Sort By
Publication Year
Deposit Date
Title
Type
Access
Publication Year
2013 (1)
Type
Version

Physics of amorphous and nanostructural materials

Link to this page

info:eu-repo/grantAgreement/MESTD/Basic Research (BR or ON)/171022/RS//

Physics of amorphous and nanostructural materials (en)
Физика аморфних и наноструктурних материјала (sr)
Fizika amorfnih i nanostrukturnih materijala (sr_RS)
Authors

Publications

Y2O3:Yb,Tm and Y2O3:Yb,Ho powders for low-temperature thermometry based on up-conversion fluorescence

Lojpur, Vesna; Nikolić, M.; Mančić, Lidija; Milošević, Olivera; Dramićanin, Miroslav

(Elsevier, 2013)

TY  - JOUR
AU  - Lojpur, Vesna
AU  - Nikolić, M.
AU  - Mančić, Lidija
AU  - Milošević, Olivera
AU  - Dramićanin, Miroslav
PY  - 2013
UR  - http://dais.sanu.ac.rs/123456789/360
AB  - Recently, trivalent rare earth doped materials have received significant attention due to the strong temperature dependence of the fluorescence emission of these materials, which can be useful in temperature sensing. Here, we investigated Y2O3 ceramic powders doped with Yb3+ and co-doped with either Tm3+ or Ho3+. The powders were obtained via spray pyrolysis at 900 °C and additionally thermally treated at 1100 °C for 24 h. Structural characterization using X-ray powder diffraction confirmed the cubic bixbyte structure. Scanning electron microscopy (SEM) revealed that the particles exhibit a uniform spherical morphology. The up-conversion emissions were measured using laser excitation at 978 nm, resulting in the following transitions: blue emission in the range of 450–500 nm, weak red emission in the range of 650–680 nm and near infrared emission in the range of 765–840 nm for Tm3+, as well as green emission centered at 550 nm and weak near infrared emission at 755 nm for the Ho3+ ions. In addition, the temperature dependence of the fluorescence intensity ratios of different Stark components was analyzed in the range of 10–300 K. Significant temperature sensitivity was detected for several components, with the largest value of 0.097 K−1 related to the intensity ratio of I536 and I772 emissions observed for the Y2O3:Yb,Ho powder.
PB  - Elsevier
T2  - Ceramics International
T1  - Y2O3:Yb,Tm and Y2O3:Yb,Ho powders for low-temperature thermometry based on up-conversion fluorescence
SP  - 1129
EP  - 1134
VL  - 39
IS  - 2
DO  - 10.1016/j.ceramint.2012.07.036
ER  - 
@article{
author = "Lojpur, Vesna and Nikolić, M. and Mančić, Lidija and Milošević, Olivera and Dramićanin, Miroslav",
year = "2013",
url = "http://dais.sanu.ac.rs/123456789/360",
abstract = "Recently, trivalent rare earth doped materials have received significant attention due to the strong temperature dependence of the fluorescence emission of these materials, which can be useful in temperature sensing. Here, we investigated Y2O3 ceramic powders doped with Yb3+ and co-doped with either Tm3+ or Ho3+. The powders were obtained via spray pyrolysis at 900 °C and additionally thermally treated at 1100 °C for 24 h. Structural characterization using X-ray powder diffraction confirmed the cubic bixbyte structure. Scanning electron microscopy (SEM) revealed that the particles exhibit a uniform spherical morphology. The up-conversion emissions were measured using laser excitation at 978 nm, resulting in the following transitions: blue emission in the range of 450–500 nm, weak red emission in the range of 650–680 nm and near infrared emission in the range of 765–840 nm for Tm3+, as well as green emission centered at 550 nm and weak near infrared emission at 755 nm for the Ho3+ ions. In addition, the temperature dependence of the fluorescence intensity ratios of different Stark components was analyzed in the range of 10–300 K. Significant temperature sensitivity was detected for several components, with the largest value of 0.097 K−1 related to the intensity ratio of I536 and I772 emissions observed for the Y2O3:Yb,Ho powder.",
publisher = "Elsevier",
journal = "Ceramics International",
title = "Y2O3:Yb,Tm and Y2O3:Yb,Ho powders for low-temperature thermometry based on up-conversion fluorescence",
pages = "1129-1134",
volume = "39",
number = "2",
doi = "10.1016/j.ceramint.2012.07.036"
}
Lojpur, V., Nikolić, M., Mančić, L., Milošević, O.,& Dramićanin, M. (2013). Y2O3:Yb,Tm and Y2O3:Yb,Ho powders for low-temperature thermometry based on up-conversion fluorescence.
Ceramics InternationalElsevier., 39(2), 1129-1134.
https://doi.org/10.1016/j.ceramint.2012.07.036
Lojpur V, Nikolić M, Mančić L, Milošević O, Dramićanin M. Y2O3:Yb,Tm and Y2O3:Yb,Ho powders for low-temperature thermometry based on up-conversion fluorescence. Ceramics International. 2013;39(2):1129-1134
Lojpur Vesna, Nikolić M., Mančić Lidija, Milošević Olivera, Dramićanin Miroslav, "Y2O3:Yb,Tm and Y2O3:Yb,Ho powders for low-temperature thermometry based on up-conversion fluorescence" 39, no. 2 (2013):1129-1134,
https://doi.org/10.1016/j.ceramint.2012.07.036 .
82
84
89