times more active toward photocatalytic degradation of NO gas in comparison to the benchmark photocatalytic material P25. The lower activity of the heterostructure HM-2, comparable to that of P-25, was attributed to the high value of Urbach energy that indicates high number of defect sites within energy band-gap of the constituent semiconductor components. [Ti] anatase/[Ti] ferrititanate mol ratio might also play a role in photocatalytic efficiency. © 2018 Elsevier B.V.",
publisher = "Elsevier",
journal = "Journal of Photochemistry and Photobiology A: Chemistry",
title = "Visible light sensitive mesoporous nanohybrids of lepidocrocite-like ferrititanate coupled to a charge transfer complex: Synthesis, characterization and photocatalytic degradation of NO",
pages = "133-144",
volume = "365",
doi = "10.1016/j.jphotochem.2018.07.038"
}
Habran, M., Pontón, P. I., Mančić, L., Pandoli, O., Krambrock, K., Maia da Costa, M. E. H., Letichevsky, S., Costa, A. M. L. M., Morgado, E. Jr.,& Marinković, B. A. (2018). Visible light sensitive mesoporous nanohybrids of lepidocrocite-like ferrititanate coupled to a charge transfer complex: Synthesis, characterization and photocatalytic degradation of NO.
Journal of Photochemistry and Photobiology A: ChemistryElsevier., 365, 133-144. 
https://doi.org/10.1016/j.jphotochem.2018.07.038
Habran M, Pontón PI, Mančić L, Pandoli O, Krambrock K, Maia da Costa MEH, Letichevsky S, Costa AMLM, Morgado EJ, Marinković BA. Visible light sensitive mesoporous nanohybrids of lepidocrocite-like ferrititanate coupled to a charge transfer complex: Synthesis, characterization and photocatalytic degradation of NO. Journal of Photochemistry and Photobiology A: Chemistry. 2018;365:133-144
2
1

Visible light sensitive mesoporous nanohybrids of lepidocrocite-like ferrititanate coupled to a charge transfer complex: Synthesis, characterization and photocatalytic degradation of NO

Habran, Margarita; Pontón, Patricia I.; Mančić, Lidija; Pandoli, Omar; Krambrock, Klaus; Maia da Costa, Marcelo Eduardo Huguenin; Letichevsky, Sonia; Costa, Antonio Mario Leal Martins; Morgado, Edisson Jr; Marinković, Bojan A.

(Elsevier, 2018)

TY  - JOUR
AU  - Habran, Margarita
AU  - Pontón, Patricia I.
AU  - Mančić, Lidija
AU  - Pandoli, Omar
AU  - Krambrock, Klaus
AU  - Maia da Costa, Marcelo Eduardo Huguenin
AU  - Letichevsky, Sonia
AU  - Costa, Antonio Mario Leal Martins
AU  - Morgado, Edisson Jr
AU  - Marinković, Bojan A.
PY  - 2018
UR  - http://dais.sanu.ac.rs/123456789/4084
AB  - The efficiency of photo-oxidation of pollutants catalysed by semiconductors is still limited for real-world applications due to several drawbacks, such as a) insufficient absorption of visible radiation, which predominates in solar spectrum, b) rapid free electron to hole recombination, c) small surface area, built from equilibrium crystallographic facets with low adsorption capacities and d) photo-corrosion. The present study disclosures new mesoporous heterostructures, built from exfoliated lepidocrocite-like ferrititanates and TiO2 (anatase)-acetylacetone charge transfer complex, capable of reducing free electron-to-hole recombination rate through a robust charge separation and sensitive to the visible light spectrum. The synthesis route is based on soft-chemistry and low temperature calcination at 300 °C. Two different partially pillarized heterostructures, denoted as HM-1 and HM-2, have been synthesized. It was observed that the heterostructure HM-1 was four times more active toward photocatalytic degradation of NO gas in comparison to the benchmark photocatalytic material P25. The lower activity of the heterostructure HM-2, comparable to that of P-25, was attributed to the high value of Urbach energy that indicates high number of defect sites within energy band-gap of the constituent semiconductor components. [Ti] anatase/[Ti] ferrititanate mol ratio might also play a role in photocatalytic efficiency. © 2018 Elsevier B.V.
PB  - Elsevier
T2  - Journal of Photochemistry and Photobiology A: Chemistry
T1  - Visible light sensitive mesoporous nanohybrids of lepidocrocite-like ferrititanate coupled to a charge transfer complex: Synthesis, characterization and photocatalytic degradation of NO
SP  - 133
EP  - 144
VL  - 365
DO  - 10.1016/j.jphotochem.2018.07.038
ER  - 
@article{
author = "Habran, Margarita and Pontón, Patricia I. and Mančić, Lidija and Pandoli, Omar and Krambrock, Klaus and Maia da Costa, Marcelo Eduardo Huguenin and Letichevsky, Sonia and Costa, Antonio Mario Leal Martins and Morgado, Edisson Jr and Marinković, Bojan A.",
year = "2018",
url = "http://dais.sanu.ac.rs/123456789/4084",
abstract = "The efficiency of photo-oxidation of pollutants catalysed by semiconductors is still limited for real-world applications due to several drawbacks, such as a) insufficient absorption of visible radiation, which predominates in solar spectrum, b) rapid free electron to hole recombination, c) small surface area, built from equilibrium crystallographic facets with low adsorption capacities and d) photo-corrosion. The present study disclosures new mesoporous heterostructures, built from exfoliated lepidocrocite-like ferrititanates and TiO2 (anatase)-acetylacetone charge transfer complex, capable of reducing free electron-to-hole recombination rate through a robust charge separation and sensitive to the visible light spectrum. The synthesis route is based on soft-chemistry and low temperature calcination at 300 °C. Two different partially pillarized heterostructures, denoted as HM-1 and HM-2, have been synthesized. It was observed that the heterostructure HM-1 was four times more active toward photocatalytic degradation of NO gas in comparison to the benchmark photocatalytic material P25. The lower activity of the heterostructure HM-2, comparable to that of P-25, was attributed to the high value of Urbach energy that indicates high number of defect sites within energy band-gap of the constituent semiconductor components. [Ti] anatase/[Ti] ferrititanate mol ratio might also play a role in photocatalytic efficiency. © 2018 Elsevier B.V.",
publisher = "Elsevier",
journal = "Journal of Photochemistry and Photobiology A: Chemistry",
title = "Visible light sensitive mesoporous nanohybrids of lepidocrocite-like ferrititanate coupled to a charge transfer complex: Synthesis, characterization and photocatalytic degradation of NO",
pages = "133-144",
volume = "365",
doi = "10.1016/j.jphotochem.2018.07.038"
}
Habran, M., Pontón, P. I., Mančić, L., Pandoli, O., Krambrock, K., Maia da Costa, M. E. H., Letichevsky, S., Costa, A. M. L. M., Morgado, E. J.,& Marinković, B. A. (2018). Visible light sensitive mesoporous nanohybrids of lepidocrocite-like ferrititanate coupled to a charge transfer complex: Synthesis, characterization and photocatalytic degradation of NO.
Journal of Photochemistry and Photobiology A: ChemistryElsevier., 365, 133-144. 
https://doi.org/10.1016/j.jphotochem.2018.07.038
Habran M, Pontón PI, Mančić L, Pandoli O, Krambrock K, Maia da Costa MEH, Letichevsky S, Costa AMLM, Morgado EJ, Marinković BA. Visible light sensitive mesoporous nanohybrids of lepidocrocite-like ferrititanate coupled to a charge transfer complex: Synthesis, characterization and photocatalytic degradation of NO. Journal of Photochemistry and Photobiology A: Chemistry. 2018;365:133-144
2
1