Sort By
Publication Year
Deposit Date
Title
Type
Access
Publication Year
2020 (4)
2019 (8)
2018 (7)
2017 (6)
2016 (4)
2015 (5)
2014 (1)
2013 (3)
2011 (1)
2010 (1)
2006 (1)

Luković, Miloljub D.

Link to this page

Authority KeyName Variants
orcid::0000-0003-0378-1730
  • Luković, Miloljub D. (37)
  • Luković, Miloljub (4)

Author's Bibliography

Structural, morphological and textural properties of iron manganite (FeMnO3) thick films applied for humidity sensing

Nikolić, Maria Vesna; Krstić, Jugoslav; Labus, Nebojša; Luković, Miloljub; Dojčinović, Milena; Radovanović, Milan; Tadić, Nenad

(Elsevier, 2020)

TY  - JOUR
AU  - Nikolić, Maria Vesna
AU  - Krstić, Jugoslav
AU  - Labus, Nebojša
AU  - Luković, Miloljub
AU  - Dojčinović, Milena
AU  - Radovanović, Milan
AU  - Tadić, Nenad
PY  - 2020
UR  - https://dais.sanu.ac.rs/123456789/10036
AB  - Iron manganite (FeMnO3) powder with a cubic (bixbyite,−Ia3) crystal structure was obtained by a solid statereaction. Thick film paste (powder+organic vehicles) was screen printed on alumina substrate with test interdigitatedPdAg electrodes. Significant porosity (60.6%) composed of macropores (larger than 100 nm) wasdetermined by Hg porosimetry, changing only slightly from the first extrusion run indicating a stable poresystem. Hg porosimetry evaluation of thick film samples enabled estimation of true textural parameters of thethick film compared to powder. Impedance response of the thick film sensor was monitored in a humiditychamber in the relative humidity (RH) range 30–90%, at room temperature (25 °C) and frequency range from42 Hz to 1 MHz. At 100 Hz the impedance reduced from 10.41 MΩ for RH 30% to 0.68 MΩ for RH 90%. Analysisof complex impedance using an equivalent circuit showed the dominant influence of grain boundaries. Thesensor response and recovery was fast (several seconds) and a relatively low hysteresis value of 2.8% wasobtained.
PB  - Elsevier
T2  - Materials Science and Engineering B: Solid-State Materials for Advanced Technology
T1  - Structural, morphological and textural properties of iron manganite (FeMnO3) thick films applied for humidity sensing
SP  - 114547
VL  - 257
DO  - 10.1016/j.mseb.2020.114547
ER  - 
@article{
author = "Nikolić, Maria Vesna and Krstić, Jugoslav and Labus, Nebojša and Luković, Miloljub and Dojčinović, Milena and Radovanović, Milan and Tadić, Nenad",
year = "2020",
url = "https://dais.sanu.ac.rs/123456789/10036",
abstract = "Iron manganite (FeMnO3) powder with a cubic (bixbyite,−Ia3) crystal structure was obtained by a solid statereaction. Thick film paste (powder+organic vehicles) was screen printed on alumina substrate with test interdigitatedPdAg electrodes. Significant porosity (60.6%) composed of macropores (larger than 100 nm) wasdetermined by Hg porosimetry, changing only slightly from the first extrusion run indicating a stable poresystem. Hg porosimetry evaluation of thick film samples enabled estimation of true textural parameters of thethick film compared to powder. Impedance response of the thick film sensor was monitored in a humiditychamber in the relative humidity (RH) range 30–90%, at room temperature (25 °C) and frequency range from42 Hz to 1 MHz. At 100 Hz the impedance reduced from 10.41 MΩ for RH 30% to 0.68 MΩ for RH 90%. Analysisof complex impedance using an equivalent circuit showed the dominant influence of grain boundaries. Thesensor response and recovery was fast (several seconds) and a relatively low hysteresis value of 2.8% wasobtained.",
publisher = "Elsevier",
journal = "Materials Science and Engineering B: Solid-State Materials for Advanced Technology",
title = "Structural, morphological and textural properties of iron manganite (FeMnO3) thick films applied for humidity sensing",
pages = "114547",
volume = "257",
doi = "10.1016/j.mseb.2020.114547"
}
Nikolić, M. V., Krstić, J., Labus, N., Luković, M., Dojčinović, M., Radovanović, M.,& Tadić, N. (2020). Structural, morphological and textural properties of iron manganite (FeMnO3) thick films applied for humidity sensing.
Materials Science and Engineering B: Solid-State Materials for Advanced TechnologyElsevier., 257, 114547. 
https://doi.org/10.1016/j.mseb.2020.114547
Nikolić MV, Krstić J, Labus N, Luković M, Dojčinović M, Radovanović M, Tadić N. Structural, morphological and textural properties of iron manganite (FeMnO3) thick films applied for humidity sensing. Materials Science and Engineering B: Solid-State Materials for Advanced Technology. 2020;257:114547
1
1
1

Nanocomposite Zn2SnO4/SnO2 Thick Films as a Humidity Sensing Material

Nikolić, Maria Vesna; Dojčinović, Milena; Vasiljević, Zorka Ž.; Luković, Miloljub D.; Labus, Nebojša

(IEEE, 2020)

TY  - JOUR
AU  - Nikolić, Maria Vesna
AU  - Dojčinović, Milena
AU  - Vasiljević, Zorka Ž.
AU  - Luković, Miloljub D.
AU  - Labus, Nebojša
PY  - 2020
UR  - http://dais.sanu.ac.rs/123456789/7450
AB  - Nanocomposite Zn2SnO4/SnO2 powder was
obtained by solid state synthesis from homogenized
starting nanopowders of ZnO and SnO2, mixed in the 1:1
molar ratio, structurally and morphologically characterized
using X-ray diffraction (XRD) and Scanning Electron
Microscopy (SEM). Thick film paste was made by adding
organic vehicles to the obtained powder. Three to five
layers (layer thickness approx. 12 µm) were screen printed
on alumina substrate with small test PdAg electrodes and
fired at 600oC for 30 minutes. SEM analysis confirmed formation of a porous structure suitable for humidity sensing.
Impedance response was studied at the working temperatures of 25 and 50oC in a humidity chamber where the
relative humidity (RH) was 30-90% and measured frequency 42 Hz – 1 MHz. With increase in film thickness the overall
sensor impedance increased. It reduced at 100 Hz from 36 to 0.25 MΩ (60 µm), from 23.4 to 0.25 MΩ (48 µm) and from
6.8 to 0.02 MΩ (36 µm) at 25 oC, while at 50 oC and also 100 Hz it reduced from 14 MΩ to 0.72 MΩ (48 µm) for RH 30 and
90%, respectively. The response (8 s) and recovery (10 s) was fast, showing that this nanocomposite has potential for
application in humidity sensing.
PB  - IEEE
T2  - IEEE Sensors Journal
T1  - Nanocomposite Zn2SnO4/SnO2 Thick Films as a Humidity Sensing Material
SP  - 7509
EP  - 7516
VL  - 20
IS  - 14
DO  - 10.1109/JSEN.2020.2983135
ER  - 
@article{
author = "Nikolić, Maria Vesna and Dojčinović, Milena and Vasiljević, Zorka Ž. and Luković, Miloljub D. and Labus, Nebojša",
year = "2020",
url = "http://dais.sanu.ac.rs/123456789/7450",
abstract = "Nanocomposite Zn2SnO4/SnO2 powder was
obtained by solid state synthesis from homogenized
starting nanopowders of ZnO and SnO2, mixed in the 1:1
molar ratio, structurally and morphologically characterized
using X-ray diffraction (XRD) and Scanning Electron
Microscopy (SEM). Thick film paste was made by adding
organic vehicles to the obtained powder. Three to five
layers (layer thickness approx. 12 µm) were screen printed
on alumina substrate with small test PdAg electrodes and
fired at 600oC for 30 minutes. SEM analysis confirmed formation of a porous structure suitable for humidity sensing.
Impedance response was studied at the working temperatures of 25 and 50oC in a humidity chamber where the
relative humidity (RH) was 30-90% and measured frequency 42 Hz – 1 MHz. With increase in film thickness the overall
sensor impedance increased. It reduced at 100 Hz from 36 to 0.25 MΩ (60 µm), from 23.4 to 0.25 MΩ (48 µm) and from
6.8 to 0.02 MΩ (36 µm) at 25 oC, while at 50 oC and also 100 Hz it reduced from 14 MΩ to 0.72 MΩ (48 µm) for RH 30 and
90%, respectively. The response (8 s) and recovery (10 s) was fast, showing that this nanocomposite has potential for
application in humidity sensing.",
publisher = "IEEE",
journal = "IEEE Sensors Journal",
title = "Nanocomposite Zn2SnO4/SnO2 Thick Films as a Humidity Sensing Material",
pages = "7509-7516",
volume = "20",
number = "14",
doi = "10.1109/JSEN.2020.2983135"
}
Nikolić, M. V., Dojčinović, M., Vasiljević, Z. Ž., Luković, M. D.,& Labus, N. (2020). Nanocomposite Zn2SnO4/SnO2 Thick Films as a Humidity Sensing Material.
IEEE Sensors JournalIEEE., 20(14), 7509-7516. 
https://doi.org/10.1109/JSEN.2020.2983135
Nikolić MV, Dojčinović M, Vasiljević ZŽ, Luković MD, Labus N. Nanocomposite Zn2SnO4/SnO2 Thick Films as a Humidity Sensing Material. IEEE Sensors Journal. 2020;20(14):7509-7516
2
1
2

Nanocomposite Zn2SnO4/SnO2 Thick Films as a Humidity Sensing Material

Nikolić, Maria Vesna; Dojčinović, Milena; Vasiljević, Zorka Ž.; Luković, Miloljub D.; Labus, Nebojša

(IEEE, 2020)

TY  - JOUR
AU  - Nikolić, Maria Vesna
AU  - Dojčinović, Milena
AU  - Vasiljević, Zorka Ž.
AU  - Luković, Miloljub D.
AU  - Labus, Nebojša
PY  - 2020
UR  - http://dais.sanu.ac.rs/123456789/7450
UR  - http://dais.sanu.ac.rs/123456789/8942
AB  - Nanocomposite Zn2SnO4/SnO2 powder wasobtained by solid state synthesis from homogenizedstarting nanopowders of ZnO and SnO2, mixed in the 1:1molar ratio, structurally and morphologically characterizedusing X-ray diffraction (XRD) and Scanning ElectronMicroscopy (SEM). Thick film paste was made by addingorganic vehicles to the obtained powder. Three to fivelayers (layer thickness approx. 12 µm) were screen printedon alumina substrate with small test PdAg electrodes andfired at 600oC for 30 minutes. SEM analysis confirmed formation of a porous structure suitable for humidity sensing.Impedance response was studied at the working temperatures of 25 and 50oC in a humidity chamber where therelative humidity (RH) was 30-90% and measured frequency 42 Hz – 1 MHz. With increase in film thickness the overallsensor impedance increased. It reduced at 100 Hz from 36 to 0.25 MΩ (60 µm), from 23.4 to 0.25 MΩ (48 µm) and from6.8 to 0.02 MΩ (36 µm) at 25 oC, while at 50 oC and also 100 Hz it reduced from 14 MΩ to 0.72 MΩ (48 µm) for RH 30 and90%, respectively. The response (8 s) and recovery (10 s) was fast, showing that this nanocomposite has potential forapplication in humidity sensing.
PB  - IEEE
T2  - IEEE Sensors Journal
T1  - Nanocomposite Zn2SnO4/SnO2 Thick Films as a Humidity Sensing Material
SP  - 7509
EP  - 7516
VL  - 20
IS  - 14
DO  - 10.1109/JSEN.2020.2983135
ER  - 
@article{
author = "Nikolić, Maria Vesna and Dojčinović, Milena and Vasiljević, Zorka Ž. and Luković, Miloljub D. and Labus, Nebojša",
year = "2020",
url = "http://dais.sanu.ac.rs/123456789/7450, http://dais.sanu.ac.rs/123456789/8942",
abstract = "Nanocomposite Zn2SnO4/SnO2 powder wasobtained by solid state synthesis from homogenizedstarting nanopowders of ZnO and SnO2, mixed in the 1:1molar ratio, structurally and morphologically characterizedusing X-ray diffraction (XRD) and Scanning ElectronMicroscopy (SEM). Thick film paste was made by addingorganic vehicles to the obtained powder. Three to fivelayers (layer thickness approx. 12 µm) were screen printedon alumina substrate with small test PdAg electrodes andfired at 600oC for 30 minutes. SEM analysis confirmed formation of a porous structure suitable for humidity sensing.Impedance response was studied at the working temperatures of 25 and 50oC in a humidity chamber where therelative humidity (RH) was 30-90% and measured frequency 42 Hz – 1 MHz. With increase in film thickness the overallsensor impedance increased. It reduced at 100 Hz from 36 to 0.25 MΩ (60 µm), from 23.4 to 0.25 MΩ (48 µm) and from6.8 to 0.02 MΩ (36 µm) at 25 oC, while at 50 oC and also 100 Hz it reduced from 14 MΩ to 0.72 MΩ (48 µm) for RH 30 and90%, respectively. The response (8 s) and recovery (10 s) was fast, showing that this nanocomposite has potential forapplication in humidity sensing.",
publisher = "IEEE",
journal = "IEEE Sensors Journal",
title = "Nanocomposite Zn2SnO4/SnO2 Thick Films as a Humidity Sensing Material",
pages = "7509-7516",
volume = "20",
number = "14",
doi = "10.1109/JSEN.2020.2983135"
}
Nikolić, M. V., Dojčinović, M., Vasiljević, Z. Ž., Luković, M. D.,& Labus, N. (2020). Nanocomposite Zn2SnO4/SnO2 Thick Films as a Humidity Sensing Material.
IEEE Sensors JournalIEEE., 20(14), 7509-7516. 
https://doi.org/10.1109/JSEN.2020.2983135
Nikolić MV, Dojčinović M, Vasiljević ZŽ, Luković MD, Labus N. Nanocomposite Zn2SnO4/SnO2 Thick Films as a Humidity Sensing Material. IEEE Sensors Journal. 2020;20(14):7509-7516
2
1
2

Structural, morphological and textural properties of iron manganite (FeMnO3) thick films applied for humidity sensing

Nikolić, Maria Vesna; Krstić, Jugoslav; Labus, Nebojša; Luković, Miloljub; Dojčinović, Milena; Radovanović, Milan; Tadić, Nenad

(Elsevier, 2020)

TY  - JOUR
AU  - Nikolić, Maria Vesna
AU  - Krstić, Jugoslav
AU  - Labus, Nebojša
AU  - Luković, Miloljub
AU  - Dojčinović, Milena
AU  - Radovanović, Milan
AU  - Tadić, Nenad
PY  - 2020
UR  - http://dais.sanu.ac.rs/123456789/8950
AB  - Iron manganite (FeMnO3) powder with a cubic (bixbyite,−Ia3) crystal structure was obtained by a solid statereaction. Thick film paste (powder+organic vehicles) was screen printed on alumina substrate with test interdigitatedPdAg electrodes. Significant porosity (60.6%) composed of macropores (larger than 100 nm) wasdetermined by Hg porosimetry, changing only slightly from the first extrusion run indicating a stable poresystem. Hg porosimetry evaluation of thick film samples enabled estimation of true textural parameters of thethick film compared to powder. Impedance response of the thick film sensor was monitored in a humiditychamber in the relative humidity (RH) range 30–90%, at room temperature (25 °C) and frequency range from42 Hz to 1 MHz. At 100 Hz the impedance reduced from 10.41 MΩ for RH 30% to 0.68 MΩ for RH 90%. Analysisof complex impedance using an equivalent circuit showed the dominant influence of grain boundaries. Thesensor response and recovery was fast (several seconds) and a relatively low hysteresis value of 2.8% wasobtained.
PB  - Elsevier
T2  - Materials Science and Engineering B: Solid-State Materials for Advanced Technology
T1  - Structural, morphological and textural properties of iron manganite (FeMnO3) thick films applied for humidity sensing
SP  - 114547
VL  - 257
DO  - 10.1016/j.mseb.2020.114547
ER  - 
@article{
author = "Nikolić, Maria Vesna and Krstić, Jugoslav and Labus, Nebojša and Luković, Miloljub and Dojčinović, Milena and Radovanović, Milan and Tadić, Nenad",
year = "2020",
url = "http://dais.sanu.ac.rs/123456789/8950",
abstract = "Iron manganite (FeMnO3) powder with a cubic (bixbyite,−Ia3) crystal structure was obtained by a solid statereaction. Thick film paste (powder+organic vehicles) was screen printed on alumina substrate with test interdigitatedPdAg electrodes. Significant porosity (60.6%) composed of macropores (larger than 100 nm) wasdetermined by Hg porosimetry, changing only slightly from the first extrusion run indicating a stable poresystem. Hg porosimetry evaluation of thick film samples enabled estimation of true textural parameters of thethick film compared to powder. Impedance response of the thick film sensor was monitored in a humiditychamber in the relative humidity (RH) range 30–90%, at room temperature (25 °C) and frequency range from42 Hz to 1 MHz. At 100 Hz the impedance reduced from 10.41 MΩ for RH 30% to 0.68 MΩ for RH 90%. Analysisof complex impedance using an equivalent circuit showed the dominant influence of grain boundaries. Thesensor response and recovery was fast (several seconds) and a relatively low hysteresis value of 2.8% wasobtained.",
publisher = "Elsevier",
journal = "Materials Science and Engineering B: Solid-State Materials for Advanced Technology",
title = "Structural, morphological and textural properties of iron manganite (FeMnO3) thick films applied for humidity sensing",
pages = "114547",
volume = "257",
doi = "10.1016/j.mseb.2020.114547"
}
Nikolić, M. V., Krstić, J., Labus, N., Luković, M., Dojčinović, M., Radovanović, M.,& Tadić, N. (2020). Structural, morphological and textural properties of iron manganite (FeMnO3) thick films applied for humidity sensing.
Materials Science and Engineering B: Solid-State Materials for Advanced TechnologyElsevier., 257, 114547. 
https://doi.org/10.1016/j.mseb.2020.114547
Nikolić MV, Krstić J, Labus N, Luković M, Dojčinović M, Radovanović M, Tadić N. Structural, morphological and textural properties of iron manganite (FeMnO3) thick films applied for humidity sensing. Materials Science and Engineering B: Solid-State Materials for Advanced Technology. 2020;257:114547
1
1
1

Investigation of ZnFe2O4 spinel ferrite nanocrystalline screen‐printed thick films for application in humidity sensing

Nikolić, Maria Vesna; Vasiljević, Zorka Ž.; Luković, Miloljub D.; Pavlović, Vera P.; Krstić, Jugoslav B.; Vujančević, Jelena; Tadić, Nenad B.; Vlahović, Branislav; Pavlović, Vladimir B.

(John Wiley & Sons, Inc., 2019)

TY  - JOUR
AU  - Nikolić, Maria Vesna
AU  - Vasiljević, Zorka Ž.
AU  - Luković, Miloljub D.
AU  - Pavlović, Vera P.
AU  - Krstić, Jugoslav B.
AU  - Vujančević, Jelena
AU  - Tadić, Nenad B.
AU  - Vlahović, Branislav
AU  - Pavlović, Vladimir B.
PY  - 2019
UR  - https://ceramics.onlinelibrary.wiley.com/doi/abs/10.1111/ijac.13190
UR  - http://dais.sanu.ac.rs/123456789/4848
AB  - Zinc ferrite nanocrystalline powder was obtained by solid state synthesis of starting zinc oxide and hematite nanopowders. Field emission scanning electron microscopy (FESEM and transmission electron microscopy (TEM), X‐ray diffraction (XRD), X‐ray photoelectron spectroscopy (XPS) and Raman spectroscopy confirmed the formation of nanocrystalline zinc‐ferrite powder with a mixed spinel structure with small amounts of remaining zinc oxide and hematite as impurities. Thick film paste was formed and screen printed on test interdigitated PdAg electrodes on alumina substrate. Formation of a porous nanocrystalline structure was confirmed by scanning electron microscopy (SEM) and Hg porosimetry. Humidity sensing properties of zinc ferrite thick films were investigated by monitoring the change in impedance in the relative humidity interval 30‐90% in the frequency range 42 Hz – 1 MHz at room temperature (25 °C) and 50 °C. At 42 Hz at both analyzed temperatures the impedance reduced ~ 46 times in the humidity range 30‐90%. The dominant influence of grain boundaries was confirmed by analysis of complex impedance with an equivalent circuit.
PB  - John Wiley & Sons, Inc.
T2  - International Journal of Applied Ceramic Technology
T1  - Investigation of ZnFe2O4 spinel ferrite nanocrystalline screen‐printed thick films for application in humidity sensing
SP  - 981
EP  - 993
VL  - 16
IS  - 3
DO  - 10.1111/ijac.13190
ER  - 
@article{
author = "Nikolić, Maria Vesna and Vasiljević, Zorka Ž. and Luković, Miloljub D. and Pavlović, Vera P. and Krstić, Jugoslav B. and Vujančević, Jelena and Tadić, Nenad B. and Vlahović, Branislav and Pavlović, Vladimir B.",
year = "2019",
url = "https://ceramics.onlinelibrary.wiley.com/doi/abs/10.1111/ijac.13190, http://dais.sanu.ac.rs/123456789/4848",
abstract = "Zinc ferrite nanocrystalline powder was obtained by solid state synthesis of starting zinc oxide and hematite nanopowders. Field emission scanning electron microscopy (FESEM and transmission electron microscopy (TEM), X‐ray diffraction (XRD), X‐ray photoelectron spectroscopy (XPS) and Raman spectroscopy confirmed the formation of nanocrystalline zinc‐ferrite powder with a mixed spinel structure with small amounts of remaining zinc oxide and hematite as impurities. Thick film paste was formed and screen printed on test interdigitated PdAg electrodes on alumina substrate. Formation of a porous nanocrystalline structure was confirmed by scanning electron microscopy (SEM) and Hg porosimetry. Humidity sensing properties of zinc ferrite thick films were investigated by monitoring the change in impedance in the relative humidity interval 30‐90% in the frequency range 42 Hz – 1 MHz at room temperature (25 °C) and 50 °C. At 42 Hz at both analyzed temperatures the impedance reduced ~ 46 times in the humidity range 30‐90%. The dominant influence of grain boundaries was confirmed by analysis of complex impedance with an equivalent circuit.",
publisher = "John Wiley & Sons, Inc.",
journal = "International Journal of Applied Ceramic Technology",
title = "Investigation of ZnFe2O4 spinel ferrite nanocrystalline screen‐printed thick films for application in humidity sensing",
pages = "981-993",
volume = "16",
number = "3",
doi = "10.1111/ijac.13190"
}
Nikolić, M. V., Vasiljević, Z. Ž., Luković, M. D., Pavlović, V. P., Krstić, J. B., Vujančević, J., Tadić, N. B., Vlahović, B.,& Pavlović, V. B. (2019). Investigation of ZnFe2O4 spinel ferrite nanocrystalline screen‐printed thick films for application in humidity sensing.
International Journal of Applied Ceramic TechnologyJohn Wiley & Sons, Inc.., 16(3), 981-993. 
https://doi.org/10.1111/ijac.13190
Nikolić MV, Vasiljević ZŽ, Luković MD, Pavlović VP, Krstić JB, Vujančević J, Tadić NB, Vlahović B, Pavlović VB. Investigation of ZnFe2O4 spinel ferrite nanocrystalline screen‐printed thick films for application in humidity sensing. International Journal of Applied Ceramic Technology. 2019;16(3):981-993
10
7
8

Investigation of ZnFe2O4 spinel ferrite nanocrystalline screen‐printed thick films for application in humidity sensing

Nikolić, Maria Vesna; Vasiljević, Zorka Ž.; Luković, Miloljub D.; Pavlović, Vera P.; Krstić, Jugoslav B.; Vujančević, Jelena; Tadić, Nenad B.; Vlahović, Branislav; Pavlović, Vladimir B.

(John Wiley & Sons, Inc., 2019)

TY  - JOUR
AU  - Nikolić, Maria Vesna
AU  - Vasiljević, Zorka Ž.
AU  - Luković, Miloljub D.
AU  - Pavlović, Vera P.
AU  - Krstić, Jugoslav B.
AU  - Vujančević, Jelena
AU  - Tadić, Nenad B.
AU  - Vlahović, Branislav
AU  - Pavlović, Vladimir B.
PY  - 2019
UR  - https://ceramics.onlinelibrary.wiley.com/doi/abs/10.1111/ijac.13190
UR  - http://dais.sanu.ac.rs/123456789/5766
AB  - Zinc ferrite nanocrystalline powder was obtained by solid state synthesis of starting zinc oxide and hematite nanopowders. Field emission scanning electron microscopy (FESEM and transmission electron microscopy (TEM), X‐ray diffraction (XRD), X‐ray photoelectron spectroscopy (XPS) and Raman spectroscopy confirmed the formation of nanocrystalline zinc‐ferrite powder with a mixed spinel structure with small amounts of remaining zinc oxide and hematite as impurities. Thick film paste was formed and screen printed on test interdigitated PdAg electrodes on alumina substrate. Formation of a porous nanocrystalline structure was confirmed by scanning electron microscopy (SEM) and Hg porosimetry. Humidity sensing properties of zinc ferrite thick films were investigated by monitoring the change in impedance in the relative humidity interval 30‐90% in the frequency range 42 Hz – 1 MHz at room temperature (25 °C) and 50 °C. At 42 Hz at both analyzed temperatures the impedance reduced ~ 46 times in the humidity range 30‐90%. The dominant influence of grain boundaries was confirmed by analysis of complex impedance with an equivalent circuit.
PB  - John Wiley & Sons, Inc.
T2  - International Journal of Applied Ceramic Technology
T1  - Investigation of ZnFe2O4 spinel ferrite nanocrystalline screen‐printed thick films for application in humidity sensing
SP  - 981
EP  - 993
VL  - 16
IS  - 3
DO  - 10.1111/ijac.13190
ER  - 
@article{
author = "Nikolić, Maria Vesna and Vasiljević, Zorka Ž. and Luković, Miloljub D. and Pavlović, Vera P. and Krstić, Jugoslav B. and Vujančević, Jelena and Tadić, Nenad B. and Vlahović, Branislav and Pavlović, Vladimir B.",
year = "2019",
url = "https://ceramics.onlinelibrary.wiley.com/doi/abs/10.1111/ijac.13190, http://dais.sanu.ac.rs/123456789/5766",
abstract = "Zinc ferrite nanocrystalline powder was obtained by solid state synthesis of starting zinc oxide and hematite nanopowders. Field emission scanning electron microscopy (FESEM and transmission electron microscopy (TEM), X‐ray diffraction (XRD), X‐ray photoelectron spectroscopy (XPS) and Raman spectroscopy confirmed the formation of nanocrystalline zinc‐ferrite powder with a mixed spinel structure with small amounts of remaining zinc oxide and hematite as impurities. Thick film paste was formed and screen printed on test interdigitated PdAg electrodes on alumina substrate. Formation of a porous nanocrystalline structure was confirmed by scanning electron microscopy (SEM) and Hg porosimetry. Humidity sensing properties of zinc ferrite thick films were investigated by monitoring the change in impedance in the relative humidity interval 30‐90% in the frequency range 42 Hz – 1 MHz at room temperature (25 °C) and 50 °C. At 42 Hz at both analyzed temperatures the impedance reduced ~ 46 times in the humidity range 30‐90%. The dominant influence of grain boundaries was confirmed by analysis of complex impedance with an equivalent circuit.",
publisher = "John Wiley & Sons, Inc.",
journal = "International Journal of Applied Ceramic Technology",
title = "Investigation of ZnFe2O4 spinel ferrite nanocrystalline screen‐printed thick films for application in humidity sensing",
pages = "981-993",
volume = "16",
number = "3",
doi = "10.1111/ijac.13190"
}
Nikolić, M. V., Vasiljević, Z. Ž., Luković, M. D., Pavlović, V. P., Krstić, J. B., Vujančević, J., Tadić, N. B., Vlahović, B.,& Pavlović, V. B. (2019). Investigation of ZnFe2O4 spinel ferrite nanocrystalline screen‐printed thick films for application in humidity sensing.
International Journal of Applied Ceramic TechnologyJohn Wiley & Sons, Inc.., 16(3), 981-993. 
https://doi.org/10.1111/ijac.13190
Nikolić MV, Vasiljević ZŽ, Luković MD, Pavlović VP, Krstić JB, Vujančević J, Tadić NB, Vlahović B, Pavlović VB. Investigation of ZnFe2O4 spinel ferrite nanocrystalline screen‐printed thick films for application in humidity sensing. International Journal of Applied Ceramic Technology. 2019;16(3):981-993
11
7
9

Nanocomposite Zn2SnO4/SnO2 Thick films as a Humidity Sensing Material

Nikolić, Maria Vesna; Dojčinović, Milena; Vasiljević, Zorka Ž.; Luković, Miloljub D.; Labus, Nebojša

(IEEE, 2019)

TY  - CONF
AU  - Nikolić, Maria Vesna
AU  - Dojčinović, Milena
AU  - Vasiljević, Zorka Ž.
AU  - Luković, Miloljub D.
AU  - Labus, Nebojša
PY  - 2019
UR  - http://dais.sanu.ac.rs/123456789/6687
AB  - Nanocomposite Zn2SnO4/SnO2 powder was obtained by solid state synthesis from homogenized starting nanopowders of ZnO and SnO2 mixed in the 1:1 molar ratio, structurally and morphologically characterized using X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM). Thick film paste was made by adding organic vehicles to the obtained powder. Three to five layers (layer thickness approx. 12 μm) were screen printed on alumina substrate with small test PdAg electrodes and fired at 600°C for 30 minutes. SEM analysis confirmed formation of a porous structure suitable for humidity sensing. Impedance response was studied at the working temperatures of 25 and 50°in a humidity chamber where the relative humidity (RH) was 30-90% and measured frequency 42 Hz - 1 MHz. With increase in film thickness the overall sensor impedance increased. It reduced at 100 Hz from 36 to 0.25 MΩ (60 μm), from 23.4 to 0.25 MΩ (48 μm) and from 6.8 to 0.02 MΩ (36 μm) at 25°C, while at 50°C the overall measured impedance was lower, and reduced from 14 MΩ to 0.72 MΩ (48 μm) for RH 30 and 90%, respectively. The response (8 s) and recovery (10 s) was fast, showing that this nanocomposite has potential for application in humidity sensing.
PB  - IEEE
C3  - 2019 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS)
T1  - Nanocomposite Zn2SnO4/SnO2 Thick films as a Humidity Sensing Material
SP  - 1
EP  - 3
DO  - 10.1109/FLEPS.2019.8792304
ER  - 
@conference{
author = "Nikolić, Maria Vesna and Dojčinović, Milena and Vasiljević, Zorka Ž. and Luković, Miloljub D. and Labus, Nebojša",
year = "2019",
url = "http://dais.sanu.ac.rs/123456789/6687",
abstract = "Nanocomposite Zn2SnO4/SnO2 powder was obtained by solid state synthesis from homogenized starting nanopowders of ZnO and SnO2 mixed in the 1:1 molar ratio, structurally and morphologically characterized using X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM). Thick film paste was made by adding organic vehicles to the obtained powder. Three to five layers (layer thickness approx. 12 μm) were screen printed on alumina substrate with small test PdAg electrodes and fired at 600°C for 30 minutes. SEM analysis confirmed formation of a porous structure suitable for humidity sensing. Impedance response was studied at the working temperatures of 25 and 50°in a humidity chamber where the relative humidity (RH) was 30-90% and measured frequency 42 Hz - 1 MHz. With increase in film thickness the overall sensor impedance increased. It reduced at 100 Hz from 36 to 0.25 MΩ (60 μm), from 23.4 to 0.25 MΩ (48 μm) and from 6.8 to 0.02 MΩ (36 μm) at 25°C, while at 50°C the overall measured impedance was lower, and reduced from 14 MΩ to 0.72 MΩ (48 μm) for RH 30 and 90%, respectively. The response (8 s) and recovery (10 s) was fast, showing that this nanocomposite has potential for application in humidity sensing.",
publisher = "IEEE",
journal = "2019 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS)",
title = "Nanocomposite Zn2SnO4/SnO2 Thick films as a Humidity Sensing Material",
pages = "1-3",
doi = "10.1109/FLEPS.2019.8792304"
}
Nikolić, M. V., Dojčinović, M., Vasiljević, Z. Ž., Luković, M. D.,& Labus, N. (2019). Nanocomposite Zn2SnO4/SnO2 Thick films as a Humidity Sensing Material.
2019 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS)IEEE., null, 1-3. 
https://doi.org/10.1109/FLEPS.2019.8792304
Nikolić MV, Dojčinović M, Vasiljević ZŽ, Luković MD, Labus N. Nanocomposite Zn2SnO4/SnO2 Thick films as a Humidity Sensing Material. 2019 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS). 2019;:1-3

Nanocomposite Zn2SnO4/SnO2 Thick films as a Humidity Sensing Material

Nikolić, Maria Vesna; Dojčinović, Milena; Vasiljević, Zorka Ž.; Luković, Miloljub D.; Labus, Nebojša

(IEEE, 2019)

TY  - CONF
AU  - Nikolić, Maria Vesna
AU  - Dojčinović, Milena
AU  - Vasiljević, Zorka Ž.
AU  - Luković, Miloljub D.
AU  - Labus, Nebojša
PY  - 2019
UR  - http://dais.sanu.ac.rs/123456789/6688
AB  - Nanocomposite Zn2SnO4/SnO2 powder was obtained by solid state synthesis from homogenized starting nanopowders of ZnO and SnO2 mixed in the 1:1 molar ratio, structurally and morphologically characterized using X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM). Thick film paste was made by adding organic vehicles to the obtained powder. Three to five layers (layer thickness approx. 12 μm) were screen printed on alumina substrate with small test PdAg electrodes and fired at 600°C for 30 minutes. SEM analysis confirmed formation of a porous structure suitable for humidity sensing. Impedance response was studied at the working temperatures of 25 and 50°in a humidity chamber where the relative humidity (RH) was 30-90% and measured frequency 42 Hz - 1 MHz. With increase in film thickness the overall sensor impedance increased. It reduced at 100 Hz from 36 to 0.25 MΩ (60 μm), from 23.4 to 0.25 MΩ (48 μm) and from 6.8 to 0.02 MΩ (36 μm) at 25°C, while at 50°C the overall measured impedance was lower, and reduced from 14 MΩ to 0.72 MΩ (48 μm) for RH 30 and 90%, respectively. The response (8 s) and recovery (10 s) was fast, showing that this nanocomposite has potential for application in humidity sensing.
PB  - IEEE
C3  - 2019 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS)
T1  - Nanocomposite Zn2SnO4/SnO2 Thick films as a Humidity Sensing Material
SP  - 1
EP  - 3
DO  - 10.1109/FLEPS.2019.8792304
ER  - 
@conference{
author = "Nikolić, Maria Vesna and Dojčinović, Milena and Vasiljević, Zorka Ž. and Luković, Miloljub D. and Labus, Nebojša",
year = "2019",
url = "http://dais.sanu.ac.rs/123456789/6688",
abstract = "Nanocomposite Zn2SnO4/SnO2 powder was obtained by solid state synthesis from homogenized starting nanopowders of ZnO and SnO2 mixed in the 1:1 molar ratio, structurally and morphologically characterized using X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM). Thick film paste was made by adding organic vehicles to the obtained powder. Three to five layers (layer thickness approx. 12 μm) were screen printed on alumina substrate with small test PdAg electrodes and fired at 600°C for 30 minutes. SEM analysis confirmed formation of a porous structure suitable for humidity sensing. Impedance response was studied at the working temperatures of 25 and 50°in a humidity chamber where the relative humidity (RH) was 30-90% and measured frequency 42 Hz - 1 MHz. With increase in film thickness the overall sensor impedance increased. It reduced at 100 Hz from 36 to 0.25 MΩ (60 μm), from 23.4 to 0.25 MΩ (48 μm) and from 6.8 to 0.02 MΩ (36 μm) at 25°C, while at 50°C the overall measured impedance was lower, and reduced from 14 MΩ to 0.72 MΩ (48 μm) for RH 30 and 90%, respectively. The response (8 s) and recovery (10 s) was fast, showing that this nanocomposite has potential for application in humidity sensing.",
publisher = "IEEE",
journal = "2019 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS)",
title = "Nanocomposite Zn2SnO4/SnO2 Thick films as a Humidity Sensing Material",
pages = "1-3",
doi = "10.1109/FLEPS.2019.8792304"
}
Nikolić, M. V., Dojčinović, M., Vasiljević, Z. Ž., Luković, M. D.,& Labus, N. (2019). Nanocomposite Zn2SnO4/SnO2 Thick films as a Humidity Sensing Material.
2019 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS)IEEE., null, 1-3. 
https://doi.org/10.1109/FLEPS.2019.8792304
Nikolić MV, Dojčinović M, Vasiljević ZŽ, Luković MD, Labus N. Nanocomposite Zn2SnO4/SnO2 Thick films as a Humidity Sensing Material. 2019 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS). 2019;:1-3

Humidity sensing potential of iron manganite (FeMNO3)

Nikolić, Maria Vesna; Luković, Miloljub D.; Vasiljević, Zorka Ž.; Dojčinović, Milena; Labus, Nebojša

(Budapest : [s. n.], 2019)

TY  - CONF
AU  - Nikolić, Maria Vesna
AU  - Luković, Miloljub D.
AU  - Vasiljević, Zorka Ž.
AU  - Dojčinović, Milena
AU  - Labus, Nebojša
PY  - 2019
UR  - http://dais.sanu.ac.rs/123456789/6999
AB  - Though different metal oxide systems have been investigated and applied in humidity sensing as resistive or capacitive ceramic humidity sensors new materials remain the subject of much research. Iron manganite (FeMnO3) has a bixybyite type structure with the cubic space group. Iron manganite powder was obtained by solid state synthesis (milling in a planetary ball mill, calcination at 1000°C for 2 hours, milling) of starting hematite (Fe2O3) and manganese carbonate (MnCO3) powders mixed in a suitable ratio. Bulk samples were obtained by sintering green samples of pressed powder 8 mm in diameter at 1000oC for 4 hours. Thick film paste was obtained by mixing the powder with organic vehicles. Four layers were screen printed on test interdigitated electrodes on alumina substrate and fired at 900oC for 6 h. XRD analysis of bulk and thick film samples confirmed the formation of iron manganite with a perovskite structure. Scanning electron microscopy (SEM) analysis of freshly cleaved bulk samples showed a network of interconnected grains and pores. A similar structure was observed for the thick film sample surface. Change of complex impedance was monitored in a humidity chamber in the relative humidity range 30-90% at the working temperature of 25°C and frequency range 42 Hz to 1 MHz. In bulk samples at 100 Hz the impedance decreased from 32 (RH 30%) to 3 MΩ (RH 90%), while in thick film samples on test interdigitated electrodes it decreased from 8.24 (RH 30%) to 0.87 MΩ ((RH 90%). The thick film sensor response and recovery was several seconds and a low hysteresis value of 2.78% was obtained showing that iron manganite can successfully be applied for humidity sensing applications.
PB  - Budapest : [s. n.]
C3  - Abstracts / International Workshop on Woman in Ceramic Science (WoCeram2019), April 7-9, 2019/ Budapest, Hungary, Novotel Danube Budapest
T1  - Humidity sensing potential of iron manganite (FeMNO3)
SP  - 16
EP  - 17
ER  - 
@conference{
author = "Nikolić, Maria Vesna and Luković, Miloljub D. and Vasiljević, Zorka Ž. and Dojčinović, Milena and Labus, Nebojša",
year = "2019",
url = "http://dais.sanu.ac.rs/123456789/6999",
abstract = "Though different metal oxide systems have been investigated and applied in humidity sensing as resistive or capacitive ceramic humidity sensors new materials remain the subject of much research. Iron manganite (FeMnO3) has a bixybyite type structure with the cubic space group. Iron manganite powder was obtained by solid state synthesis (milling in a planetary ball mill, calcination at 1000°C for 2 hours, milling) of starting hematite (Fe2O3) and manganese carbonate (MnCO3) powders mixed in a suitable ratio. Bulk samples were obtained by sintering green samples of pressed powder 8 mm in diameter at 1000oC for 4 hours. Thick film paste was obtained by mixing the powder with organic vehicles. Four layers were screen printed on test interdigitated electrodes on alumina substrate and fired at 900oC for 6 h. XRD analysis of bulk and thick film samples confirmed the formation of iron manganite with a perovskite structure. Scanning electron microscopy (SEM) analysis of freshly cleaved bulk samples showed a network of interconnected grains and pores. A similar structure was observed for the thick film sample surface. Change of complex impedance was monitored in a humidity chamber in the relative humidity range 30-90% at the working temperature of 25°C and frequency range 42 Hz to 1 MHz. In bulk samples at 100 Hz the impedance decreased from 32 (RH 30%) to 3 MΩ (RH 90%), while in thick film samples on test interdigitated electrodes it decreased from 8.24 (RH 30%) to 0.87 MΩ ((RH 90%). The thick film sensor response and recovery was several seconds and a low hysteresis value of 2.78% was obtained showing that iron manganite can successfully be applied for humidity sensing applications.",
publisher = "Budapest : [s. n.]",
journal = "Abstracts / International Workshop on Woman in Ceramic Science (WoCeram2019), April 7-9, 2019/ Budapest, Hungary, Novotel Danube Budapest",
title = "Humidity sensing potential of iron manganite (FeMNO3)",
pages = "16-17"
}
Nikolić, M. V., Luković, M. D., Vasiljević, Z. Ž., Dojčinović, M.,& Labus, N. (2019). Humidity sensing potential of iron manganite (FeMNO3).
Abstracts / International Workshop on Woman in Ceramic Science (WoCeram2019), April 7-9, 2019/ Budapest, Hungary, Novotel Danube BudapestBudapest : [s. n.]., null, 16-17. 
Nikolić MV, Luković MD, Vasiljević ZŽ, Dojčinović M, Labus N. Humidity sensing potential of iron manganite (FeMNO3). Abstracts / International Workshop on Woman in Ceramic Science (WoCeram2019), April 7-9, 2019/ Budapest, Hungary, Novotel Danube Budapest. 2019;:16-17

Nanocrystalline SnO2-Zn2SnO4 composite thick films applied as humidity sensors

Nikolić, Maria Vesna; Luković, Miloljub D.; Dojčinović, Milena; Vasiljević, Zorka Ž.

(Belgrade : Institute for Multidisciplinary Research, 2019)

TY  - CONF
AU  - Nikolić, Maria Vesna
AU  - Luković, Miloljub D.
AU  - Dojčinović, Milena
AU  - Vasiljević, Zorka Ž.
PY  - 2019
UR  - http://dais.sanu.ac.rs/123456789/7006
AB  - Starting ZnO and SnO2 nanopowders (<100 nm) were mixed in a suitable ratio and calcined at 1050 °C for 2 hours to obtain nanocrystalline SnO2-Zn2SnO4 composite powder. Structural characterization performed by X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM) showed that a nanocrystalline composite SnO2-Zn2SnO4 powder was obtained. Thick film paste was made by adding organic vehicles to the powder. Screen printing of four and five layers of thick film paste was performed on two interdigitated test electrode configurations. They were calcined at 500 and 600 °C for 30 minutes. Impedance response was analyzed at several working temperatures (20-60 °C) in the relative humidity range 30-90% and frequency 42 Hz to 1 MHz. Increase in relative humidity lead to a decrease in impedance, especially at lower frequencies. The sensor time delay between absorption and desorption processes was low and the response and recovery times fast showing that the nanocystalline SnO2-Zn2SnO4 composite has potential for application in humidity sensing.
PB  - Belgrade : Institute for Multidisciplinary Research
C3  - Programme and the Book of Abstracts / 5th Conference of The Serbian Society for Ceramic Materials, 5CSCS-2019, June 11-13, 2019, Belgrade, Serbia
T1  - Nanocrystalline SnO2-Zn2SnO4 composite thick films applied as humidity sensors
SP  - 82
EP  - 82
ER  - 
@conference{
author = "Nikolić, Maria Vesna and Luković, Miloljub D. and Dojčinović, Milena and Vasiljević, Zorka Ž.",
year = "2019",
url = "http://dais.sanu.ac.rs/123456789/7006",
abstract = "Starting ZnO and SnO2 nanopowders (<100 nm) were mixed in a suitable ratio and calcined at 1050 °C for 2 hours to obtain nanocrystalline SnO2-Zn2SnO4 composite powder. Structural characterization performed by X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM) showed that a nanocrystalline composite SnO2-Zn2SnO4 powder was obtained. Thick film paste was made by adding organic vehicles to the powder. Screen printing of four and five layers of thick film paste was performed on two interdigitated test electrode configurations. They were calcined at 500 and 600 °C for 30 minutes. Impedance response was analyzed at several working temperatures (20-60 °C) in the relative humidity range 30-90% and frequency 42 Hz to 1 MHz. Increase in relative humidity lead to a decrease in impedance, especially at lower frequencies. The sensor time delay between absorption and desorption processes was low and the response and recovery times fast showing that the nanocystalline SnO2-Zn2SnO4 composite has potential for application in humidity sensing.",
publisher = "Belgrade : Institute for Multidisciplinary Research",
journal = "Programme and the Book of Abstracts / 5th Conference of The Serbian Society for Ceramic Materials, 5CSCS-2019, June 11-13, 2019, Belgrade, Serbia",
title = "Nanocrystalline SnO2-Zn2SnO4 composite thick films applied as humidity sensors",
pages = "82-82"
}
Nikolić, M. V., Luković, M. D., Dojčinović, M.,& Vasiljević, Z. Ž. (2019). Nanocrystalline SnO2-Zn2SnO4 composite thick films applied as humidity sensors.
Programme and the Book of Abstracts / 5th Conference of The Serbian Society for Ceramic Materials, 5CSCS-2019, June 11-13, 2019, Belgrade, SerbiaBelgrade : Institute for Multidisciplinary Research., null, 82-82. 
Nikolić MV, Luković MD, Dojčinović M, Vasiljević ZŽ. Nanocrystalline SnO2-Zn2SnO4 composite thick films applied as humidity sensors. Programme and the Book of Abstracts / 5th Conference of The Serbian Society for Ceramic Materials, 5CSCS-2019, June 11-13, 2019, Belgrade, Serbia. 2019;:82-82

Three-Axis’ Heat Loss Anemometer Comprising Thick-Film Segmented Thermistors

Aleksić, Stanko O.; Mitrović, Nebojša S.; Nikolić, Zoran; Luković, Miloljub D.; Obradović, Nina; Luković, Snežana G.

(IEEE, 2019)

TY  - JOUR
AU  - Aleksić, Stanko O.
AU  - Mitrović, Nebojša S.
AU  - Nikolić, Zoran
AU  - Luković, Miloljub D.
AU  - Obradović, Nina
AU  - Luković, Snežana G.
PY  - 2019
UR  - http://dais.sanu.ac.rs/123456789/7037
AB  - NTC thick-film segmented thermistors were used as anemometer sensing devices. They were screen printed of thick-film thermistor paste based on modified NiMn2O4 fine powder, organic vehicle, and glass frit. Their electrical properties, such as resistance vs. temperature R(T) and thermistor exponential factor B were obtained using measurements in the climatic test chamber. A uniaxial anemometer was formed using a thick-film segmented thermistor, which was placed in the hole drilled in rectangular piece of thermally insulating material. The uniaxial anemometer was used for the optimization of operating point of segmented thermistors as self-heating/wind sensing devices. The dc supply voltage was correlated with the air temperature sub-ranges (RCV). The power save mode such as 30s self-heating/5 min pause was used to measure the thermistor response on stable wind blow. The three-axis' anemometer was formed using five sensor devices placed in five holes drilled in the cubical piece of thermally insulating material: three thermistor sensors measure wind speed on the x, y, z - axes, the fourth sensor Pt 1000 measures the air temperature T, while the fifth sensor (capacitive type) measures humidity H. The obtained sensitivity and inaccuracy were compared with respective ones of other anemometers.
PB  - IEEE
T2  - IEEE Sensors Journal
T1  - Three-Axis’ Heat Loss Anemometer Comprising Thick-Film Segmented Thermistors
SP  - 10228
EP  - 10235
VL  - 19
IS  - 22
DO  - 10.1109/JSEN.2019.2929356
ER  - 
@article{
author = "Aleksić, Stanko O. and Mitrović, Nebojša S. and Nikolić, Zoran and Luković, Miloljub D. and Obradović, Nina and Luković, Snežana G.",
year = "2019",
url = "http://dais.sanu.ac.rs/123456789/7037",
abstract = "NTC thick-film segmented thermistors were used as anemometer sensing devices. They were screen printed of thick-film thermistor paste based on modified NiMn2O4 fine powder, organic vehicle, and glass frit. Their electrical properties, such as resistance vs. temperature R(T) and thermistor exponential factor B were obtained using measurements in the climatic test chamber. A uniaxial anemometer was formed using a thick-film segmented thermistor, which was placed in the hole drilled in rectangular piece of thermally insulating material. The uniaxial anemometer was used for the optimization of operating point of segmented thermistors as self-heating/wind sensing devices. The dc supply voltage was correlated with the air temperature sub-ranges (RCV). The power save mode such as 30s self-heating/5 min pause was used to measure the thermistor response on stable wind blow. The three-axis' anemometer was formed using five sensor devices placed in five holes drilled in the cubical piece of thermally insulating material: three thermistor sensors measure wind speed on the x, y, z - axes, the fourth sensor Pt 1000 measures the air temperature T, while the fifth sensor (capacitive type) measures humidity H. The obtained sensitivity and inaccuracy were compared with respective ones of other anemometers.",
publisher = "IEEE",
journal = "IEEE Sensors Journal",
title = "Three-Axis’ Heat Loss Anemometer Comprising Thick-Film Segmented Thermistors",
pages = "10228-10235",
volume = "19",
number = "22",
doi = "10.1109/JSEN.2019.2929356"
}
Aleksić, S. O., Mitrović, N. S., Nikolić, Z., Luković, M. D., Obradović, N.,& Luković, S. G. (2019). Three-Axis’ Heat Loss Anemometer Comprising Thick-Film Segmented Thermistors.
IEEE Sensors JournalIEEE., 19(22), 10228-10235. 
https://doi.org/10.1109/JSEN.2019.2929356
Aleksić SO, Mitrović NS, Nikolić Z, Luković MD, Obradović N, Luković SG. Three-Axis’ Heat Loss Anemometer Comprising Thick-Film Segmented Thermistors. IEEE Sensors Journal. 2019;19(22):10228-10235

Three-Axis’ Heat Loss Anemometer Comprising Thick-Film Segmented Thermistors

Aleksić, Stanko O.; Mitrović, Nebojša S.; Nikolić, Zoran; Luković, Miloljub D.; Obradović, Nina; Luković, Snežana G.

(IEEE, 2019)

TY  - JOUR
AU  - Aleksić, Stanko O.
AU  - Mitrović, Nebojša S.
AU  - Nikolić, Zoran
AU  - Luković, Miloljub D.
AU  - Obradović, Nina
AU  - Luković, Snežana G.
PY  - 2019
UR  - http://dais.sanu.ac.rs/123456789/6907
AB  - NTC thick-film segmented thermistors were used as anemometer sensing devices. They were screen printed of thick-film thermistor paste based on modified NiMn2O4 fine powder, organic vehicle, and glass frit. Their electrical properties, such as resistance vs. temperature R(T) and thermistor exponential factor B were obtained using measurements in the climatic test chamber. A uniaxial anemometer was formed using a thick-film segmented thermistor, which was placed in the hole drilled in rectangular piece of thermally insulating material. The uniaxial anemometer was used for the optimization of operating point of segmented thermistors as self-heating/wind sensing devices. The dc supply voltage was correlated with the air temperature sub-ranges (RCV). The power save mode such as 30s self-heating/5 min pause was used to measure the thermistor response on stable wind blow. The three-axis' anemometer was formed using five sensor devices placed in five holes drilled in the cubical piece of thermally insulating material: three thermistor sensors measure wind speed on the x, y, z - axes, the fourth sensor Pt 1000 measures the air temperature T, while the fifth sensor (capacitive type) measures humidity H. The obtained sensitivity and inaccuracy were compared with respective ones of other anemometers.
PB  - IEEE
T2  - IEEE Sensors Journal
T1  - Three-Axis’ Heat Loss Anemometer Comprising Thick-Film Segmented Thermistors
SP  - 10228
EP  - 10235
VL  - 19
IS  - 22
DO  - 10.1109/JSEN.2019.2929356
ER  - 
@article{
author = "Aleksić, Stanko O. and Mitrović, Nebojša S. and Nikolić, Zoran and Luković, Miloljub D. and Obradović, Nina and Luković, Snežana G.",
year = "2019",
url = "http://dais.sanu.ac.rs/123456789/6907",
abstract = "NTC thick-film segmented thermistors were used as anemometer sensing devices. They were screen printed of thick-film thermistor paste based on modified NiMn2O4 fine powder, organic vehicle, and glass frit. Their electrical properties, such as resistance vs. temperature R(T) and thermistor exponential factor B were obtained using measurements in the climatic test chamber. A uniaxial anemometer was formed using a thick-film segmented thermistor, which was placed in the hole drilled in rectangular piece of thermally insulating material. The uniaxial anemometer was used for the optimization of operating point of segmented thermistors as self-heating/wind sensing devices. The dc supply voltage was correlated with the air temperature sub-ranges (RCV). The power save mode such as 30s self-heating/5 min pause was used to measure the thermistor response on stable wind blow. The three-axis' anemometer was formed using five sensor devices placed in five holes drilled in the cubical piece of thermally insulating material: three thermistor sensors measure wind speed on the x, y, z - axes, the fourth sensor Pt 1000 measures the air temperature T, while the fifth sensor (capacitive type) measures humidity H. The obtained sensitivity and inaccuracy were compared with respective ones of other anemometers.",
publisher = "IEEE",
journal = "IEEE Sensors Journal",
title = "Three-Axis’ Heat Loss Anemometer Comprising Thick-Film Segmented Thermistors",
pages = "10228-10235",
volume = "19",
number = "22",
doi = "10.1109/JSEN.2019.2929356"
}
Aleksić, S. O., Mitrović, N. S., Nikolić, Z., Luković, M. D., Obradović, N.,& Luković, S. G. (2019). Three-Axis’ Heat Loss Anemometer Comprising Thick-Film Segmented Thermistors.
IEEE Sensors JournalIEEE., 19(22), 10228-10235. 
https://doi.org/10.1109/JSEN.2019.2929356
Aleksić SO, Mitrović NS, Nikolić Z, Luković MD, Obradović N, Luković SG. Three-Axis’ Heat Loss Anemometer Comprising Thick-Film Segmented Thermistors. IEEE Sensors Journal. 2019;19(22):10228-10235

Humidity sensing potential of Fe2TiO5—pseudobrookite

Nikolić, Maria Vesna; Luković, Miloljub D.; Vasiljević, Zorka Ž.; Labus, Nebojša; Aleksić, Obrad S.

(Springer US, 2018)

TY  - JOUR
AU  - Nikolić, Maria Vesna
AU  - Luković, Miloljub D.
AU  - Vasiljević, Zorka Ž.
AU  - Labus, Nebojša
AU  - Aleksić, Obrad S.
PY  - 2018
UR  - http://dais.sanu.ac.rs/123456789/3706
AB  - Bulk samples of pseudobrookite with an orthorhombic crystal structure were prepared by sintering a mixture of starting hematite and anatase nano powders in the weight ratio 60:40 at three different sintering temperatures (950, 1050 and 1150 °C) resulting in different microstructures determined by SEM analysis. Humidity sensing properties of pseudobrookite were investigated by measuring changes in electrical properties at operating temperatures of 20, 40 and 60 °C in the frequency range 100 Hz–100 kHz in the relative humidity range 30–90% in a climatic chamber. At 100 Hz, and 20 °C the impedance of pseudobrookite sintered at 1150 °C reduced over 5 times in the humidity range 40–90%, and 7 times at 60 °C for pseudobrookite sintered at 950 °C. Detailed analysis of dielectric properties showed that the dielectric constant increased noticeably with increase in humidity at low frequencies. Electrical conductivity change with frequency followed the Jonscher power law, and increased with increase in relative humidity. The determined frequency constant reduced with increase in sample temperature and increase in relative humidity. The conduction mechanism can be explained using the correlated barrier hopping model. Analysis of complex impedance using an equivalent circuit showed the dominant influence of grain boundaries. Low hysteresis (3.6 and 2.99%) was obtained in the 40–90% humidity range at room temperature (25 °C) for pseudobrookite sintered at 950 and 1150 °C. © 2018, Springer Science+Business Media, LLC, part of Springer Nature.
PB  - Springer US
T2  - Journal of Materials Science: Materials in Electronics
T2  - Journal of Materials Science: Materials in Electronics
T1  - Humidity sensing potential of Fe2TiO5—pseudobrookite
SP  - 9227
EP  - 9238
VL  - 29
IS  - 11
DO  - 10.1007/s10854-018-8951-1
ER  - 
@article{
author = "Nikolić, Maria Vesna and Luković, Miloljub D. and Vasiljević, Zorka Ž. and Labus, Nebojša and Aleksić, Obrad S.",
year = "2018",
url = "http://dais.sanu.ac.rs/123456789/3706",
abstract = "Bulk samples of pseudobrookite with an orthorhombic crystal structure were prepared by sintering a mixture of starting hematite and anatase nano powders in the weight ratio 60:40 at three different sintering temperatures (950, 1050 and 1150 °C) resulting in different microstructures determined by SEM analysis. Humidity sensing properties of pseudobrookite were investigated by measuring changes in electrical properties at operating temperatures of 20, 40 and 60 °C in the frequency range 100 Hz–100 kHz in the relative humidity range 30–90% in a climatic chamber. At 100 Hz, and 20 °C the impedance of pseudobrookite sintered at 1150 °C reduced over 5 times in the humidity range 40–90%, and 7 times at 60 °C for pseudobrookite sintered at 950 °C. Detailed analysis of dielectric properties showed that the dielectric constant increased noticeably with increase in humidity at low frequencies. Electrical conductivity change with frequency followed the Jonscher power law, and increased with increase in relative humidity. The determined frequency constant reduced with increase in sample temperature and increase in relative humidity. The conduction mechanism can be explained using the correlated barrier hopping model. Analysis of complex impedance using an equivalent circuit showed the dominant influence of grain boundaries. Low hysteresis (3.6 and 2.99%) was obtained in the 40–90% humidity range at room temperature (25 °C) for pseudobrookite sintered at 950 and 1150 °C. © 2018, Springer Science+Business Media, LLC, part of Springer Nature.",
publisher = "Springer US",
journal = "Journal of Materials Science: Materials in Electronics, Journal of Materials Science: Materials in Electronics",
title = "Humidity sensing potential of Fe2TiO5—pseudobrookite",
pages = "9227-9238",
volume = "29",
number = "11",
doi = "10.1007/s10854-018-8951-1"
}
Nikolić, M. V., Luković, M. D., Vasiljević, Z. Ž., Labus, N.,& Aleksić, O. S. (2018). Humidity sensing potential of Fe2TiO5—pseudobrookite.
Journal of Materials Science: Materials in ElectronicsSpringer US., 29(11), 9227-9238. 
https://doi.org/10.1007/s10854-018-8951-1
Nikolić MV, Luković MD, Vasiljević ZŽ, Labus N, Aleksić OS. Humidity sensing potential of Fe2TiO5—pseudobrookite. Journal of Materials Science: Materials in Electronics. 2018;29(11):9227-9238
8
8
9

Application of Nanocrystalline Pseudobrookite (Fe2TiO5) Thick Films for Humidity Sensing

Nikolić, Maria Vesna; Luković, Miloljub; Vasiljević, Zorka Ž.; Vujančević, Jelena

(IEEE Computer Society, 2018)

TY  - CONF
AU  - Nikolić, Maria Vesna
AU  - Luković, Miloljub
AU  - Vasiljević, Zorka Ž.
AU  - Vujančević, Jelena
PY  - 2018
UR  - http://dais.sanu.ac.rs/123456789/4078
AB  - Pseudobrookite nanocrystalline thick films were screen printed on alumina substrate with small interdigitated PdAg electrodes (width 6 mm, length 12 mm, electrode spacing 0.2 mm) and fired at 600°C for 30 minutes. Scanning electron microscopy (SEM) of the thick film surface confirmed the formation of a porous structure consisting of agglomerated nanocrystalline grains of pseudobrookite. Impedance response of pseudobrookite thick film samples was measured in a humidity chamber at operating temperatures of 25 and 50°C in the relative humidity (RH) range 40-90% and frequency range 42 Hz-1 MHz. At the lowest frequency of 42 Hz at 25°C the impedance reduced 7 times (from 35.74 MΩ for RH 40% to 4.91 MΩ for RH 90%) and at 50°C 33 times (from 30.98 MΩ for RH 40% to 0.944MΩ for RH 90%). Low hysteresis (1.82 and 3.65%) was obtained at 25 and 50°C, respectively. Complex impedance was analyzed using an equivalent circuit consisting of parallel impedance and constant phase (CPE) element showing the dominant influence of grain boundaries. © 2018 IEEE.
PB  - IEEE Computer Society
C3  - Proceedings of the International Spring Seminar on Electronics Technology
T1  - Application of Nanocrystalline Pseudobrookite (Fe2TiO5) Thick Films for Humidity Sensing
DO  - 10.1109/ISSE.2018.8443672
ER  - 
@conference{
author = "Nikolić, Maria Vesna and Luković, Miloljub and Vasiljević, Zorka Ž. and Vujančević, Jelena",
year = "2018",
url = "http://dais.sanu.ac.rs/123456789/4078",
abstract = "Pseudobrookite nanocrystalline thick films were screen printed on alumina substrate with small interdigitated PdAg electrodes (width 6 mm, length 12 mm, electrode spacing 0.2 mm) and fired at 600°C for 30 minutes. Scanning electron microscopy (SEM) of the thick film surface confirmed the formation of a porous structure consisting of agglomerated nanocrystalline grains of pseudobrookite. Impedance response of pseudobrookite thick film samples was measured in a humidity chamber at operating temperatures of 25 and 50°C in the relative humidity (RH) range 40-90% and frequency range 42 Hz-1 MHz. At the lowest frequency of 42 Hz at 25°C the impedance reduced 7 times (from 35.74 MΩ for RH 40% to 4.91 MΩ for RH 90%) and at 50°C 33 times (from 30.98 MΩ for RH 40% to 0.944MΩ for RH 90%). Low hysteresis (1.82 and 3.65%) was obtained at 25 and 50°C, respectively. Complex impedance was analyzed using an equivalent circuit consisting of parallel impedance and constant phase (CPE) element showing the dominant influence of grain boundaries. © 2018 IEEE.",
publisher = "IEEE Computer Society",
journal = "Proceedings of the International Spring Seminar on Electronics Technology",
title = "Application of Nanocrystalline Pseudobrookite (Fe2TiO5) Thick Films for Humidity Sensing",
doi = "10.1109/ISSE.2018.8443672"
}
Nikolić, M. V., Luković, M., Vasiljević, Z. Ž.,& Vujančević, J. (2018). Application of Nanocrystalline Pseudobrookite (Fe2TiO5) Thick Films for Humidity Sensing.
Proceedings of the International Spring Seminar on Electronics TechnologyIEEE Computer Society., null. 
https://doi.org/10.1109/ISSE.2018.8443672
Nikolić MV, Luković M, Vasiljević ZŽ, Vujančević J. Application of Nanocrystalline Pseudobrookite (Fe2TiO5) Thick Films for Humidity Sensing. Proceedings of the International Spring Seminar on Electronics Technology. 2018;

Humidity sensing properties of nanocrystalline pseudobrookite (Fe2TiO5) based thick films

Nikolić, Maria Vesna; Vasiljević, Zorka Ž.; Luković, Miloljub D.; Pavlović, Vera P.; Vujančević, Jelena; Radovanović, Milan; Krstić, Jugoslav; Vlahović, Branislav; Pavlović, Vladimir B.

(Elsevier, 2018)

TY  - JOUR
AU  - Nikolić, Maria Vesna
AU  - Vasiljević, Zorka Ž.
AU  - Luković, Miloljub D.
AU  - Pavlović, Vera P.
AU  - Vujančević, Jelena
AU  - Radovanović, Milan
AU  - Krstić, Jugoslav
AU  - Vlahović, Branislav
AU  - Pavlović, Vladimir B.
PY  - 2018
UR  - http://www.sciencedirect.com/science/article/pii/S0925400518316836
UR  - http://dais.sanu.ac.rs/123456789/4527
AB  - Pseudobrookite based nanopowder was obtained by solid state synthesis of starting hematite and anatase nanopowders in the weight ratio 55:45. Structural and morphological properties were analyzed using X-ray diffraction (XRD), BET, X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, UV/Vis diffuse reflectance spectroscopy, Field emission scanning electron microscopy (FESEM) and Transmission electron microscopy (TEM) confirming the formation of nanocrystalline pseudobrookite. The obtained powder was mixed with a binder (ethyl cellulose), dispersant (α-terpinol) and adhesion agents (acetic acid and distilled water) to obtain a thick film paste. It was screen printed on alumina substrate with interdigitated PdAg electrodes and fired at 600 °C for 30 min. Formation of a porous nanocrystalline thick film structure was shown using Scanning electron microscopy (SEM), while Hall measurements enabled determination of carrier mobility. Change of impedance response in the frequency range 42 Hz–1 MHz with humidity was analyzed at room temperature (25 °C) and 50 °C in the relative humidity range 30–90% and 40–90%, respectively. At 42 Hz, and room temperature the impedance reduced ∼28 times, while at 50 °C it reduced ∼147 times in the relative humidity range 40–90%. The sensor showed rapid response (16 s) and relatively low hysteresis (8.39% at 25 °C and 2.64% at 50 °C) showing that this is a promising material for application in humidity sensing.
PB  - Elsevier
T2  - Sensors and Actuators B: Chemical
T1  - Humidity sensing properties of nanocrystalline pseudobrookite (Fe2TiO5) based thick films
SP  - 654
EP  - 664
VL  - 277
DO  - 10.1016/j.snb.2018.09.063
ER  - 
@article{
author = "Nikolić, Maria Vesna and Vasiljević, Zorka Ž. and Luković, Miloljub D. and Pavlović, Vera P. and Vujančević, Jelena and Radovanović, Milan and Krstić, Jugoslav and Vlahović, Branislav and Pavlović, Vladimir B.",
year = "2018",
url = "http://www.sciencedirect.com/science/article/pii/S0925400518316836, http://dais.sanu.ac.rs/123456789/4527",
abstract = "Pseudobrookite based nanopowder was obtained by solid state synthesis of starting hematite and anatase nanopowders in the weight ratio 55:45. Structural and morphological properties were analyzed using X-ray diffraction (XRD), BET, X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, UV/Vis diffuse reflectance spectroscopy, Field emission scanning electron microscopy (FESEM) and Transmission electron microscopy (TEM) confirming the formation of nanocrystalline pseudobrookite. The obtained powder was mixed with a binder (ethyl cellulose), dispersant (α-terpinol) and adhesion agents (acetic acid and distilled water) to obtain a thick film paste. It was screen printed on alumina substrate with interdigitated PdAg electrodes and fired at 600 °C for 30 min. Formation of a porous nanocrystalline thick film structure was shown using Scanning electron microscopy (SEM), while Hall measurements enabled determination of carrier mobility. Change of impedance response in the frequency range 42 Hz–1 MHz with humidity was analyzed at room temperature (25 °C) and 50 °C in the relative humidity range 30–90% and 40–90%, respectively. At 42 Hz, and room temperature the impedance reduced ∼28 times, while at 50 °C it reduced ∼147 times in the relative humidity range 40–90%. The sensor showed rapid response (16 s) and relatively low hysteresis (8.39% at 25 °C and 2.64% at 50 °C) showing that this is a promising material for application in humidity sensing.",
publisher = "Elsevier",
journal = "Sensors and Actuators B: Chemical",
title = "Humidity sensing properties of nanocrystalline pseudobrookite (Fe2TiO5) based thick films",
pages = "654-664",
volume = "277",
doi = "10.1016/j.snb.2018.09.063"
}
Nikolić, M. V., Vasiljević, Z. Ž., Luković, M. D., Pavlović, V. P., Vujančević, J., Radovanović, M., Krstić, J., Vlahović, B.,& Pavlović, V. B. (2018). Humidity sensing properties of nanocrystalline pseudobrookite (Fe2TiO5) based thick films.
Sensors and Actuators B: ChemicalElsevier., 277, 654-664. 
https://doi.org/10.1016/j.snb.2018.09.063
Nikolić MV, Vasiljević ZŽ, Luković MD, Pavlović VP, Vujančević J, Radovanović M, Krstić J, Vlahović B, Pavlović VB. Humidity sensing properties of nanocrystalline pseudobrookite (Fe2TiO5) based thick films. Sensors and Actuators B: Chemical. 2018;277:654-664
18
16
16

Application of Nanocrystalline Pseudobrookite (Fe2TiO5) Thick Films for Humidity Sensing

Nikolić, Maria Vesna; Luković, Miloljub; Vasiljević, Zorka Ž.; Vujančević, Jelena

(IEEE Computer Society, 2018)

TY  - CONF
AU  - Nikolić, Maria Vesna
AU  - Luković, Miloljub
AU  - Vasiljević, Zorka Ž.
AU  - Vujančević, Jelena
PY  - 2018
UR  - http://dais.sanu.ac.rs/123456789/4587
AB  - Pseudobrookite nanocrystalline thick films were screen printed on alumina substrate with small interdigitated PdAg electrodes (width 6 mm, length 12 mm, electrode spacing 0.2 mm) and fired at 600°C for 30 minutes. Scanning electron microscopy (SEM) of the thick film surface confirmed the formation of a porous structure consisting of agglomerated nanocrystalline grains of pseudobrookite. Impedance response of pseudobrookite thick film samples was measured in a humidity chamber at operating temperatures of 25 and 50°C in the relative humidity (RH) range 40-90% and frequency range 42 Hz-1 MHz. At the lowest frequency of 42 Hz at 25°C the impedance reduced 7 times (from 35.74 MΩ for RH 40% to 4.91 MΩ for RH 90%) and at 50°C 33 times (from 30.98 MΩ for RH 40% to 0.944MΩ for RH 90%). Low hysteresis (1.82 and 3.65%) was obtained at 25 and 50°C, respectively. Complex impedance was analyzed using an equivalent circuit consisting of parallel impedance and constant phase (CPE) element showing the dominant influence of grain boundaries. © 2018 IEEE.
PB  - IEEE Computer Society
C3  - Proceedings of the International Spring Seminar on Electronics Technology
T1  - Application of Nanocrystalline Pseudobrookite (Fe2TiO5) Thick Films for Humidity Sensing
DO  - 10.1109/ISSE.2018.8443672
ER  - 
@conference{
author = "Nikolić, Maria Vesna and Luković, Miloljub and Vasiljević, Zorka Ž. and Vujančević, Jelena",
year = "2018",
url = "http://dais.sanu.ac.rs/123456789/4587",
abstract = "Pseudobrookite nanocrystalline thick films were screen printed on alumina substrate with small interdigitated PdAg electrodes (width 6 mm, length 12 mm, electrode spacing 0.2 mm) and fired at 600°C for 30 minutes. Scanning electron microscopy (SEM) of the thick film surface confirmed the formation of a porous structure consisting of agglomerated nanocrystalline grains of pseudobrookite. Impedance response of pseudobrookite thick film samples was measured in a humidity chamber at operating temperatures of 25 and 50°C in the relative humidity (RH) range 40-90% and frequency range 42 Hz-1 MHz. At the lowest frequency of 42 Hz at 25°C the impedance reduced 7 times (from 35.74 MΩ for RH 40% to 4.91 MΩ for RH 90%) and at 50°C 33 times (from 30.98 MΩ for RH 40% to 0.944MΩ for RH 90%). Low hysteresis (1.82 and 3.65%) was obtained at 25 and 50°C, respectively. Complex impedance was analyzed using an equivalent circuit consisting of parallel impedance and constant phase (CPE) element showing the dominant influence of grain boundaries. © 2018 IEEE.",
publisher = "IEEE Computer Society",
journal = "Proceedings of the International Spring Seminar on Electronics Technology",
title = "Application of Nanocrystalline Pseudobrookite (Fe2TiO5) Thick Films for Humidity Sensing",
doi = "10.1109/ISSE.2018.8443672"
}
Nikolić, M. V., Luković, M., Vasiljević, Z. Ž.,& Vujančević, J. (2018). Application of Nanocrystalline Pseudobrookite (Fe2TiO5) Thick Films for Humidity Sensing.
Proceedings of the International Spring Seminar on Electronics TechnologyIEEE Computer Society., null. 
https://doi.org/10.1109/ISSE.2018.8443672
Nikolić MV, Luković M, Vasiljević ZŽ, Vujančević J. Application of Nanocrystalline Pseudobrookite (Fe2TiO5) Thick Films for Humidity Sensing. Proceedings of the International Spring Seminar on Electronics Technology. 2018;

Humidity sensing properties of nanocrystalline pseudobrookite (Fe2TiO5) based thick films

Nikolić, Maria Vesna; Vasiljević, Zorka Ž.; Luković, Miloljub D.; Pavlović, Vera P.; Vujančević, Jelena; Radovanović, Milan; Krstić, Jugoslav; Vlahović, Branislav; Pavlović, Vladimir B.

(Elsevier, 2018)

TY  - JOUR
AU  - Nikolić, Maria Vesna
AU  - Vasiljević, Zorka Ž.
AU  - Luković, Miloljub D.
AU  - Pavlović, Vera P.
AU  - Vujančević, Jelena
AU  - Radovanović, Milan
AU  - Krstić, Jugoslav
AU  - Vlahović, Branislav
AU  - Pavlović, Vladimir B.
PY  - 2018
UR  - http://www.sciencedirect.com/science/article/pii/S0925400518316836
UR  - http://dais.sanu.ac.rs/123456789/4605
AB  - Pseudobrookite based nanopowder was obtained by solid state synthesis of starting hematite and anatase nanopowders in the weight ratio 55:45. Structural and morphological properties were analyzed using X-ray diffraction (XRD), BET, X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, UV/Vis diffuse reflectance spectroscopy, Field emission scanning electron microscopy (FESEM) and Transmission electron microscopy (TEM) confirming the formation of nanocrystalline pseudobrookite. The obtained powder was mixed with a binder (ethyl cellulose), dispersant (α-terpinol) and adhesion agents (acetic acid and distilled water) to obtain a thick film paste. It was screen printed on alumina substrate with interdigitated PdAg electrodes and fired at 600 °C for 30 min. Formation of a porous nanocrystalline thick film structure was shown using Scanning electron microscopy (SEM), while Hall measurements enabled determination of carrier mobility. Change of impedance response in the frequency range 42 Hz–1 MHz with humidity was analyzed at room temperature (25 °C) and 50 °C in the relative humidity range 30–90% and 40–90%, respectively. At 42 Hz, and room temperature the impedance reduced ∼28 times, while at 50 °C it reduced ∼147 times in the relative humidity range 40–90%. The sensor showed rapid response (16 s) and relatively low hysteresis (8.39% at 25 °C and 2.64% at 50 °C) showing that this is a promising material for application in humidity sensing.
PB  - Elsevier
T2  - Sensors and Actuators B: Chemical
T1  - Humidity sensing properties of nanocrystalline pseudobrookite (Fe2TiO5) based thick films
SP  - 654
EP  - 664
VL  - 277
DO  - 10.1016/j.snb.2018.09.063
ER  - 
@article{
author = "Nikolić, Maria Vesna and Vasiljević, Zorka Ž. and Luković, Miloljub D. and Pavlović, Vera P. and Vujančević, Jelena and Radovanović, Milan and Krstić, Jugoslav and Vlahović, Branislav and Pavlović, Vladimir B.",
year = "2018",
url = "http://www.sciencedirect.com/science/article/pii/S0925400518316836, http://dais.sanu.ac.rs/123456789/4605",
abstract = "Pseudobrookite based nanopowder was obtained by solid state synthesis of starting hematite and anatase nanopowders in the weight ratio 55:45. Structural and morphological properties were analyzed using X-ray diffraction (XRD), BET, X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, UV/Vis diffuse reflectance spectroscopy, Field emission scanning electron microscopy (FESEM) and Transmission electron microscopy (TEM) confirming the formation of nanocrystalline pseudobrookite. The obtained powder was mixed with a binder (ethyl cellulose), dispersant (α-terpinol) and adhesion agents (acetic acid and distilled water) to obtain a thick film paste. It was screen printed on alumina substrate with interdigitated PdAg electrodes and fired at 600 °C for 30 min. Formation of a porous nanocrystalline thick film structure was shown using Scanning electron microscopy (SEM), while Hall measurements enabled determination of carrier mobility. Change of impedance response in the frequency range 42 Hz–1 MHz with humidity was analyzed at room temperature (25 °C) and 50 °C in the relative humidity range 30–90% and 40–90%, respectively. At 42 Hz, and room temperature the impedance reduced ∼28 times, while at 50 °C it reduced ∼147 times in the relative humidity range 40–90%. The sensor showed rapid response (16 s) and relatively low hysteresis (8.39% at 25 °C and 2.64% at 50 °C) showing that this is a promising material for application in humidity sensing.",
publisher = "Elsevier",
journal = "Sensors and Actuators B: Chemical",
title = "Humidity sensing properties of nanocrystalline pseudobrookite (Fe2TiO5) based thick films",
pages = "654-664",
volume = "277",
doi = "10.1016/j.snb.2018.09.063"
}
Nikolić, M. V., Vasiljević, Z. Ž., Luković, M. D., Pavlović, V. P., Vujančević, J., Radovanović, M., Krstić, J., Vlahović, B.,& Pavlović, V. B. (2018). Humidity sensing properties of nanocrystalline pseudobrookite (Fe2TiO5) based thick films.
Sensors and Actuators B: ChemicalElsevier., 277, 654-664. 
https://doi.org/10.1016/j.snb.2018.09.063
Nikolić MV, Vasiljević ZŽ, Luković MD, Pavlović VP, Vujančević J, Radovanović M, Krstić J, Vlahović B, Pavlović VB. Humidity sensing properties of nanocrystalline pseudobrookite (Fe2TiO5) based thick films. Sensors and Actuators B: Chemical. 2018;277:654-664
18
16
16

Humidity sensing potential of Fe2TiO5—pseudobrookite

Nikolić, Maria Vesna; Luković, Miloljub D.; Vasiljević, Zorka Ž.; Labus, Nebojša; Aleksić, Obrad S.

(Springer US, 2018)

TY  - JOUR
AU  - Nikolić, Maria Vesna
AU  - Luković, Miloljub D.
AU  - Vasiljević, Zorka Ž.
AU  - Labus, Nebojša
AU  - Aleksić, Obrad S.
PY  - 2018
UR  - http://dais.sanu.ac.rs/123456789/4650
AB  - Bulk samples of pseudobrookite with an orthorhombic crystal structure were prepared by sintering a mixture of starting hematite and anatase nano powders in the weight ratio 60:40 at three different sintering temperatures (950, 1050 and 1150 °C) resulting in different microstructures determined by SEM analysis. Humidity sensing properties of pseudobrookite were investigated by measuring changes in electrical properties at operating temperatures of 20, 40 and 60 °C in the frequency range 100 Hz–100 kHz in the relative humidity range 30–90% in a climatic chamber. At 100 Hz, and 20 °C the impedance of pseudobrookite sintered at 1150 °C reduced over 5 times in the humidity range 40–90%, and 7 times at 60 °C for pseudobrookite sintered at 950 °C. Detailed analysis of dielectric properties showed that the dielectric constant increased noticeably with increase in humidity at low frequencies. Electrical conductivity change with frequency followed the Jonscher power law, and increased with increase in relative humidity. The determined frequency constant reduced with increase in sample temperature and increase in relative humidity. The conduction mechanism can be explained using the correlated barrier hopping model. Analysis of complex impedance using an equivalent circuit showed the dominant influence of grain boundaries. Low hysteresis (3.6 and 2.99%) was obtained in the 40–90% humidity range at room temperature (25 °C) for pseudobrookite sintered at 950 and 1150 °C. © 2018, Springer Science+Business Media, LLC, part of Springer Nature.
PB  - Springer US
T2  - Journal of Materials Science: Materials in Electronics
T1  - Humidity sensing potential of Fe2TiO5—pseudobrookite
SP  - 9227
EP  - 9238
VL  - 29
IS  - 11
DO  - 10.1007/s10854-018-8951-1
ER  - 
@article{
author = "Nikolić, Maria Vesna and Luković, Miloljub D. and Vasiljević, Zorka Ž. and Labus, Nebojša and Aleksić, Obrad S.",
year = "2018",
url = "http://dais.sanu.ac.rs/123456789/4650",
abstract = "Bulk samples of pseudobrookite with an orthorhombic crystal structure were prepared by sintering a mixture of starting hematite and anatase nano powders in the weight ratio 60:40 at three different sintering temperatures (950, 1050 and 1150 °C) resulting in different microstructures determined by SEM analysis. Humidity sensing properties of pseudobrookite were investigated by measuring changes in electrical properties at operating temperatures of 20, 40 and 60 °C in the frequency range 100 Hz–100 kHz in the relative humidity range 30–90% in a climatic chamber. At 100 Hz, and 20 °C the impedance of pseudobrookite sintered at 1150 °C reduced over 5 times in the humidity range 40–90%, and 7 times at 60 °C for pseudobrookite sintered at 950 °C. Detailed analysis of dielectric properties showed that the dielectric constant increased noticeably with increase in humidity at low frequencies. Electrical conductivity change with frequency followed the Jonscher power law, and increased with increase in relative humidity. The determined frequency constant reduced with increase in sample temperature and increase in relative humidity. The conduction mechanism can be explained using the correlated barrier hopping model. Analysis of complex impedance using an equivalent circuit showed the dominant influence of grain boundaries. Low hysteresis (3.6 and 2.99%) was obtained in the 40–90% humidity range at room temperature (25 °C) for pseudobrookite sintered at 950 and 1150 °C. © 2018, Springer Science+Business Media, LLC, part of Springer Nature.",
publisher = "Springer US",
journal = "Journal of Materials Science: Materials in Electronics",
title = "Humidity sensing potential of Fe2TiO5—pseudobrookite",
pages = "9227-9238",
volume = "29",
number = "11",
doi = "10.1007/s10854-018-8951-1"
}
Nikolić, M. V., Luković, M. D., Vasiljević, Z. Ž., Labus, N.,& Aleksić, O. S. (2018). Humidity sensing potential of Fe2TiO5—pseudobrookite.
Journal of Materials Science: Materials in ElectronicsSpringer US., 29(11), 9227-9238. 
https://doi.org/10.1007/s10854-018-8951-1
Nikolić MV, Luković MD, Vasiljević ZŽ, Labus N, Aleksić OS. Humidity sensing potential of Fe2TiO5—pseudobrookite. Journal of Materials Science: Materials in Electronics. 2018;29(11):9227-9238
8
8
9

Primena debeloslojnih segmentiranih termistora za merenje i analizu temperaturnog profila gornjeg sloja zemlje

Aleksić, Stanko O.; Mitrović, Nebojša S.; Luković, Miloljub D.; Luković, Snežana G.; Obradović, Nina

(Beograd : Savez inženjera i tehničara Srbije, 2018)

TY  - JOUR
AU  - Aleksić, Stanko O.
AU  - Mitrović, Nebojša S.
AU  - Luković, Miloljub D.
AU  - Luković, Snežana G.
AU  - Obradović, Nina
PY  - 2018
UR  - https://scindeks.ceon.rs/article.aspx?artid=0040-21761804533A
UR  - http://dais.sanu.ac.rs/123456789/4539
AB  - A new sensor for measuring ground top layer temperature profile was formed as a row of 40 thermistor segments connected in series, with which the change of temperature in the soil is mesaured and placed on 550 mm depth. The temperature sensor is multiple protected of humidity, calibrated on room temperature and placed vertically in the hole drilled on the lawn. The main electrical properties of the new sensor based on NTC thick film segmented thermistors are given in brief. The ground top layer temperature profile measurements were done in 40 points at 7am and 2 pm each day from the beginning of November 2017 to the end of February 2018.At the same time and in the same period of time the air temperature were measured and recorded. The results of measurements of ground top layer temperatureT(t,z) were given in daily and monthly diagrams as a function of time t and ground deepness d on z-axis. The correlation between ground top layer temperature profile and air temperature was analyzed: changes of ground temperature gradient and effect of precipitations on ground temperature profile. The results obtained enable study of temperature regime of ground top layer.
AB  - Novi senzor temperaturnog profila gornjeg sloja zemlje, formiran je kao niz od 40 termistorskih segmenata redno vezanih, kojim se meri promena temperature, u zemlji do dubine d=550 mm. Temperaturni senzor je višestruko zaštićen od vlage, kalibrisan na sobnoj temperaturi i postavljen u vertikalno izbušenu rupu na travnjaku. Osnovne električne karakteristike novog senzora na bazi NTC debeloslojnih segmentiranih termistora date su ukratko. Merenje temperaturnog profila gornjeg sloja zemlje u 40 tačaka vršeno je u 7 i u 14 časova od početka novembra 2017. do kraja februara 2018. godine. U tom periodu u istim terminima merena je i temperatura vazduha. Rezultati merenja temperature gornjeg sloja zemlje T(t,z) prikazani su dijagramima sa dnevnim i mesečnim pregledom kao funkcija vremena t i dubine zemlje d po z-osi. Analizirana je korelacija između temperature gornjeg sloja zemlje i vazduha: promena gradijenta temperature tla i uticaj padavina na temperaturni profil. Dobijeni rezultati omogućavaju dalje proučavanje temperaturnog režima gornjeg sloja zemlje.
PB  - Beograd : Savez inženjera i tehničara Srbije
T2  - Tehnika
T1  - Primena debeloslojnih segmentiranih termistora za merenje i analizu temperaturnog profila gornjeg sloja zemlje
T1  - Application of thick film segmented thermistors for measurement and analysis of ground top layer temperature profile
SP  - 533
EP  - 538
VL  - 73
IS  - 4
DO  - 10.5937/tehnika1804533A
ER  - 
@article{
author = "Aleksić, Stanko O. and Mitrović, Nebojša S. and Luković, Miloljub D. and Luković, Snežana G. and Obradović, Nina",
year = "2018",
url = "https://scindeks.ceon.rs/article.aspx?artid=0040-21761804533A, http://dais.sanu.ac.rs/123456789/4539",
abstract = "A new sensor for measuring ground top layer temperature profile was formed as a row of 40 thermistor segments connected in series, with which the change of temperature in the soil is mesaured and placed on 550 mm depth. The temperature sensor is multiple protected of humidity, calibrated on room temperature and placed vertically in the hole drilled on the lawn. The main electrical properties of the new sensor based on NTC thick film segmented thermistors are given in brief. The ground top layer temperature profile measurements were done in 40 points at 7am and 2 pm each day from the beginning of November 2017 to the end of February 2018.At the same time and in the same period of time the air temperature were measured and recorded. The results of measurements of ground top layer temperatureT(t,z) were given in daily and monthly diagrams as a function of time t and ground deepness d on z-axis. The correlation between ground top layer temperature profile and air temperature was analyzed: changes of ground temperature gradient and effect of precipitations on ground temperature profile. The results obtained enable study of temperature regime of ground top layer., Novi senzor temperaturnog profila gornjeg sloja zemlje, formiran je kao niz od 40 termistorskih segmenata redno vezanih, kojim se meri promena temperature, u zemlji do dubine d=550 mm. Temperaturni senzor je višestruko zaštićen od vlage, kalibrisan na sobnoj temperaturi i postavljen u vertikalno izbušenu rupu na travnjaku. Osnovne električne karakteristike novog senzora na bazi NTC debeloslojnih segmentiranih termistora date su ukratko. Merenje temperaturnog profila gornjeg sloja zemlje u 40 tačaka vršeno je u 7 i u 14 časova od početka novembra 2017. do kraja februara 2018. godine. U tom periodu u istim terminima merena je i temperatura vazduha. Rezultati merenja temperature gornjeg sloja zemlje T(t,z) prikazani su dijagramima sa dnevnim i mesečnim pregledom kao funkcija vremena t i dubine zemlje d po z-osi. Analizirana je korelacija između temperature gornjeg sloja zemlje i vazduha: promena gradijenta temperature tla i uticaj padavina na temperaturni profil. Dobijeni rezultati omogućavaju dalje proučavanje temperaturnog režima gornjeg sloja zemlje.",
publisher = "Beograd : Savez inženjera i tehničara Srbije",
journal = "Tehnika",
title = "Primena debeloslojnih segmentiranih termistora za merenje i analizu temperaturnog profila gornjeg sloja zemlje, Application of thick film segmented thermistors for measurement and analysis of ground top layer temperature profile",
pages = "533-538",
volume = "73",
number = "4",
doi = "10.5937/tehnika1804533A"
}
Aleksić, S. O., Mitrović, N. S., Luković, M. D., Luković, S. G.,& Obradović, N. (2018). Primena debeloslojnih segmentiranih termistora za merenje i analizu temperaturnog profila gornjeg sloja zemlje.
TehnikaBeograd : Savez inženjera i tehničara Srbije., 73(4), 533-538. 
https://doi.org/10.5937/tehnika1804533A
Aleksić SO, Mitrović NS, Luković MD, Luković SG, Obradović N. Primena debeloslojnih segmentiranih termistora za merenje i analizu temperaturnog profila gornjeg sloja zemlje. Tehnika. 2018;73(4):533-538

Pseudobrookite thick films for potential application as low-temperature sensitive material in NO gas sensors

Mišković, Goran; Nikolić, Maria Vesna; Luković, Miloljub D.; Vasiljević, Zorka Ž.; Nicolics, Johann; Aleksić, Obrad S.

(IEEE, 2017)

TY  - CONF
AU  - Mišković, Goran
AU  - Nikolić, Maria Vesna
AU  - Luković, Miloljub D.
AU  - Vasiljević, Zorka Ž.
AU  - Nicolics, Johann
AU  - Aleksić, Obrad S.
PY  - 2017
UR  - http://dais.sanu.ac.rs/123456789/3685
AB  - Pseudobrookite thick films were obtained by screen printing paste composed of a 1:1.5 molar ratio mixture of starting nanopowders of hematite and anatase, glass frit and organic binder. The films were deposited on alumina substrates with interdigitated electrode geometry. Sintering at 850 °C resulted in the formation of pseudobrookite. X-Ray Diffraction (XRD) analysis showed pseudobrookite with a mixed orthorhombic and monoclinic structure and a small amount of excess rutile. Gas sensing measurements with low NO gas concentrations in air were performed using an in-house gas sensor testing setup in the temperature range 100-300 °C. On the example of one particular gas concentration, results showed that pseudobrookite exhibited a distinct response to NO already at 150 °C that further improved with increased sample temperature.
PB  - IEEE
C3  - 2017 40th International Spring Seminar on Electronics Technology (ISSE)
T1  - Pseudobrookite thick films for potential application as low-temperature sensitive material in NO gas sensors
SP  - 1
EP  - 6
DO  - 10.1109/ISSE.2017.8000881
ER  - 
@conference{
author = "Mišković, Goran and Nikolić, Maria Vesna and Luković, Miloljub D. and Vasiljević, Zorka Ž. and Nicolics, Johann and Aleksić, Obrad S.",
year = "2017",
url = "http://dais.sanu.ac.rs/123456789/3685",
abstract = "Pseudobrookite thick films were obtained by screen printing paste composed of a 1:1.5 molar ratio mixture of starting nanopowders of hematite and anatase, glass frit and organic binder. The films were deposited on alumina substrates with interdigitated electrode geometry. Sintering at 850 °C resulted in the formation of pseudobrookite. X-Ray Diffraction (XRD) analysis showed pseudobrookite with a mixed orthorhombic and monoclinic structure and a small amount of excess rutile. Gas sensing measurements with low NO gas concentrations in air were performed using an in-house gas sensor testing setup in the temperature range 100-300 °C. On the example of one particular gas concentration, results showed that pseudobrookite exhibited a distinct response to NO already at 150 °C that further improved with increased sample temperature.",
publisher = "IEEE",
journal = "2017 40th International Spring Seminar on Electronics Technology (ISSE)",
title = "Pseudobrookite thick films for potential application as low-temperature sensitive material in NO gas sensors",
pages = "1-6",
doi = "10.1109/ISSE.2017.8000881"
}
Mišković, G., Nikolić, M. V., Luković, M. D., Vasiljević, Z. Ž., Nicolics, J.,& Aleksić, O. S. (2017). Pseudobrookite thick films for potential application as low-temperature sensitive material in NO gas sensors.
2017 40th International Spring Seminar on Electronics Technology (ISSE)IEEE., null, 1-6. 
https://doi.org/10.1109/ISSE.2017.8000881
Mišković G, Nikolić MV, Luković MD, Vasiljević ZŽ, Nicolics J, Aleksić OS. Pseudobrookite thick films for potential application as low-temperature sensitive material in NO gas sensors. 2017 40th International Spring Seminar on Electronics Technology (ISSE). 2017;:1-6
1
1

Characterisation of Mn0.63Zn0.37Fe2O4 powders after intensive milling and subsequent thermal treatment

Labus, Nebojša; Vasiljević, Zorka Ž.; Aleksić, Obrad S.; Luković, Miloljub D.; Marković, Smilja; Pavlović, Vladimir B.; Mentus, Slavko; Nikolić, Maria Vesna

(2017)

TY  - JOUR
AU  - Labus, Nebojša
AU  - Vasiljević, Zorka Ž.
AU  - Aleksić, Obrad S.
AU  - Luković, Miloljub D.
AU  - Marković, Smilja
AU  - Pavlović, Vladimir B.
AU  - Mentus, Slavko
AU  - Nikolić, Maria Vesna
PY  - 2017
UR  - http://dais.sanu.ac.rs/123456789/2394
AB  - Commercial Mn-Zn powder (Mn0.63Zn0.37Fe2O4, 93 wt. % and Fe2O3 7 wt. %) was milled 0.5, 1, 2 and 4 hours in a planetary ball mill. The goal was to observe intensive milling influences on oxidation and reduction processes that will happen during subsequent heating. Powders were characterized with XRD, SEM and particle seizer. Subsequent heating was monitored on TGA/DTA in an air atmosphere. After compaction of the milled powders, sintering was also performed in a dilatometric device. Sintered specimens were characterized micro structurally with SEM on a fresh breakage. Obtained differential TGA diagrams suggest intensive changes during prolonged milling of the oxidation kinetics on heating. Ferrite powders changed with milling as well as with second run heating were characterized to enable determination of the potentially best ratio of milling and heating to be applied to obtain the desired microstructure.
T2  - Science of Sintering
T1  - Characterisation of Mn0.63Zn0.37Fe2O4 powders after intensive milling and subsequent thermal treatment
SP  - 455
EP  - 467
VL  - 49
IS  - 4
DO  - 10.2298/SOS1704455L
ER  - 
@article{
author = "Labus, Nebojša and Vasiljević, Zorka Ž. and Aleksić, Obrad S. and Luković, Miloljub D. and Marković, Smilja and Pavlović, Vladimir B. and Mentus, Slavko and Nikolić, Maria Vesna",
year = "2017",
url = "http://dais.sanu.ac.rs/123456789/2394",
abstract = "Commercial Mn-Zn powder (Mn0.63Zn0.37Fe2O4, 93 wt. % and Fe2O3 7 wt. %) was milled 0.5, 1, 2 and 4 hours in a planetary ball mill. The goal was to observe intensive milling influences on oxidation and reduction processes that will happen during subsequent heating. Powders were characterized with XRD, SEM and particle seizer. Subsequent heating was monitored on TGA/DTA in an air atmosphere. After compaction of the milled powders, sintering was also performed in a dilatometric device. Sintered specimens were characterized micro structurally with SEM on a fresh breakage. Obtained differential TGA diagrams suggest intensive changes during prolonged milling of the oxidation kinetics on heating. Ferrite powders changed with milling as well as with second run heating were characterized to enable determination of the potentially best ratio of milling and heating to be applied to obtain the desired microstructure.",
journal = "Science of Sintering",
title = "Characterisation of Mn0.63Zn0.37Fe2O4 powders after intensive milling and subsequent thermal treatment",
pages = "455-467",
volume = "49",
number = "4",
doi = "10.2298/SOS1704455L"
}
Labus, N., Vasiljević, Z. Ž., Aleksić, O. S., Luković, M. D., Marković, S., Pavlović, V. B., Mentus, S.,& Nikolić, M. V. (2017). Characterisation of Mn0.63Zn0.37Fe2O4 powders after intensive milling and subsequent thermal treatment.
Science of Sintering, 49(4), 455-467. 
https://doi.org/10.2298/SOS1704455L
Labus N, Vasiljević ZŽ, Aleksić OS, Luković MD, Marković S, Pavlović VB, Mentus S, Nikolić MV. Characterisation of Mn0.63Zn0.37Fe2O4 powders after intensive milling and subsequent thermal treatment. Science of Sintering. 2017;49(4):455-467
1
4
4

Impedance response of pseudobrookite thick films with a sandwich configuration

Luković, Miloljub D.; Nikolić, Maria Vesna; Vasiljević, Zorka Ž.; Blaž, Nelu; Luković, Snežana; Aleksić, Obrad S.

(IEEE, 2017)

TY  - CONF
AU  - Luković, Miloljub D.
AU  - Nikolić, Maria Vesna
AU  - Vasiljević, Zorka Ž.
AU  - Blaž, Nelu
AU  - Luković, Snežana
AU  - Aleksić, Obrad S.
PY  - 2017
UR  - http://dais.sanu.ac.rs/123456789/2357
AB  - We have investigated the impedance response of pseudobrookite thick films screen printed on alumina substrate in the temperature interval from room temperature to 350 °C in the frequency range 100 Hz-1 MHz. Two thick film pastes were made containing starting hematite and anatase nanopowders (in the 1:1 and 1:1.33 molar ratio - containing excess anatase), glass fritt and organic vehicle. A sandwich PdAg electrode structure was obtained by first printing a PdAg electrode, followed by 3 layers of PSB paste and a PdAg electrode on top with a mesh structure. Each layer was sintered at 850 °C in a hybrid conveyor furnace. XRD analysis confirmed the formation of pseudobrookite with an orthorhombic crystal structure. SEM analysis of thick film surfaces and cross sections showed the formation of a porous structure with rod-shaped grains. The impedance response of pseudobrookite thick films, showed a decrease with the rise in sample temperature. It was analyzed using an equivalent circuit reflecting the dominant influence of grain boundaries.
PB  - IEEE
C3  - 2017 40th International Spring Seminar on Electronics Technology (ISSE)
T1  - Impedance response of pseudobrookite thick films with a sandwich configuration
SP  - 1
EP  - 5
DO  - 10.1109/ISSE.2017.8000886
ER  - 
@conference{
author = "Luković, Miloljub D. and Nikolić, Maria Vesna and Vasiljević, Zorka Ž. and Blaž, Nelu and Luković, Snežana and Aleksić, Obrad S.",
year = "2017",
url = "http://dais.sanu.ac.rs/123456789/2357",
abstract = "We have investigated the impedance response of pseudobrookite thick films screen printed on alumina substrate in the temperature interval from room temperature to 350 °C in the frequency range 100 Hz-1 MHz. Two thick film pastes were made containing starting hematite and anatase nanopowders (in the 1:1 and 1:1.33 molar ratio - containing excess anatase), glass fritt and organic vehicle. A sandwich PdAg electrode structure was obtained by first printing a PdAg electrode, followed by 3 layers of PSB paste and a PdAg electrode on top with a mesh structure. Each layer was sintered at 850 °C in a hybrid conveyor furnace. XRD analysis confirmed the formation of pseudobrookite with an orthorhombic crystal structure. SEM analysis of thick film surfaces and cross sections showed the formation of a porous structure with rod-shaped grains. The impedance response of pseudobrookite thick films, showed a decrease with the rise in sample temperature. It was analyzed using an equivalent circuit reflecting the dominant influence of grain boundaries.",
publisher = "IEEE",
journal = "2017 40th International Spring Seminar on Electronics Technology (ISSE)",
title = "Impedance response of pseudobrookite thick films with a sandwich configuration",
pages = "1-5",
doi = "10.1109/ISSE.2017.8000886"
}
Luković, M. D., Nikolić, M. V., Vasiljević, Z. Ž., Blaž, N., Luković, S.,& Aleksić, O. S. (2017). Impedance response of pseudobrookite thick films with a sandwich configuration.
2017 40th International Spring Seminar on Electronics Technology (ISSE)IEEE., null, 1-5. 
https://doi.org/10.1109/ISSE.2017.8000886
Luković MD, Nikolić MV, Vasiljević ZŽ, Blaž N, Luković S, Aleksić OS. Impedance response of pseudobrookite thick films with a sandwich configuration. 2017 40th International Spring Seminar on Electronics Technology (ISSE). 2017;:1-5

Structural and electronic properties of screen-printed Fe2O3/TiO2 thick films and their photoelectrochemical behavior

Aleksić, Obrad S.; Vasiljević, Zorka Ž.; Vujković, Milica; Nikolić, Marko G.; Labus, Nebojša; Luković, Miloljub D.; Nikolić, Maria Vesna

(Springer US, 2017)

TY  - JOUR
AU  - Aleksić, Obrad S.
AU  - Vasiljević, Zorka Ž.
AU  - Vujković, Milica
AU  - Nikolić, Marko G.
AU  - Labus, Nebojša
AU  - Luković, Miloljub D.
AU  - Nikolić, Maria Vesna
PY  - 2017
UR  - http://dais.sanu.ac.rs/123456789/16011
AB  - Nanostructured Fe2TiO5 thick films were deposited on fluorine-doped tin oxide glass substrate using screen printing technology. Starting hematite and anatase nanopowders were mixed in molar ratios 1:1 and 1:1.5 and calcined in air at 900°C for 2 h to form pseudobrookite, Fe2TiO5. Functional powders and sintered thick films were analyzed by X-ray diffraction, scanning electron microscopy, energy-dispersive spectroscopy and transmission electron microscopy. UV–Vis analysis enabled determination of the band gap. Separation and transfer efficiency of photogenerated charge carriers was confirmed by the photoluminescence and electrochemical impedance spectra. Even though a slightly high onset oxygen evolution potential of photoexcited film electrode samples in NaOH was obtained, photocurrent densities were high, especially in the presence of H2O2 (~12 mA cm−2 at 1.7 V RHE). This work shows promise for practical application due to favorable band positions of pseudobrookite and low-cost screen printing technology.
PB  - Springer US
T2  - Journal of Materials Science
T1  - Structural and electronic properties of screen-printed Fe2O3/TiO2 thick films and their photoelectrochemical behavior
SP  - 5938
EP  - 5953
VL  - 52
IS  - 10
DO  - 10.1007/s10853-017-0830-2
ER  - 
@article{
author = "Aleksić, Obrad S. and Vasiljević, Zorka Ž. and Vujković, Milica and Nikolić, Marko G. and Labus, Nebojša and Luković, Miloljub D. and Nikolić, Maria Vesna",
year = "2017",
url = "http://dais.sanu.ac.rs/123456789/16011",
abstract = "Nanostructured Fe2TiO5 thick films were deposited on fluorine-doped tin oxide glass substrate using screen printing technology. Starting hematite and anatase nanopowders were mixed in molar ratios 1:1 and 1:1.5 and calcined in air at 900°C for 2 h to form pseudobrookite, Fe2TiO5. Functional powders and sintered thick films were analyzed by X-ray diffraction, scanning electron microscopy, energy-dispersive spectroscopy and transmission electron microscopy. UV–Vis analysis enabled determination of the band gap. Separation and transfer efficiency of photogenerated charge carriers was confirmed by the photoluminescence and electrochemical impedance spectra. Even though a slightly high onset oxygen evolution potential of photoexcited film electrode samples in NaOH was obtained, photocurrent densities were high, especially in the presence of H2O2 (~12 mA cm−2 at 1.7 V RHE). This work shows promise for practical application due to favorable band positions of pseudobrookite and low-cost screen printing technology.",
publisher = "Springer US",
journal = "Journal of Materials Science",
title = "Structural and electronic properties of screen-printed Fe2O3/TiO2 thick films and their photoelectrochemical behavior",
pages = "5938-5953",
volume = "52",
number = "10",
doi = "10.1007/s10853-017-0830-2"
}
Aleksić, O. S., Vasiljević, Z. Ž., Vujković, M., Nikolić, M. G., Labus, N., Luković, M. D.,& Nikolić, M. V. (2017). Structural and electronic properties of screen-printed Fe2O3/TiO2 thick films and their photoelectrochemical behavior.
Journal of Materials ScienceSpringer US., 52(10), 5938-5953. 
https://doi.org/10.1007/s10853-017-0830-2
Aleksić OS, Vasiljević ZŽ, Vujković M, Nikolić MG, Labus N, Luković MD, Nikolić MV. Structural and electronic properties of screen-printed Fe2O3/TiO2 thick films and their photoelectrochemical behavior. Journal of Materials Science. 2017;52(10):5938-5953
3
3
3

Dielectric properties, complex impedance and electrical conductivity of Fe2TiO5 nanopowder compacts and bulk samples at elevated temperatures

Nikolić, Maria Vesna; Sekulić, D. L.; Vasiljević, Zorka Ž.; Luković, Miloljub D.; Pavlović, Vladimir B.; Aleksić, Obrad S.

(Springer US, 2017)

TY  - JOUR
AU  - Nikolić, Maria Vesna
AU  - Sekulić, D. L.
AU  - Vasiljević, Zorka Ž.
AU  - Luković, Miloljub D.
AU  - Pavlović, Vladimir B.
AU  - Aleksić, Obrad S.
PY  - 2017
UR  - http://dais.sanu.ac.rs/123456789/15993
AB  - In this work we have investigated changes in dielectric properties, electrical conductivity and complex impedance of Fe2TiO5 nanopowder compacts and bulk samples as a function of elevated temperature (room to 423 K compacts, to 443 K bulk samples), frequency (100 Hz–1 MHz) and composition (starting molar ratio of Fe2O3 and TiO2 1:1—PSB11 and 1:1.5—PSB115). XRD, SEM and TEM analysis of PSB11 and PSB115 powders obtained by a simple solid state process from starting hematite and anatase nanopowders confirmed the formation of nanostructured orthorhombic pseudobrookite with small amounts of excess hematite and rutile. The dielectric constant decreased with frequency and temperature for both compacts and bulk samples. Higher values were determined for bulk samples also reflecting the influence of sample composition. Change in the dielectric loss also reflected the influence of sample composition showing one maximum at high frequencies for compacts, and two maxima at room temperature for bulk samples. Complex impedance was analyzed using equivalent circuits and showed in the case of compacts the influence of both grain and grain boundary components, while in the case of bulk samples the dominant influence of grain boundaries. The temperature dependence of the determined grain and grain boundary resistance for compacts and grain boundary resistance for bulk samples was analyzed using the adiabatic small polaron hopping model enabling determination of activation energies for conduction, while the temperature dependence of relaxation times enabled determination of activation energies for relaxation. Changes in electrical conductivity for compacts and bulk samples followed Jonscher’s power law. The change of the determined frequency constant with temperature showed that at elevated temperatures the quantum mechanical-tunneling model for the case of small polaron hopping explains the conduction mechanism occurring in both compacts and bulk samples.
PB  - Springer US
T2  - Journal of Materials Science: Materials in Electronics
T1  - Dielectric properties, complex impedance and electrical conductivity of Fe2TiO5 nanopowder compacts and bulk samples at elevated temperatures
SP  - 4796
EP  - 4806
VL  - 28
IS  - 6
DO  - 10.1007/s10854-016-6125-6
ER  - 
@article{
author = "Nikolić, Maria Vesna and Sekulić, D. L. and Vasiljević, Zorka Ž. and Luković, Miloljub D. and Pavlović, Vladimir B. and Aleksić, Obrad S.",
year = "2017",
url = "http://dais.sanu.ac.rs/123456789/15993",
abstract = "In this work we have investigated changes in dielectric properties, electrical conductivity and complex impedance of Fe2TiO5 nanopowder compacts and bulk samples as a function of elevated temperature (room to 423 K compacts, to 443 K bulk samples), frequency (100 Hz–1 MHz) and composition (starting molar ratio of Fe2O3 and TiO2 1:1—PSB11 and 1:1.5—PSB115). XRD, SEM and TEM analysis of PSB11 and PSB115 powders obtained by a simple solid state process from starting hematite and anatase nanopowders confirmed the formation of nanostructured orthorhombic pseudobrookite with small amounts of excess hematite and rutile. The dielectric constant decreased with frequency and temperature for both compacts and bulk samples. Higher values were determined for bulk samples also reflecting the influence of sample composition. Change in the dielectric loss also reflected the influence of sample composition showing one maximum at high frequencies for compacts, and two maxima at room temperature for bulk samples. Complex impedance was analyzed using equivalent circuits and showed in the case of compacts the influence of both grain and grain boundary components, while in the case of bulk samples the dominant influence of grain boundaries. The temperature dependence of the determined grain and grain boundary resistance for compacts and grain boundary resistance for bulk samples was analyzed using the adiabatic small polaron hopping model enabling determination of activation energies for conduction, while the temperature dependence of relaxation times enabled determination of activation energies for relaxation. Changes in electrical conductivity for compacts and bulk samples followed Jonscher’s power law. The change of the determined frequency constant with temperature showed that at elevated temperatures the quantum mechanical-tunneling model for the case of small polaron hopping explains the conduction mechanism occurring in both compacts and bulk samples.",
publisher = "Springer US",
journal = "Journal of Materials Science: Materials in Electronics",
title = "Dielectric properties, complex impedance and electrical conductivity of Fe2TiO5 nanopowder compacts and bulk samples at elevated temperatures",
pages = "4796-4806",
volume = "28",
number = "6",
doi = "10.1007/s10854-016-6125-6"
}
Nikolić, M. V., Sekulić, D. L., Vasiljević, Z. Ž., Luković, M. D., Pavlović, V. B.,& Aleksić, O. S. (2017). Dielectric properties, complex impedance and electrical conductivity of Fe2TiO5 nanopowder compacts and bulk samples at elevated temperatures.
Journal of Materials Science: Materials in ElectronicsSpringer US., 28(6), 4796-4806. 
https://doi.org/10.1007/s10854-016-6125-6
Nikolić MV, Sekulić DL, Vasiljević ZŽ, Luković MD, Pavlović VB, Aleksić OS. Dielectric properties, complex impedance and electrical conductivity of Fe2TiO5 nanopowder compacts and bulk samples at elevated temperatures. Journal of Materials Science: Materials in Electronics. 2017;28(6):4796-4806
9
10
10

Structural, electrical and magnetic properties of mechanically activated manganese and zinc ferrite

Luković, Miloljub D.; Nikolić, Maria Vesna; Balaz, Nelu; Milutinov, Miodrag; Vasiljević, Zorka Ž.; Labus, Nebojša; Aleksić, Obrad S.

(Belgrade : Institute for Multidisciplinary Research of the University of Belgrade, 2017)

TY  - CONF
AU  - Luković, Miloljub D.
AU  - Nikolić, Maria Vesna
AU  - Balaz, Nelu
AU  - Milutinov, Miodrag
AU  - Vasiljević, Zorka Ž.
AU  - Labus, Nebojša
AU  - Aleksić, Obrad S.
PY  - 2017
UR  - http://dais.sanu.ac.rs/123456789/15430
AB  - Starting hematite (Fe2O3), zinc oxide (ZnO) and manganese carbonate (MnCO3) powders were homogenized in a planetary ball mill in stainless steel bowls with stainless steel balls for 15 min, calcined in air at 1000 C for 2 h, milled in a planetary ball mill for 30 minutes, followed by 4 h in an aghate mill, sieved through a 325 mesh to form four starting powders: MnFe2O4, ZnFe2O4, Mn0.5Zn0.5Fe2O4 and a two-phase mixture of zinc and manganese ferrite. Structural properties of the obtained powders were analyzed using XRD, SEM and EDS. Electrical properties of disk shaped samples were measured at room temperature on an impedance analyzer in the frequency range 100 to 40 MHz, enabling determination and comparison of dielectric permittivity and complex impedance. Complex relative permeability of toroid shaped samples was measured on an impedance analyzer in the frequency range from 1 MHz to 500 MHz.
PB  - Belgrade : Institute for Multidisciplinary Research of the University of Belgrade
C3  - Programme and the Book of Abstracts / 4th Conference of The Serbian Society for Ceramic Materials, 4CSCS-2017, June 14-16, 2017, Belgrade, Serbia
T1  - Structural, electrical and magnetic properties of mechanically activated manganese and zinc ferrite
SP  - 102
EP  - 102
ER  - 
@conference{
author = "Luković, Miloljub D. and Nikolić, Maria Vesna and Balaz, Nelu and Milutinov, Miodrag and Vasiljević, Zorka Ž. and Labus, Nebojša and Aleksić, Obrad S.",
year = "2017",
url = "http://dais.sanu.ac.rs/123456789/15430",
abstract = "Starting hematite (Fe2O3), zinc oxide (ZnO) and manganese carbonate (MnCO3) powders were homogenized in a planetary ball mill in stainless steel bowls with stainless steel balls for 15 min, calcined in air at 1000 C for 2 h, milled in a planetary ball mill for 30 minutes, followed by 4 h in an aghate mill, sieved through a 325 mesh to form four starting powders: MnFe2O4, ZnFe2O4, Mn0.5Zn0.5Fe2O4 and a two-phase mixture of zinc and manganese ferrite. Structural properties of the obtained powders were analyzed using XRD, SEM and EDS. Electrical properties of disk shaped samples were measured at room temperature on an impedance analyzer in the frequency range 100 to 40 MHz, enabling determination and comparison of dielectric permittivity and complex impedance. Complex relative permeability of toroid shaped samples was measured on an impedance analyzer in the frequency range from 1 MHz to 500 MHz.",
publisher = "Belgrade : Institute for Multidisciplinary Research of the University of Belgrade",
journal = "Programme and the Book of Abstracts / 4th Conference of The Serbian Society for Ceramic Materials, 4CSCS-2017, June 14-16, 2017, Belgrade, Serbia",
title = "Structural, electrical and magnetic properties of mechanically activated manganese and zinc ferrite",
pages = "102-102"
}
Luković, M. D., Nikolić, M. V., Balaz, N., Milutinov, M., Vasiljević, Z. Ž., Labus, N.,& Aleksić, O. S. (2017). Structural, electrical and magnetic properties of mechanically activated manganese and zinc ferrite.
Programme and the Book of Abstracts / 4th Conference of The Serbian Society for Ceramic Materials, 4CSCS-2017, June 14-16, 2017, Belgrade, SerbiaBelgrade : Institute for Multidisciplinary Research of the University of Belgrade., null, 102-102. 
Luković MD, Nikolić MV, Balaz N, Milutinov M, Vasiljević ZŽ, Labus N, Aleksić OS. Structural, electrical and magnetic properties of mechanically activated manganese and zinc ferrite. Programme and the Book of Abstracts / 4th Conference of The Serbian Society for Ceramic Materials, 4CSCS-2017, June 14-16, 2017, Belgrade, Serbia. 2017;:102-102