Sort By
Publication Year
Deposit Date
Title
Type
Access
Publication Year
2014 (1)
Type
Version

CONACyT-154725

Link to this page

CONACyT-154725

Authors

Publications

Synthesis, characterization and photocatalytic properties of nanostructured ZnO particles obtained by low temperature air-assisted-USP

Flores-Carrasco, Gregorio; Carrillo, J.; Luna, J. A.; Martínez, R.; Sierra-Fernández, Aránzazu; Milošević, Olivera; Rabanal, Maria Eugenia

(Elsevier, 2014)

TY  - JOUR
AU  - Flores-Carrasco, Gregorio
AU  - Carrillo, J.
AU  - Luna, J. A.
AU  - Martínez, R.
AU  - Sierra-Fernández, Aránzazu
AU  - Milošević, Olivera
AU  - Rabanal, Maria Eugenia
PY  - 2014
UR  - http://dais.sanu.ac.rs/123456789/651
AB  - ZnO nanoparticles were synthesized in a horizontal three zones furnace at 500 °C using different zinc nitrate hexahydrate concentrations (0.01 M, 0.1 M, and 1.0 M) as a reactive precursor solution by air assisted Ultrasonic Spray Pyrolysis (USP) method. The physico-chemical, structural and functional properties of synthesized ZnO nanoparticles have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), high resolution transmission electron microscopy (HRTEM), Brunauer, Emmett and Teller (BET) method, UV–vis spectroscopy and photoluminescence (PL) measurements. Also, the photocatalytic activities of ZnO synthesized from different precursor concentrations were evaluated by removal rate of methyleneblue (MB) under UV irradiation (365 nm) at room temperature. SEM revealed two types of ZnO nanoparticles: a quasi-spherical, desert-rose like shape of the secondary particles, which does not change significantly with the increasing of precursor solution concentration as well as some content of the broken spheres. Increasing the precursor solution concentration leads to the increase in the average size of ZnO secondary particles from 248 ± 73 to 920 ± 190 nm, XRD reveals the similar tendency for the crystallite size which changes from 23 ± 4 to 55 ± 12 nm in the analyzed region. HRTEM implies the secondary particles are with hierarchical structure composed of primary nanosized subunits. The PL spectra imply a typical broad peak of wavelength centered in the visible region exhibiting the corresponding red-shift with the increase of solution concentration: 560, 583 and 586 nm for the 0.01, 0.1 and 1.0 M solution, respectively. The reported results showed the photocatalytic efficiency of ZnO nanoparticles was enhanced by increased precursor concentration.
PB  - Elsevier
T2  - Advanced Powder Technology
T1  - Synthesis, characterization and photocatalytic properties of nanostructured ZnO particles obtained by low temperature air-assisted-USP
SP  - 1435
EP  - 1441
VL  - 25
IS  - 5
DO  - 10.1016/j.apt.2014.02.004
ER  - 
@article{
author = "Flores-Carrasco, Gregorio and Carrillo, J. and Luna, J. A. and Martínez, R. and Sierra-Fernández, Aránzazu and Milošević, Olivera and Rabanal, Maria Eugenia",
year = "2014",
url = "http://dais.sanu.ac.rs/123456789/651",
abstract = "ZnO nanoparticles were synthesized in a horizontal three zones furnace at 500 °C using different zinc nitrate hexahydrate concentrations (0.01 M, 0.1 M, and 1.0 M) as a reactive precursor solution by air assisted Ultrasonic Spray Pyrolysis (USP) method. The physico-chemical, structural and functional properties of synthesized ZnO nanoparticles have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), high resolution transmission electron microscopy (HRTEM), Brunauer, Emmett and Teller (BET) method, UV–vis spectroscopy and photoluminescence (PL) measurements. Also, the photocatalytic activities of ZnO synthesized from different precursor concentrations were evaluated by removal rate of methyleneblue (MB) under UV irradiation (365 nm) at room temperature. SEM revealed two types of ZnO nanoparticles: a quasi-spherical, desert-rose like shape of the secondary particles, which does not change significantly with the increasing of precursor solution concentration as well as some content of the broken spheres. Increasing the precursor solution concentration leads to the increase in the average size of ZnO secondary particles from 248 ± 73 to 920 ± 190 nm, XRD reveals the similar tendency for the crystallite size which changes from 23 ± 4 to 55 ± 12 nm in the analyzed region. HRTEM implies the secondary particles are with hierarchical structure composed of primary nanosized subunits. The PL spectra imply a typical broad peak of wavelength centered in the visible region exhibiting the corresponding red-shift with the increase of solution concentration: 560, 583 and 586 nm for the 0.01, 0.1 and 1.0 M solution, respectively. The reported results showed the photocatalytic efficiency of ZnO nanoparticles was enhanced by increased precursor concentration.",
publisher = "Elsevier",
journal = "Advanced Powder Technology",
title = "Synthesis, characterization and photocatalytic properties of nanostructured ZnO particles obtained by low temperature air-assisted-USP",
pages = "1435-1441",
volume = "25",
number = "5",
doi = "10.1016/j.apt.2014.02.004"
}
Flores-Carrasco, G., Carrillo, J., Luna, J. A., Martínez, R., Sierra-Fernández, A., Milošević, O.,& Rabanal, M. E. (2014). Synthesis, characterization and photocatalytic properties of nanostructured ZnO particles obtained by low temperature air-assisted-USP.
Advanced Powder TechnologyElsevier., 25(5), 1435-1441.
https://doi.org/10.1016/j.apt.2014.02.004
Flores-Carrasco G, Carrillo J, Luna JA, Martínez R, Sierra-Fernández A, Milošević O, Rabanal ME. Synthesis, characterization and photocatalytic properties of nanostructured ZnO particles obtained by low temperature air-assisted-USP. Advanced Powder Technology. 2014;25(5):1435-1441
Flores-Carrasco Gregorio, Carrillo J., Luna J. A., Martínez R., Sierra-Fernández Aránzazu, Milošević Olivera, Rabanal Maria Eugenia, "Synthesis, characterization and photocatalytic properties of nanostructured ZnO particles obtained by low temperature air-assisted-USP" 25, no. 5 (2014):1435-1441,
https://doi.org/10.1016/j.apt.2014.02.004 .
19
13
18